btrfs: [] on the end of a struct field is a variable length array.
[haiku.git] / headers / libs / agg / agg_span_gouraud_rgba.h
blob89192d227bee08b4f2dcdef95f35880569c004e0
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 // mcseemagg@yahoo.com
13 // http://www.antigrain.com
14 //----------------------------------------------------------------------------
16 // Adaptation for high precision colors has been sponsored by
17 // Liberty Technology Systems, Inc., visit http://lib-sys.com
19 // Liberty Technology Systems, Inc. is the provider of
20 // PostScript and PDF technology for software developers.
21 //
22 //----------------------------------------------------------------------------
24 #ifndef AGG_SPAN_GOURAUD_RGBA_INCLUDED
25 #define AGG_SPAN_GOURAUD_RGBA_INCLUDED
27 #include "agg_basics.h"
28 #include "agg_color_rgba.h"
29 #include "agg_dda_line.h"
30 #include "agg_span_gouraud.h"
32 namespace agg
35 //=======================================================span_gouraud_rgba
36 template<class ColorT> class span_gouraud_rgba : public span_gouraud<ColorT>
38 public:
39 typedef ColorT color_type;
40 typedef typename ColorT::value_type value_type;
41 typedef span_gouraud<color_type> base_type;
42 typedef typename base_type::coord_type coord_type;
43 enum subpixel_scale_e
45 subpixel_shift = 4,
46 subpixel_scale = 1 << subpixel_shift
49 private:
50 //--------------------------------------------------------------------
51 struct rgba_calc
53 void init(const coord_type& c1, const coord_type& c2)
55 m_x1 = c1.x - 0.5;
56 m_y1 = c1.y - 0.5;
57 m_dx = c2.x - c1.x;
58 double dy = c2.y - c1.y;
59 m_1dy = (dy < 1e-5) ? 1e5 : 1.0 / dy;
60 m_r1 = c1.color.r;
61 m_g1 = c1.color.g;
62 m_b1 = c1.color.b;
63 m_a1 = c1.color.a;
64 m_dr = c2.color.r - m_r1;
65 m_dg = c2.color.g - m_g1;
66 m_db = c2.color.b - m_b1;
67 m_da = c2.color.a - m_a1;
70 void calc(double y)
72 double k = (y - m_y1) * m_1dy;
73 if(k < 0.0) k = 0.0;
74 if(k > 1.0) k = 1.0;
75 m_r = m_r1 + iround(m_dr * k);
76 m_g = m_g1 + iround(m_dg * k);
77 m_b = m_b1 + iround(m_db * k);
78 m_a = m_a1 + iround(m_da * k);
79 m_x = iround((m_x1 + m_dx * k) * subpixel_scale);
82 double m_x1;
83 double m_y1;
84 double m_dx;
85 double m_1dy;
86 int m_r1;
87 int m_g1;
88 int m_b1;
89 int m_a1;
90 int m_dr;
91 int m_dg;
92 int m_db;
93 int m_da;
94 int m_r;
95 int m_g;
96 int m_b;
97 int m_a;
98 int m_x;
101 public:
103 //--------------------------------------------------------------------
104 span_gouraud_rgba() {}
105 span_gouraud_rgba(const color_type& c1,
106 const color_type& c2,
107 const color_type& c3,
108 double x1, double y1,
109 double x2, double y2,
110 double x3, double y3,
111 double d = 0) :
112 base_type(c1, c2, c3, x1, y1, x2, y2, x3, y3, d)
115 //--------------------------------------------------------------------
116 void prepare()
118 coord_type coord[3];
119 base_type::arrange_vertices(coord);
121 m_y2 = int(coord[1].y);
123 m_swap = cross_product(coord[0].x, coord[0].y,
124 coord[2].x, coord[2].y,
125 coord[1].x, coord[1].y) < 0.0;
127 m_rgba1.init(coord[0], coord[2]);
128 m_rgba2.init(coord[0], coord[1]);
129 m_rgba3.init(coord[1], coord[2]);
132 //--------------------------------------------------------------------
133 void generate(color_type* span, int x, int y, unsigned len)
135 m_rgba1.calc(y);//(m_rgba1.m_1dy > 2) ? m_rgba1.m_y1 : y);
136 const rgba_calc* pc1 = &m_rgba1;
137 const rgba_calc* pc2 = &m_rgba2;
139 if(y <= m_y2)
141 // Bottom part of the triangle (first subtriangle)
142 //-------------------------
143 m_rgba2.calc(y + m_rgba2.m_1dy);
145 else
147 // Upper part (second subtriangle)
148 m_rgba3.calc(y - m_rgba3.m_1dy);
149 //-------------------------
150 pc2 = &m_rgba3;
153 if(m_swap)
155 // It means that the triangle is oriented clockwise,
156 // so that we need to swap the controlling structures
157 //-------------------------
158 const rgba_calc* t = pc2;
159 pc2 = pc1;
160 pc1 = t;
163 // Get the horizontal length with subpixel accuracy
164 // and protect it from division by zero
165 //-------------------------
166 int nlen = abs(pc2->m_x - pc1->m_x);
167 if(nlen <= 0) nlen = 1;
169 dda_line_interpolator<14> r(pc1->m_r, pc2->m_r, nlen);
170 dda_line_interpolator<14> g(pc1->m_g, pc2->m_g, nlen);
171 dda_line_interpolator<14> b(pc1->m_b, pc2->m_b, nlen);
172 dda_line_interpolator<14> a(pc1->m_a, pc2->m_a, nlen);
174 // Calculate the starting point of the gradient with subpixel
175 // accuracy and correct (roll back) the interpolators.
176 // This operation will also clip the beginning of the span
177 // if necessary.
178 //-------------------------
179 int start = pc1->m_x - (x << subpixel_shift);
180 r -= start;
181 g -= start;
182 b -= start;
183 a -= start;
184 nlen += start;
186 int vr, vg, vb, va;
187 enum lim_e { lim = color_type::base_mask };
189 // Beginning part of the span. Since we rolled back the
190 // interpolators, the color values may have overflow.
191 // So that, we render the beginning part with checking
192 // for overflow. It lasts until "start" is positive;
193 // typically it's 1-2 pixels, but may be more in some cases.
194 //-------------------------
195 while(len && start > 0)
197 vr = r.y();
198 vg = g.y();
199 vb = b.y();
200 va = a.y();
201 if(vr < 0) vr = 0; if(vr > lim) vr = lim;
202 if(vg < 0) vg = 0; if(vg > lim) vg = lim;
203 if(vb < 0) vb = 0; if(vb > lim) vb = lim;
204 if(va < 0) va = 0; if(va > lim) va = lim;
205 span->r = (value_type)vr;
206 span->g = (value_type)vg;
207 span->b = (value_type)vb;
208 span->a = (value_type)va;
209 r += subpixel_scale;
210 g += subpixel_scale;
211 b += subpixel_scale;
212 a += subpixel_scale;
213 nlen -= subpixel_scale;
214 start -= subpixel_scale;
215 ++span;
216 --len;
219 // Middle part, no checking for overflow.
220 // Actual spans can be longer than the calculated length
221 // because of anti-aliasing, thus, the interpolators can
222 // overflow. But while "nlen" is positive we are safe.
223 //-------------------------
224 while(len && nlen > 0)
226 span->r = (value_type)r.y();
227 span->g = (value_type)g.y();
228 span->b = (value_type)b.y();
229 span->a = (value_type)a.y();
230 r += subpixel_scale;
231 g += subpixel_scale;
232 b += subpixel_scale;
233 a += subpixel_scale;
234 nlen -= subpixel_scale;
235 ++span;
236 --len;
239 // Ending part; checking for overflow.
240 // Typically it's 1-2 pixels, but may be more in some cases.
241 //-------------------------
242 while(len)
244 vr = r.y();
245 vg = g.y();
246 vb = b.y();
247 va = a.y();
248 if(vr < 0) vr = 0; if(vr > lim) vr = lim;
249 if(vg < 0) vg = 0; if(vg > lim) vg = lim;
250 if(vb < 0) vb = 0; if(vb > lim) vb = lim;
251 if(va < 0) va = 0; if(va > lim) va = lim;
252 span->r = (value_type)vr;
253 span->g = (value_type)vg;
254 span->b = (value_type)vb;
255 span->a = (value_type)va;
256 r += subpixel_scale;
257 g += subpixel_scale;
258 b += subpixel_scale;
259 a += subpixel_scale;
260 ++span;
261 --len;
265 private:
266 bool m_swap;
267 int m_y2;
268 rgba_calc m_rgba1;
269 rgba_calc m_rgba2;
270 rgba_calc m_rgba3;
277 #endif