libroot/posix/stdio: Remove unused portions.
[haiku.git] / src / system / kernel / util / AVLTreeBase.cpp
blobaf473e800b3c480af4dd6ab5b3342c7067b84ab0
1 /*
2 * Copyright 2003-2009, Ingo Weinhold <ingo_weinhold@gmx.de>.
3 * Distributed under the terms of the MIT License.
4 */
7 #include <util/AVLTreeBase.h>
9 #ifndef FS_SHELL
10 # include <algorithm>
11 # include <KernelExport.h>
12 #endif
14 #ifdef _KERNEL_MODE
15 # define CHECK_FAILED(message...) panic(message)
16 #else
17 # ifndef FS_SHELL
18 # include <stdio.h>
19 # include <OS.h>
20 # define CHECK_FAILED(message...) \
21 do { \
22 fprintf(stderr, message); \
23 fprintf(stderr, "\n"); \
24 debugger("AVLTreeBase check failed"); \
25 } while (false)
26 # else
27 # define CHECK_FAILED(message...) dprintf(message)
28 # endif
29 #endif
32 // maximal height of a tree
33 static const int kMaxAVLTreeHeight = 32;
36 // #pragma mark - AVLTreeCompare
39 AVLTreeCompare::~AVLTreeCompare()
44 // #pragma mark - AVLTreeBase
47 AVLTreeBase::AVLTreeBase(AVLTreeCompare* compare)
48 : fRoot(NULL),
49 fNodeCount(0),
50 fCompare(compare)
55 AVLTreeBase::~AVLTreeBase()
60 void
61 AVLTreeBase::MakeEmpty()
63 fRoot = NULL;
64 fNodeCount = 0;
68 AVLTreeNode*
69 AVLTreeBase::LeftMost(AVLTreeNode* node) const
71 if (node) {
72 while (node->left)
73 node = node->left;
76 return node;
80 AVLTreeNode*
81 AVLTreeBase::RightMost(AVLTreeNode* node) const
83 if (node) {
84 while (node->right)
85 node = node->right;
88 return node;
92 AVLTreeNode*
93 AVLTreeBase::Previous(AVLTreeNode* node) const
95 if (node) {
96 // The previous node cannot be in the right subtree.
97 if (node->left) {
98 // We have a left subtree, so go to the right-most node.
99 node = node->left;
100 while (node->right)
101 node = node->right;
102 } else {
103 // No left subtree: Backtrack our path and stop, where we
104 // took the right branch.
105 AVLTreeNode* previous;
106 do {
107 previous = node;
108 node = node->parent;
109 } while (node && previous == node->left);
113 return node;
117 AVLTreeNode*
118 AVLTreeBase::Next(AVLTreeNode* node) const
120 if (node) {
121 // The next node cannot be in the left subtree.
122 if (node->right) {
123 // We have a right subtree, so go to the left-most node.
124 node = node->right;
125 while (node->left)
126 node = node->left;
127 } else {
128 // No right subtree: Backtrack our path and stop, where we
129 // took the left branch.
130 AVLTreeNode* previous;
131 do {
132 previous = node;
133 node = node->parent;
134 } while (node && previous == node->right);
138 return node;
142 AVLTreeNode*
143 AVLTreeBase::Find(const void* key) const
145 AVLTreeNode* node = fRoot;
147 while (node) {
148 int cmp = fCompare->CompareKeyNode(key, node);
149 if (cmp == 0)
150 return node;
152 if (cmp < 0)
153 node = node->left;
154 else
155 node = node->right;
158 return NULL;
162 AVLTreeNode*
163 AVLTreeBase::FindClosest(const void* key, bool less) const
165 AVLTreeNode* node = fRoot;
166 AVLTreeNode* parent = NULL;
168 while (node) {
169 int cmp = fCompare->CompareKeyNode(key, node);
170 if (cmp == 0)
171 break;
173 parent = node;
174 if (cmp < 0)
175 node = node->left;
176 else
177 node = node->right;
180 // not found: try to get close
181 if (!node && parent) {
182 node = parent;
183 int expectedCmp = (less ? 1 : -1);
184 int cmp = fCompare->CompareKeyNode(key, node);
185 if (cmp != expectedCmp) {
186 // The node's value is less although we were asked for a greater
187 // value, or the other way around. We need to iterate to the next
188 // node in the respective direction. If there is no node, we fail.
189 if (less)
190 return Previous(node);
191 return Next(node);
195 return node;
199 status_t
200 AVLTreeBase::Insert(AVLTreeNode* nodeToInsert)
202 int result = _Insert(nodeToInsert);
203 switch (result) {
204 case OK:
205 case HEIGHT_CHANGED:
206 return B_OK;
207 case NO_MEMORY:
208 return B_NO_MEMORY;
209 case DUPLICATE:
210 default:
211 return B_BAD_VALUE;
216 AVLTreeNode*
217 AVLTreeBase::Remove(const void* key)
219 // find node
220 AVLTreeNode* node = fRoot;
221 while (node) {
222 int cmp = fCompare->CompareKeyNode(key, node);
223 if (cmp == 0)
224 break;
225 else {
226 if (cmp < 0)
227 node = node->left;
228 else
229 node = node->right;
233 // remove it
234 if (node)
235 _Remove(node);
237 return node;
241 bool
242 AVLTreeBase::Remove(AVLTreeNode* node)
244 switch (_Remove(node)) {
245 case OK:
246 case HEIGHT_CHANGED:
247 return true;
248 case NOT_FOUND:
249 default:
250 return false;
255 void
256 AVLTreeBase::CheckTree() const
258 int nodeCount = 0;
259 _CheckTree(NULL, fRoot, nodeCount);
260 if (nodeCount != fNodeCount) {
261 CHECK_FAILED("AVLTreeBase::CheckTree(): node count mismatch: %d vs %d",
262 nodeCount, fNodeCount);
267 void
268 AVLTreeBase::_RotateRight(AVLTreeNode** nodeP)
270 // rotate the nodes
271 AVLTreeNode* node = *nodeP;
272 AVLTreeNode* left = node->left;
274 *nodeP = left;
276 left->parent = node->parent;
277 node->left = left->right;
278 if (left->right)
279 left->right->parent = node;
280 left->right = node;
281 node->parent = left;
283 // adjust the balance factors
284 // former pivot
285 if (left->balance_factor >= 0)
286 node->balance_factor++;
287 else
288 node->balance_factor += 1 - left->balance_factor;
290 // former left
291 if (node->balance_factor <= 0)
292 left->balance_factor++;
293 else
294 left->balance_factor += node->balance_factor + 1;
298 void
299 AVLTreeBase::_RotateLeft(AVLTreeNode** nodeP)
301 // rotate the nodes
302 AVLTreeNode* node = *nodeP;
303 AVLTreeNode* right = node->right;
305 *nodeP = right;
307 right->parent = node->parent;
308 node->right = right->left;
309 if (right->left)
310 right->left->parent = node;
311 right->left = node;
312 node->parent = right;
314 // adjust the balance factors
315 // former pivot
316 if (right->balance_factor <= 0)
317 node->balance_factor--;
318 else
319 node->balance_factor -= right->balance_factor + 1;
321 // former right
322 if (node->balance_factor >= 0)
323 right->balance_factor--;
324 else
325 right->balance_factor += node->balance_factor - 1;
330 AVLTreeBase::_BalanceInsertLeft(AVLTreeNode** node)
332 if ((*node)->balance_factor < LEFT) {
333 // tree is left heavy
334 AVLTreeNode** left = &(*node)->left;
335 if ((*left)->balance_factor == LEFT) {
336 // left left heavy
337 _RotateRight(node);
338 } else {
339 // left right heavy
340 _RotateLeft(left);
341 _RotateRight(node);
343 return OK;
346 if ((*node)->balance_factor == BALANCED)
347 return OK;
349 return HEIGHT_CHANGED;
354 AVLTreeBase::_BalanceInsertRight(AVLTreeNode** node)
356 if ((*node)->balance_factor > RIGHT) {
357 // tree is right heavy
358 AVLTreeNode** right = &(*node)->right;
359 if ((*right)->balance_factor == RIGHT) {
360 // right right heavy
361 _RotateLeft(node);
362 } else {
363 // right left heavy
364 _RotateRight(right);
365 _RotateLeft(node);
367 return OK;
370 if ((*node)->balance_factor == BALANCED)
371 return OK;
373 return HEIGHT_CHANGED;
378 AVLTreeBase::_Insert(AVLTreeNode* nodeToInsert)
380 struct node_info {
381 AVLTreeNode** node;
382 bool left;
385 node_info stack[kMaxAVLTreeHeight];
386 node_info* top = stack;
387 const node_info* const bottom = stack;
388 AVLTreeNode** node = &fRoot;
390 // find insertion point
391 while (*node) {
392 int cmp = fCompare->CompareNodes(nodeToInsert, *node);
393 if (cmp == 0) // duplicate node
394 return DUPLICATE;
395 else {
396 top->node = node;
397 if (cmp < 0) {
398 top->left = true;
399 node = &(*node)->left;
400 } else {
401 top->left = false;
402 node = &(*node)->right;
404 top++;
408 // insert node
409 *node = nodeToInsert;
410 nodeToInsert->left = NULL;
411 nodeToInsert->right = NULL;
412 nodeToInsert->balance_factor = BALANCED;
413 fNodeCount++;
415 if (top == bottom)
416 nodeToInsert->parent = NULL;
417 else
418 (*node)->parent = *top[-1].node;
420 // do the balancing
421 int result = HEIGHT_CHANGED;
422 while (result == HEIGHT_CHANGED && top != bottom) {
423 top--;
424 node = top->node;
425 if (top->left) {
426 // left
427 (*node)->balance_factor--;
428 result = _BalanceInsertLeft(node);
429 } else {
430 // right
431 (*node)->balance_factor++;
432 result = _BalanceInsertRight(node);
436 return result;
441 AVLTreeBase::_BalanceRemoveLeft(AVLTreeNode** node)
443 int result = HEIGHT_CHANGED;
445 if ((*node)->balance_factor > RIGHT) {
446 // tree is right heavy
447 AVLTreeNode** right = &(*node)->right;
448 if ((*right)->balance_factor == RIGHT) {
449 // right right heavy
450 _RotateLeft(node);
451 } else if ((*right)->balance_factor == BALANCED) {
452 // right none heavy
453 _RotateLeft(node);
454 result = OK;
455 } else {
456 // right left heavy
457 _RotateRight(right);
458 _RotateLeft(node);
460 } else if ((*node)->balance_factor == RIGHT)
461 result = OK;
463 return result;
468 AVLTreeBase::_BalanceRemoveRight(AVLTreeNode** node)
470 int result = HEIGHT_CHANGED;
472 if ((*node)->balance_factor < LEFT) {
473 // tree is left heavy
474 AVLTreeNode** left = &(*node)->left;
475 if ((*left)->balance_factor == LEFT) {
476 // left left heavy
477 _RotateRight(node);
478 } else if ((*left)->balance_factor == BALANCED) {
479 // left none heavy
480 _RotateRight(node);
481 result = OK;
482 } else {
483 // left right heavy
484 _RotateLeft(left);
485 _RotateRight(node);
487 } else if ((*node)->balance_factor == LEFT)
488 result = OK;
490 return result;
495 AVLTreeBase::_RemoveRightMostChild(AVLTreeNode** node, AVLTreeNode** foundNode)
497 AVLTreeNode** stack[kMaxAVLTreeHeight];
498 AVLTreeNode*** top = stack;
499 const AVLTreeNode* const* const* const bottom = stack;
501 // find the child
502 while ((*node)->right) {
503 *top = node;
504 top++;
505 node = &(*node)->right;
508 // found the rightmost child: remove it
509 // the found node might have a left child: replace the node with the
510 // child
511 *foundNode = *node;
512 AVLTreeNode* left = (*node)->left;
513 if (left)
514 left->parent = (*node)->parent;
515 *node = left;
516 (*foundNode)->left = NULL;
517 (*foundNode)->parent = NULL;
519 // balancing
520 int result = HEIGHT_CHANGED;
521 while (result == HEIGHT_CHANGED && top != bottom) {
522 top--;
523 node = *top;
524 (*node)->balance_factor--;
525 result = _BalanceRemoveRight(node);
528 return result;
533 AVLTreeBase::_Remove(AVLTreeNode* node)
535 if (!node)
536 return NOT_FOUND;
538 // remove node
539 AVLTreeNode* parent = node->parent;
540 bool isLeft = (parent && parent->left == node);
541 AVLTreeNode** nodeP
542 = (parent ? (isLeft ? &parent->left : &parent->right) : &fRoot);
543 int result = HEIGHT_CHANGED;
544 AVLTreeNode* replace = NULL;
546 if (node->left && node->right) {
547 // node has two children
548 result = _RemoveRightMostChild(&node->left, &replace);
549 replace->parent = parent;
550 replace->left = node->left;
551 replace->right = node->right;
552 if (node->left) // check necessary, if node->left == replace
553 node->left->parent = replace;
554 node->right->parent = replace;
555 replace->balance_factor = node->balance_factor;
556 *nodeP = replace;
558 if (result == HEIGHT_CHANGED) {
559 replace->balance_factor++;
560 result = _BalanceRemoveLeft(nodeP);
562 } else if (node->left) {
563 // node has only left child
564 replace = node->left;
565 replace->parent = parent;
566 replace->balance_factor = node->balance_factor + 1;
567 *nodeP = replace;
568 } else if (node->right) {
569 // node has only right child
570 replace = node->right;
571 replace->parent = node->parent;
572 replace->balance_factor = node->balance_factor - 1;
573 *nodeP = replace;
574 } else {
575 // node has no child
576 *nodeP = NULL;
579 fNodeCount--;
581 // do the balancing
582 while (result == HEIGHT_CHANGED && parent) {
583 node = parent;
584 parent = node->parent;
585 bool oldIsLeft = isLeft;
586 isLeft = (parent && parent->left == node);
587 nodeP = (parent ? (isLeft ? &parent->left : &parent->right) : &fRoot);
588 if (oldIsLeft) {
589 // left
590 node->balance_factor++;
591 result = _BalanceRemoveLeft(nodeP);
592 } else {
593 // right
594 node->balance_factor--;
595 result = _BalanceRemoveRight(nodeP);
599 return result;
604 AVLTreeBase::_CheckTree(AVLTreeNode* parent, AVLTreeNode* node,
605 int& _nodeCount) const
607 if (node == NULL) {
608 _nodeCount = 0;
609 return 0;
612 if (parent != node->parent) {
613 CHECK_FAILED("AVLTreeBase::_CheckTree(): node %p parent mismatch: "
614 "%p vs %p", node, parent, node->parent);
617 int leftNodeCount;
618 int leftDepth = _CheckTree(node, node->left, leftNodeCount);
620 int rightNodeCount;
621 int rightDepth = _CheckTree(node, node->right, rightNodeCount);
623 int balance = rightDepth - leftDepth;
624 if (balance < LEFT || balance > RIGHT) {
625 CHECK_FAILED("AVLTreeBase::_CheckTree(): unbalanced subtree: %p", node);
626 } else if (balance != node->balance_factor) {
627 CHECK_FAILED("AVLTreeBase::_CheckTree(): subtree %p balance mismatch: "
628 "%d vs %d", node, balance, node->balance_factor);
631 _nodeCount = leftNodeCount + rightNodeCount + 1;
632 return std::max(leftDepth, rightDepth) + 1;