5 * Copyright (C) 1999 - 2007 Michael C. Ring
7 * Permission to use, copy, and distribute this software and its
8 * documentation for any purpose with or without fee is hereby granted,
9 * provided that the above copyright notice appear in all copies and
10 * that both that copyright notice and this permission notice appear
11 * in supporting documentation.
13 * Permission to modify the software is granted. Permission to distribute
14 * the modified code is granted. Modifications are to be distributed by
15 * using the file 'license.txt' as a template to modify the file header.
16 * 'license.txt' is available in the official MAPM distribution.
18 * This software is provided "as is" without express or implied warranty.
22 * $Id: mapmsqrt.c,v 1.19 2007/12/03 01:57:31 mike Exp $
24 * This file contains the SQRT function.
26 * $Log: mapmsqrt.c,v $
27 * Revision 1.19 2007/12/03 01:57:31 mike
30 * Revision 1.18 2003/07/21 20:39:00 mike
31 * Modify error messages to be in a consistent format.
33 * Revision 1.17 2003/05/07 16:36:04 mike
34 * simplify 'nexp' logic
36 * Revision 1.16 2003/03/31 21:50:14 mike
37 * call generic error handling function
39 * Revision 1.15 2003/03/11 21:29:00 mike
40 * round an intermediate result for faster runtime.
42 * Revision 1.14 2002/11/03 22:00:46 mike
43 * Updated function parameters to use the modern style
45 * Revision 1.13 2001/07/10 22:50:31 mike
48 * Revision 1.12 2000/09/26 18:32:04 mike
49 * use new algorithm which only uses multiply and subtract
50 * (avoids the slower version which used division)
52 * Revision 1.11 2000/07/11 17:56:22 mike
53 * make better estimate for initial precision
55 * Revision 1.10 1999/07/21 02:48:45 mike
58 * Revision 1.9 1999/07/19 00:25:44 mike
59 * adjust local precision again
61 * Revision 1.8 1999/07/19 00:09:41 mike
62 * adjust local precision during loop
64 * Revision 1.7 1999/07/18 22:57:08 mike
65 * change to dynamically changing local precision and
66 * change tolerance checks using integers
68 * Revision 1.6 1999/06/19 21:18:00 mike
69 * changed local static variables to MAPM stack variables
71 * Revision 1.5 1999/05/31 01:40:39 mike
72 * minor update to normalizing the exponent
74 * Revision 1.4 1999/05/31 01:21:41 mike
75 * optimize for large exponents
77 * Revision 1.3 1999/05/12 20:59:35 mike
78 * use a better 'guess' function
80 * Revision 1.2 1999/05/10 21:15:26 mike
83 * Revision 1.1 1999/05/10 20:56:31 mike
89 /****************************************************************************/
90 void m_apm_sqrt(M_APM rr
, int places
, M_APM aa
)
92 M_APM last_x
, guess
, tmpN
, tmp7
, tmp8
, tmp9
;
93 int ii
, bflag
, nexp
, tolerance
, dplaces
;
95 if (aa
->m_apm_sign
<= 0)
97 if (aa
->m_apm_sign
== -1)
99 M_apm_log_error_msg(M_APM_RETURN
, "\'m_apm_sqrt\', Negative argument");
106 last_x
= M_get_stack_var();
107 guess
= M_get_stack_var();
108 tmpN
= M_get_stack_var();
109 tmp7
= M_get_stack_var();
110 tmp8
= M_get_stack_var();
111 tmp9
= M_get_stack_var();
113 m_apm_copy(tmpN
, aa
);
116 normalize the input number (make the exponent near 0) so
117 the 'guess' function will not over/under flow on large
121 nexp
= aa
->m_apm_exponent
/ 2;
122 tmpN
->m_apm_exponent
-= 2 * nexp
;
124 M_get_sqrt_guess(guess
, tmpN
); /* actually gets 1/sqrt guess */
126 tolerance
= places
+ 4;
127 dplaces
= places
+ 16;
130 m_apm_negate(last_x
, MM_Ten
);
132 /* Use the following iteration to calculate 1 / sqrt(N) :
134 X = 0.5 * X * [ 3 - N * X^2 ]
142 m_apm_multiply(tmp9
, tmpN
, guess
);
143 m_apm_multiply(tmp8
, tmp9
, guess
);
144 m_apm_round(tmp7
, dplaces
, tmp8
);
145 m_apm_subtract(tmp9
, MM_Three
, tmp7
);
146 m_apm_multiply(tmp8
, tmp9
, guess
);
147 m_apm_multiply(tmp9
, tmp8
, MM_0_5
);
152 m_apm_round(guess
, dplaces
, tmp9
);
154 /* force at least 2 iterations so 'last_x' has valid data */
158 m_apm_subtract(tmp7
, guess
, last_x
);
160 if (tmp7
->m_apm_sign
== 0)
164 * if we are within a factor of 4 on the error term,
165 * we will be accurate enough after the *next* iteration
166 * is complete. (note that the sign of the exponent on
167 * the error term will be a negative number).
170 if ((-4 * tmp7
->m_apm_exponent
) > tolerance
)
174 m_apm_copy(last_x
, guess
);
179 * multiply by the starting number to get the final
180 * sqrt and then adjust the exponent since we found
181 * the sqrt of the normalized number.
184 m_apm_multiply(tmp8
, tmp9
, tmpN
);
185 m_apm_round(rr
, places
, tmp8
);
186 rr
->m_apm_exponent
+= nexp
;
190 /****************************************************************************/