HBASE-26787 TestRegionReplicaReplicationError should inject error in replicateToRepli...
[hbase.git] / src / main / asciidoc / _chapters / compression.adoc
blob5e1ff3a943dd145a34a8691fcc138362df268c16
1 ////
2 /**
3  *
4  * Licensed to the Apache Software Foundation (ASF) under one
5  * or more contributor license agreements.  See the NOTICE file
6  * distributed with this work for additional information
7  * regarding copyright ownership.  The ASF licenses this file
8  * to you under the Apache License, Version 2.0 (the
9  * "License"); you may not use this file except in compliance
10  * with the License.  You may obtain a copy of the License at
11  *
12  *     http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  */
20 ////
22 [appendix]
23 [[compression]]
24 == Compression and Data Block Encoding In HBase(((Compression,Data BlockEncoding)))
25 :doctype: book
26 :numbered:
27 :toc: left
28 :icons: font
29 :experimental:
31 NOTE: Codecs mentioned in this section are for encoding and decoding data blocks or row keys.
32 For information about replication codecs, see <<cluster.replication.preserving.tags,cluster.replication.preserving.tags>>.
34 HBase supports several different compression algorithms which can be enabled on a ColumnFamily.
35 Data block encoding attempts to limit duplication of information in keys, taking advantage of some of the fundamental designs and patterns of HBase, such as sorted row keys and the schema of a given table.
36 Compressors reduce the size of large, opaque byte arrays in cells, and can significantly reduce the storage space needed to store uncompressed data.
38 Compressors and data block encoding can be used together on the same ColumnFamily.
40 .Changes Take Effect Upon Compaction
41 If you change compression or encoding for a ColumnFamily, the changes take effect during compaction.
43 Some codecs take advantage of capabilities built into Java, such as GZip compression. Others rely on native libraries. Native libraries may be available as part of Hadoop, such as LZ4. In this case, HBase only needs access to the appropriate shared library.
45 Other codecs, such as Google Snappy, need to be installed first.
46 Some codecs are licensed in ways that conflict with HBase's license and cannot be shipped as part of HBase.
48 This section discusses common codecs that are used and tested with HBase.
49 No matter what codec you use, be sure to test that it is installed correctly and is available on all nodes in your cluster.
50 Extra operational steps may be necessary to be sure that codecs are available on newly-deployed nodes.
51 You can use the <<compression.test,compression.test>> utility to check that a given codec is correctly installed.
53 To configure HBase to use a compressor, see <<compressor.install,compressor.install>>.
54 To enable a compressor for a ColumnFamily, see <<changing.compression,changing.compression>>.
55 To enable data block encoding for a ColumnFamily, see <<data.block.encoding.enable,data.block.encoding.enable>>.
57 .Block Compressors
58 * none
59 * Snappy
60 * LZO
61 * LZ4
62 * GZ
64 .Data Block Encoding Types
65 Prefix::
66   Often, keys are very similar. Specifically, keys often share a common prefix and only differ near the end. For instance, one key might be `RowKey:Family:Qualifier0` and the next key might be `RowKey:Family:Qualifier1`.
67   +
68 In Prefix encoding, an extra column is added which holds the length of the prefix shared between the current key and the previous key.
69 Assuming the first key here is totally different from the key before, its prefix length is 0.
71 The second key's prefix length is `23`, since they have the first 23 characters in common.
73 Obviously if the keys tend to have nothing in common, Prefix will not provide much benefit.
75 The following image shows a hypothetical ColumnFamily with no data block encoding.
77 .ColumnFamily with No Encoding
78 image::data_block_no_encoding.png[]
80 Here is the same data with prefix data encoding.
82 .ColumnFamily with Prefix Encoding
83 image::data_block_prefix_encoding.png[]
85 Diff::
86   Diff encoding expands upon Prefix encoding.
87   Instead of considering the key sequentially as a monolithic series of bytes, each key field is split so that each part of the key can be compressed more efficiently.
89 Two new fields are added: timestamp and type.
91 If the ColumnFamily is the same as the previous row, it is omitted from the current row.
93 If the key length, value length or type are the same as the previous row, the field is omitted.
95 In addition, for increased compression, the timestamp is stored as a Diff from the previous row's timestamp, rather than being stored in full.
96 Given the two row keys in the Prefix example, and given an exact match on timestamp and the same type, neither the value length, or type needs to be stored for the second row, and the timestamp value for the second row is just 0, rather than a full timestamp.
98 Diff encoding is disabled by default because writing and scanning are slower but more data is cached.
100 This image shows the same ColumnFamily from the previous images, with Diff encoding.
102 .ColumnFamily with Diff Encoding
103 image::data_block_diff_encoding.png[]
105 Fast Diff::
106   Fast Diff works similar to Diff, but uses a faster implementation. It also adds another field which stores a single bit to track whether the data itself is the same as the previous row. If it is, the data is not stored again.
108 Fast Diff is the recommended codec to use if you have long keys or many columns.
110 The data format is nearly identical to Diff encoding, so there is not an image to illustrate it.
113 Prefix Tree::
114   Prefix tree encoding was introduced as an experimental feature in HBase 0.96.
115   It provides similar memory savings to the Prefix, Diff, and Fast Diff encoder, but provides faster random access at a cost of slower encoding speed.
116   It was removed in hbase-2.0.0. It was a good idea but little uptake. If interested in reviving this effort, write the hbase dev list.
118 [[data.block.encoding.types]]
119 === Which Compressor or Data Block Encoder To Use
121 The compression or codec type to use depends on the characteristics of your data. Choosing the wrong type could cause your data to take more space rather than less, and can have performance implications.
123 In general, you need to weigh your options between smaller size and faster compression/decompression. Following are some general guidelines, expanded from a discussion at link:https://lists.apache.org/thread.html/481e67a61163efaaf4345510447a9244871a8d428244868345a155ff%401378926618%40%3Cdev.hbase.apache.org%3E[Documenting Guidance on compression and codecs].
125 * If you have long keys (compared to the values) or many columns, use a prefix encoder.
126   FAST_DIFF is recommended.
127 * If the values are large (and not precompressed, such as images), use a data block compressor.
128 * Use GZIP for [firstterm]_cold data_, which is accessed infrequently.
129   GZIP compression uses more CPU resources than Snappy or LZO, but provides a higher compression ratio.
130 * Use Snappy or LZO for [firstterm]_hot data_, which is accessed frequently.
131   Snappy and LZO use fewer CPU resources than GZIP, but do not provide as high of a compression ratio.
132 * In most cases, enabling Snappy or LZO by default is a good choice, because they have a low performance overhead and provide space savings.
133 * Before Snappy became available by Google in 2011, LZO was the default.
134   Snappy has similar qualities as LZO but has been shown to perform better.
136 [[hadoop.native.lib]]
137 === Making use of Hadoop Native Libraries in HBase
139 The Hadoop shared library has a bunch of facility including compression libraries and fast crc'ing -- hardware crc'ing if your chipset supports it.
140 To make this facility available to HBase, do the following. HBase/Hadoop will fall back to use alternatives if it cannot find the native library
141 versions -- or fail outright if you asking for an explicit compressor and there is no alternative available.
143 First make sure of your Hadoop. Fix this message if you are seeing it starting Hadoop processes:
144 ----
145 16/02/09 22:40:24 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
146 ----
147 It means is not properly pointing at its native libraries or the native libs were compiled for another platform.
148 Fix this first.
150 Then if you see the following in your HBase logs, you know that HBase was unable to locate the Hadoop native libraries:
151 [source]
152 ----
153 2014-08-07 09:26:20,139 WARN  [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
154 ----
155 If the libraries loaded successfully, the WARN message does not show. Usually this means you are good to go but read on.
157 Let's presume your Hadoop shipped with a native library that suits the platform you are running HBase on.
158 To check if the Hadoop native library is available to HBase, run the following tool (available in  Hadoop 2.1 and greater):
159 [source]
160 ----
161 $ ./bin/hbase --config ~/conf_hbase org.apache.hadoop.util.NativeLibraryChecker
162 2014-08-26 13:15:38,717 WARN  [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
163 Native library checking:
164 hadoop: false
165 zlib:   false
166 snappy: false
167 lz4:    false
168 bzip2:  false
169 2014-08-26 13:15:38,863 INFO  [main] util.ExitUtil: Exiting with status 1
170 ----
171 Above shows that the native hadoop library is not available in HBase context.
173 The above NativeLibraryChecker tool may come back saying all is hunky-dory
174 -- i.e. all libs show 'true', that they are available -- but follow the below
175 presecription anyways to ensure the native libs are available in HBase context,
176 when it goes to use them.
178 To fix the above, either copy the Hadoop native libraries local or symlink to them if the Hadoop and HBase stalls are adjacent in the filesystem.
179 You could also point at their location by setting the `LD_LIBRARY_PATH` environment variable in your hbase-env.sh.
181 Where the JVM looks to find native libraries is "system dependent" (See `java.lang.System#loadLibrary(name)`). On linux, by default, is going to look in _lib/native/PLATFORM_ where `PLATFORM`      is the label for the platform your HBase is installed on.
182 On a local linux machine, it seems to be the concatenation of the java properties `os.name` and `os.arch` followed by whether 32 or 64 bit.
183 HBase on startup prints out all of the java system properties so find the os.name and os.arch in the log.
184 For example:
185 [source]
186 ----
188 2014-08-06 15:27:22,853 INFO  [main] zookeeper.ZooKeeper: Client environment:os.name=Linux
189 2014-08-06 15:27:22,853 INFO  [main] zookeeper.ZooKeeper: Client environment:os.arch=amd64
191 ----
192 So in this case, the PLATFORM string is `Linux-amd64-64`.
193 Copying the Hadoop native libraries or symlinking at _lib/native/Linux-amd64-64_     will ensure they are found.
194 Rolling restart after you have made this change.
196 Here is an example of how you would set up the symlinks.
197 Let the hadoop and hbase installs be in your home directory. Assume your hadoop native libs
198 are at ~/hadoop/lib/native. Assume you are on a Linux-amd64-64 platform. In this case,
199 you would do the following to link the hadoop native lib so hbase could find them.
200 ----
202 $ mkdir -p ~/hbaseLinux-amd64-64 -> /home/stack/hadoop/lib/native/lib/native/
203 $ cd ~/hbase/lib/native/
204 $ ln -s ~/hadoop/lib/native Linux-amd64-64
205 $ ls -la
206 # Linux-amd64-64 -> /home/USER/hadoop/lib/native
208 ----
210 If you see PureJavaCrc32C in a stack track or if you see something like the below in a perf trace, then native is not working; you are using the java CRC functions rather than native:
211 ----
212   5.02%  perf-53601.map      [.] Lorg/apache/hadoop/util/PureJavaCrc32C;.update
213 ----
214 See link:https://issues.apache.org/jira/browse/HBASE-11927[HBASE-11927 Use Native Hadoop Library for HFile checksum (And flip default from CRC32 to CRC32C)],
215 for more on native checksumming support. See in particular the release note for how to check if your hardware to see if your processor has support for hardware CRCs.
216 Or checkout the Apache link:https://blogs.apache.org/hbase/entry/saving_cpu_using_native_hadoop[Checksums in HBase] blog post.
218 Here is example of how to point at the Hadoop libs with `LD_LIBRARY_PATH`      environment variable:
219 [source]
220 ----
221 $ LD_LIBRARY_PATH=~/hadoop-2.5.0-SNAPSHOT/lib/native ./bin/hbase --config ~/conf_hbase org.apache.hadoop.util.NativeLibraryChecker
222 2014-08-26 13:42:49,332 INFO  [main] bzip2.Bzip2Factory: Successfully loaded & initialized native-bzip2 library system-native
223 2014-08-26 13:42:49,337 INFO  [main] zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
224 Native library checking:
225 hadoop: true /home/stack/hadoop-2.5.0-SNAPSHOT/lib/native/libhadoop.so.1.0.0
226 zlib:   true /lib64/libz.so.1
227 snappy: true /usr/lib64/libsnappy.so.1
228 lz4:    true revision:99
229 bzip2:  true /lib64/libbz2.so.1
230 ----
231 Set in _hbase-env.sh_ the LD_LIBRARY_PATH environment variable when starting your HBase.
233 === Compressor Configuration, Installation, and Use
235 [[compressor.install]]
236 ==== Configure HBase For Compressors
238 Before HBase can use a given compressor, its libraries need to be available.
239 Due to licensing issues, only GZ compression is available to HBase (via native Java libraries) in a default installation.
240 Other compression libraries are available via the shared library bundled with your hadoop.
241 The hadoop native library needs to be findable when HBase starts.
244 .Compressor Support On the Master
246 A new configuration setting was introduced in HBase 0.95, to check the Master to determine which data block encoders are installed and configured on it, and assume that the entire cluster is configured the same.
247 This option, `hbase.master.check.compression`, defaults to `true`.
248 This prevents the situation described in link:https://issues.apache.org/jira/browse/HBASE-6370[HBASE-6370], where a table is created or modified to support a codec that a region server does not support, leading to failures that take a long time to occur and are difficult to debug.
250 If `hbase.master.check.compression` is enabled, libraries for all desired compressors need to be installed and configured on the Master, even if the Master does not run a region server.
252 .Install GZ Support Via Native Libraries
254 HBase uses Java's built-in GZip support unless the native Hadoop libraries are available on the CLASSPATH.
255 The recommended way to add libraries to the CLASSPATH is to set the environment variable `HBASE_LIBRARY_PATH` for the user running HBase.
256 If native libraries are not available and Java's GZIP is used, `Got brand-new compressor` reports will be present in the logs.
257 See <<brand.new.compressor,brand.new.compressor>>).
259 [[lzo.compression]]
260 .Install LZO Support
262 HBase cannot ship with LZO because of incompatibility between HBase, which uses an Apache Software License (ASL) and LZO, which uses a GPL license.
263 See the link:https://github.com/twitter/hadoop-lzo/blob/master/README.md[Hadoop-LZO at Twitter] for information on configuring LZO support for HBase.
265 If you depend upon LZO compression, consider configuring your RegionServers to fail to start if LZO is not available.
266 See <<hbase.regionserver.codecs,hbase.regionserver.codecs>>.
268 [[lz4.compression]]
269 .Configure LZ4 Support
271 LZ4 support is bundled with Hadoop.
272 Make sure the hadoop shared library (libhadoop.so) is accessible when you start HBase.
273 After configuring your platform (see <<hadoop.native.lib,hadoop.native.lib>>), you can make a symbolic link from HBase to the native Hadoop libraries.
274 This assumes the two software installs are colocated.
275 For example, if my 'platform' is Linux-amd64-64:
276 [source,bourne]
277 ----
278 $ cd $HBASE_HOME
279 $ mkdir lib/native
280 $ ln -s $HADOOP_HOME/lib/native lib/native/Linux-amd64-64
281 ----
282 Use the compression tool to check that LZ4 is installed on all nodes.
283 Start up (or restart) HBase.
284 Afterward, you can create and alter tables to enable LZ4 as a compression codec.:
285 ----
286 hbase(main):003:0> alter 'TestTable', {NAME => 'info', COMPRESSION => 'LZ4'}
287 ----
289 [[snappy.compression.installation]]
290 .Install Snappy Support
292 HBase does not ship with Snappy support because of licensing issues.
293 You can install Snappy binaries (for instance, by using +yum install snappy+ on CentOS) or build Snappy from source.
294 After installing Snappy, search for the shared library, which will be called _libsnappy.so.X_ where X is a number.
295 If you built from source, copy the shared library to a known location on your system, such as _/opt/snappy/lib/_.
297 In addition to the Snappy library, HBase also needs access to the Hadoop shared library, which will be called something like _libhadoop.so.X.Y_, where X and Y are both numbers.
298 Make note of the location of the Hadoop library, or copy it to the same location as the Snappy library.
300 [NOTE]
301 ====
302 The Snappy and Hadoop libraries need to be available on each node of your cluster.
303 See <<compression.test,compression.test>> to find out how to test that this is the case.
305 See <<hbase.regionserver.codecs,hbase.regionserver.codecs>> to configure your RegionServers to fail to start if a given compressor is not available.
306 ====
308 Each of these library locations need to be added to the environment variable `HBASE_LIBRARY_PATH` for the operating system user that runs HBase.
309 You need to restart the RegionServer for the changes to take effect.
311 [[compression.test]]
312 .CompressionTest
314 You can use the CompressionTest tool to verify that your compressor is available to HBase:
316 ----
318  $ hbase org.apache.hadoop.hbase.util.CompressionTest hdfs://host/path/to/hbase snappy
319 ----
321 [[hbase.regionserver.codecs]]
322 .Enforce Compression Settings On a RegionServer
324 You can configure a RegionServer so that it will fail to restart if compression is configured incorrectly, by adding the option hbase.regionserver.codecs to the _hbase-site.xml_, and setting its value to a comma-separated list of codecs that need to be available.
325 For example, if you set this property to `lzo,gz`, the RegionServer would fail to start if both compressors were not available.
326 This would prevent a new server from being added to the cluster without having codecs configured properly.
328 [[changing.compression]]
329 ==== Enable Compression On a ColumnFamily
331 To enable compression for a ColumnFamily, use an `alter` command.
332 You do not need to re-create the table or copy data.
333 If you are changing codecs, be sure the old codec is still available until all the old StoreFiles have been compacted.
335 .Enabling Compression on a ColumnFamily of an Existing Table using HBaseShell
336 ----
337 hbase> alter 'test', {NAME => 'cf', COMPRESSION => 'GZ'}
338 ----
340 .Creating a New Table with Compression On a ColumnFamily
341 ----
342 hbase> create 'test2', { NAME => 'cf2', COMPRESSION => 'SNAPPY' }
343 ----
345 .Verifying a ColumnFamily's Compression Settings
346 ----
348 hbase> describe 'test'
349 DESCRIPTION                                          ENABLED
350  'test', {NAME => 'cf', DATA_BLOCK_ENCODING => 'NONE false
351  ', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0',
352  VERSIONS => '1', COMPRESSION => 'GZ', MIN_VERSIONS
353  => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => 'fa
354  lse', BLOCKSIZE => '65536', IN_MEMORY => 'false', B
355  LOCKCACHE => 'true'}
356 1 row(s) in 0.1070 seconds
357 ----
359 ==== Testing Compression Performance
361 HBase includes a tool called LoadTestTool which provides mechanisms to test your compression performance.
362 You must specify either `-write` or `-update-read` as your first parameter, and if you do not specify another parameter, usage advice is printed for each option.
364 .+LoadTestTool+ Usage
365 ----
366 $ bin/hbase org.apache.hadoop.hbase.util.LoadTestTool -h
367 usage: bin/hbase org.apache.hadoop.hbase.util.LoadTestTool <options>
368 Options:
369  -batchupdate                 Whether to use batch as opposed to separate
370                               updates for every column in a row
371  -bloom <arg>                 Bloom filter type, one of [NONE, ROW, ROWCOL]
372  -compression <arg>           Compression type, one of [LZO, GZ, NONE, SNAPPY,
373                               LZ4]
374  -data_block_encoding <arg>   Encoding algorithm (e.g. prefix compression) to
375                               use for data blocks in the test column family, one
376                               of [NONE, PREFIX, DIFF, FAST_DIFF, ROW_INDEX_V1].
377  -encryption <arg>            Enables transparent encryption on the test table,
378                               one of [AES]
379  -generator <arg>             The class which generates load for the tool. Any
380                               args for this class can be passed as colon
381                               separated after class name
382  -h,--help                    Show usage
383  -in_memory                   Tries to keep the HFiles of the CF inmemory as far
384                               as possible.  Not guaranteed that reads are always
385                               served from inmemory
386  -init_only                   Initialize the test table only, don't do any
387                               loading
388  -key_window <arg>            The 'key window' to maintain between reads and
389                               writes for concurrent write/read workload. The
390                               default is 0.
391  -max_read_errors <arg>       The maximum number of read errors to tolerate
392                               before terminating all reader threads. The default
393                               is 10.
394  -multiput                    Whether to use multi-puts as opposed to separate
395                               puts for every column in a row
396  -num_keys <arg>              The number of keys to read/write
397  -num_tables <arg>            A positive integer number. When a number n is
398                               speicfied, load test tool  will load n table
399                               parallely. -tn parameter value becomes table name
400                               prefix. Each table name is in format
401                               <tn>_1...<tn>_n
402  -read <arg>                  <verify_percent>[:<#threads=20>]
403  -regions_per_server <arg>    A positive integer number. When a number n is
404                               specified, load test tool will create the test
405                               table with n regions per server
406  -skip_init                   Skip the initialization; assume test table already
407                               exists
408  -start_key <arg>             The first key to read/write (a 0-based index). The
409                               default value is 0.
410  -tn <arg>                    The name of the table to read or write
411  -update <arg>                <update_percent>[:<#threads=20>][:<#whether to
412                               ignore nonce collisions=0>]
413  -write <arg>                 <avg_cols_per_key>:<avg_data_size>[:<#threads=20>]
414  -zk <arg>                    ZK quorum as comma-separated host names without
415                               port numbers
416  -zk_root <arg>               name of parent znode in zookeeper
417 ----
419 .Example Usage of LoadTestTool
420 ----
421 $ hbase org.apache.hadoop.hbase.util.LoadTestTool -write 1:10:100 -num_keys 1000000
422           -read 100:30 -num_tables 1 -data_block_encoding NONE -tn load_test_tool_NONE
423 ----
425 [[data.block.encoding.enable]]
426 === Enable Data Block Encoding
428 Codecs are built into HBase so no extra configuration is needed.
429 Codecs are enabled on a table by setting the `DATA_BLOCK_ENCODING` property.
430 Disable the table before altering its DATA_BLOCK_ENCODING setting.
431 Following is an example using HBase Shell:
433 .Enable Data Block Encoding On a Table
434 ----
435 hbase> alter 'test', { NAME => 'cf', DATA_BLOCK_ENCODING => 'FAST_DIFF' }
436 Updating all regions with the new schema...
437 0/1 regions updated.
438 1/1 regions updated.
439 Done.
440 0 row(s) in 2.2820 seconds
441 ----
443 .Verifying a ColumnFamily's Data Block Encoding
444 ----
445 hbase> describe 'test'
446 DESCRIPTION                                          ENABLED
447  'test', {NAME => 'cf', DATA_BLOCK_ENCODING => 'FAST true
448  _DIFF', BLOOMFILTER => 'ROW', REPLICATION_SCOPE =>
449  '0', VERSIONS => '1', COMPRESSION => 'GZ', MIN_VERS
450  IONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS =
451  > 'false', BLOCKSIZE => '65536', IN_MEMORY => 'fals
452  e', BLOCKCACHE => 'true'}
453 1 row(s) in 0.0650 seconds
454 ----
456 :numbered:
458 ifdef::backend-docbook[]
459 [index]
460 == Index
461 // Generated automatically by the DocBook toolchain.
462 endif::backend-docbook[]