[NETFILTER]: xt_limit: add compat conversion functions
[hh.org.git] / lib / swiotlb.c
blob10625785eefd90d412668fce760190b122569bb9
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is for IA-64 and EM64T platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ctype.h>
28 #include <asm/io.h>
29 #include <asm/dma.h>
30 #include <asm/scatterlist.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
35 #define OFFSET(val,align) ((unsigned long) \
36 ( (val) & ( (align) - 1)))
38 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
39 #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
42 * Maximum allowable number of contiguous slabs to map,
43 * must be a power of 2. What is the appropriate value ?
44 * The complexity of {map,unmap}_single is linearly dependent on this value.
46 #define IO_TLB_SEGSIZE 128
49 * log of the size of each IO TLB slab. The number of slabs is command line
50 * controllable.
52 #define IO_TLB_SHIFT 11
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
57 * Minimum IO TLB size to bother booting with. Systems with mainly
58 * 64bit capable cards will only lightly use the swiotlb. If we can't
59 * allocate a contiguous 1MB, we're probably in trouble anyway.
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
64 * Enumeration for sync targets
66 enum dma_sync_target {
67 SYNC_FOR_CPU = 0,
68 SYNC_FOR_DEVICE = 1,
71 int swiotlb_force;
74 * Used to do a quick range check in swiotlb_unmap_single and
75 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
76 * API.
78 static char *io_tlb_start, *io_tlb_end;
81 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
82 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
84 static unsigned long io_tlb_nslabs;
87 * When the IOMMU overflows we return a fallback buffer. This sets the size.
89 static unsigned long io_tlb_overflow = 32*1024;
91 void *io_tlb_overflow_buffer;
94 * This is a free list describing the number of free entries available from
95 * each index
97 static unsigned int *io_tlb_list;
98 static unsigned int io_tlb_index;
101 * We need to save away the original address corresponding to a mapped entry
102 * for the sync operations.
104 static unsigned char **io_tlb_orig_addr;
107 * Protect the above data structures in the map and unmap calls
109 static DEFINE_SPINLOCK(io_tlb_lock);
111 static int __init
112 setup_io_tlb_npages(char *str)
114 if (isdigit(*str)) {
115 io_tlb_nslabs = simple_strtoul(str, &str, 0);
116 /* avoid tail segment of size < IO_TLB_SEGSIZE */
117 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
119 if (*str == ',')
120 ++str;
121 if (!strcmp(str, "force"))
122 swiotlb_force = 1;
123 return 1;
125 __setup("swiotlb=", setup_io_tlb_npages);
126 /* make io_tlb_overflow tunable too? */
129 * Statically reserve bounce buffer space and initialize bounce buffer data
130 * structures for the software IO TLB used to implement the DMA API.
132 void
133 swiotlb_init_with_default_size (size_t default_size)
135 unsigned long i;
137 if (!io_tlb_nslabs) {
138 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
139 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
143 * Get IO TLB memory from the low pages
145 io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
146 if (!io_tlb_start)
147 panic("Cannot allocate SWIOTLB buffer");
148 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
151 * Allocate and initialize the free list array. This array is used
152 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
153 * between io_tlb_start and io_tlb_end.
155 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
156 for (i = 0; i < io_tlb_nslabs; i++)
157 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
158 io_tlb_index = 0;
159 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
162 * Get the overflow emergency buffer
164 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
165 printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
166 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
169 void
170 swiotlb_init (void)
172 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
176 * Systems with larger DMA zones (those that don't support ISA) can
177 * initialize the swiotlb later using the slab allocator if needed.
178 * This should be just like above, but with some error catching.
181 swiotlb_late_init_with_default_size (size_t default_size)
183 unsigned long i, req_nslabs = io_tlb_nslabs;
184 unsigned int order;
186 if (!io_tlb_nslabs) {
187 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
188 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
192 * Get IO TLB memory from the low pages
194 order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
195 io_tlb_nslabs = SLABS_PER_PAGE << order;
197 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
198 io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
199 order);
200 if (io_tlb_start)
201 break;
202 order--;
205 if (!io_tlb_start)
206 goto cleanup1;
208 if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
209 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
210 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
211 io_tlb_nslabs = SLABS_PER_PAGE << order;
213 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
214 memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
217 * Allocate and initialize the free list array. This array is used
218 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
219 * between io_tlb_start and io_tlb_end.
221 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
222 get_order(io_tlb_nslabs * sizeof(int)));
223 if (!io_tlb_list)
224 goto cleanup2;
226 for (i = 0; i < io_tlb_nslabs; i++)
227 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
228 io_tlb_index = 0;
230 io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
231 get_order(io_tlb_nslabs * sizeof(char *)));
232 if (!io_tlb_orig_addr)
233 goto cleanup3;
235 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
238 * Get the overflow emergency buffer
240 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
241 get_order(io_tlb_overflow));
242 if (!io_tlb_overflow_buffer)
243 goto cleanup4;
245 printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
246 "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
247 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
249 return 0;
251 cleanup4:
252 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
253 sizeof(char *)));
254 io_tlb_orig_addr = NULL;
255 cleanup3:
256 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
257 sizeof(int)));
258 io_tlb_list = NULL;
259 io_tlb_end = NULL;
260 cleanup2:
261 free_pages((unsigned long)io_tlb_start, order);
262 io_tlb_start = NULL;
263 cleanup1:
264 io_tlb_nslabs = req_nslabs;
265 return -ENOMEM;
268 static inline int
269 address_needs_mapping(struct device *hwdev, dma_addr_t addr)
271 dma_addr_t mask = 0xffffffff;
272 /* If the device has a mask, use it, otherwise default to 32 bits */
273 if (hwdev && hwdev->dma_mask)
274 mask = *hwdev->dma_mask;
275 return (addr & ~mask) != 0;
279 * Allocates bounce buffer and returns its kernel virtual address.
281 static void *
282 map_single(struct device *hwdev, char *buffer, size_t size, int dir)
284 unsigned long flags;
285 char *dma_addr;
286 unsigned int nslots, stride, index, wrap;
287 int i;
290 * For mappings greater than a page, we limit the stride (and
291 * hence alignment) to a page size.
293 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
294 if (size > PAGE_SIZE)
295 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
296 else
297 stride = 1;
299 BUG_ON(!nslots);
302 * Find suitable number of IO TLB entries size that will fit this
303 * request and allocate a buffer from that IO TLB pool.
305 spin_lock_irqsave(&io_tlb_lock, flags);
307 wrap = index = ALIGN(io_tlb_index, stride);
309 if (index >= io_tlb_nslabs)
310 wrap = index = 0;
312 do {
314 * If we find a slot that indicates we have 'nslots'
315 * number of contiguous buffers, we allocate the
316 * buffers from that slot and mark the entries as '0'
317 * indicating unavailable.
319 if (io_tlb_list[index] >= nslots) {
320 int count = 0;
322 for (i = index; i < (int) (index + nslots); i++)
323 io_tlb_list[i] = 0;
324 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
325 io_tlb_list[i] = ++count;
326 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
329 * Update the indices to avoid searching in
330 * the next round.
332 io_tlb_index = ((index + nslots) < io_tlb_nslabs
333 ? (index + nslots) : 0);
335 goto found;
337 index += stride;
338 if (index >= io_tlb_nslabs)
339 index = 0;
340 } while (index != wrap);
342 spin_unlock_irqrestore(&io_tlb_lock, flags);
343 return NULL;
345 found:
346 spin_unlock_irqrestore(&io_tlb_lock, flags);
349 * Save away the mapping from the original address to the DMA address.
350 * This is needed when we sync the memory. Then we sync the buffer if
351 * needed.
353 io_tlb_orig_addr[index] = buffer;
354 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
355 memcpy(dma_addr, buffer, size);
357 return dma_addr;
361 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
363 static void
364 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
366 unsigned long flags;
367 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
368 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
369 char *buffer = io_tlb_orig_addr[index];
372 * First, sync the memory before unmapping the entry
374 if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
376 * bounce... copy the data back into the original buffer * and
377 * delete the bounce buffer.
379 memcpy(buffer, dma_addr, size);
382 * Return the buffer to the free list by setting the corresponding
383 * entries to indicate the number of contigous entries available.
384 * While returning the entries to the free list, we merge the entries
385 * with slots below and above the pool being returned.
387 spin_lock_irqsave(&io_tlb_lock, flags);
389 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
390 io_tlb_list[index + nslots] : 0);
392 * Step 1: return the slots to the free list, merging the
393 * slots with superceeding slots
395 for (i = index + nslots - 1; i >= index; i--)
396 io_tlb_list[i] = ++count;
398 * Step 2: merge the returned slots with the preceding slots,
399 * if available (non zero)
401 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
402 io_tlb_list[i] = ++count;
404 spin_unlock_irqrestore(&io_tlb_lock, flags);
407 static void
408 sync_single(struct device *hwdev, char *dma_addr, size_t size,
409 int dir, int target)
411 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
412 char *buffer = io_tlb_orig_addr[index];
414 switch (target) {
415 case SYNC_FOR_CPU:
416 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
417 memcpy(buffer, dma_addr, size);
418 else
419 BUG_ON(dir != DMA_TO_DEVICE);
420 break;
421 case SYNC_FOR_DEVICE:
422 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
423 memcpy(dma_addr, buffer, size);
424 else
425 BUG_ON(dir != DMA_FROM_DEVICE);
426 break;
427 default:
428 BUG();
432 void *
433 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
434 dma_addr_t *dma_handle, gfp_t flags)
436 unsigned long dev_addr;
437 void *ret;
438 int order = get_order(size);
441 * XXX fix me: the DMA API should pass us an explicit DMA mask
442 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
443 * bit range instead of a 16MB one).
445 flags |= GFP_DMA;
447 ret = (void *)__get_free_pages(flags, order);
448 if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
450 * The allocated memory isn't reachable by the device.
451 * Fall back on swiotlb_map_single().
453 free_pages((unsigned long) ret, order);
454 ret = NULL;
456 if (!ret) {
458 * We are either out of memory or the device can't DMA
459 * to GFP_DMA memory; fall back on
460 * swiotlb_map_single(), which will grab memory from
461 * the lowest available address range.
463 dma_addr_t handle;
464 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
465 if (swiotlb_dma_mapping_error(handle))
466 return NULL;
468 ret = phys_to_virt(handle);
471 memset(ret, 0, size);
472 dev_addr = virt_to_phys(ret);
474 /* Confirm address can be DMA'd by device */
475 if (address_needs_mapping(hwdev, dev_addr)) {
476 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
477 (unsigned long long)*hwdev->dma_mask, dev_addr);
478 panic("swiotlb_alloc_coherent: allocated memory is out of "
479 "range for device");
481 *dma_handle = dev_addr;
482 return ret;
485 void
486 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
487 dma_addr_t dma_handle)
489 if (!(vaddr >= (void *)io_tlb_start
490 && vaddr < (void *)io_tlb_end))
491 free_pages((unsigned long) vaddr, get_order(size));
492 else
493 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
494 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
497 static void
498 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
501 * Ran out of IOMMU space for this operation. This is very bad.
502 * Unfortunately the drivers cannot handle this operation properly.
503 * unless they check for dma_mapping_error (most don't)
504 * When the mapping is small enough return a static buffer to limit
505 * the damage, or panic when the transfer is too big.
507 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at "
508 "device %s\n", size, dev ? dev->bus_id : "?");
510 if (size > io_tlb_overflow && do_panic) {
511 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
512 panic("DMA: Memory would be corrupted\n");
513 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
514 panic("DMA: Random memory would be DMAed\n");
519 * Map a single buffer of the indicated size for DMA in streaming mode. The
520 * physical address to use is returned.
522 * Once the device is given the dma address, the device owns this memory until
523 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
525 dma_addr_t
526 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
528 unsigned long dev_addr = virt_to_phys(ptr);
529 void *map;
531 BUG_ON(dir == DMA_NONE);
533 * If the pointer passed in happens to be in the device's DMA window,
534 * we can safely return the device addr and not worry about bounce
535 * buffering it.
537 if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
538 return dev_addr;
541 * Oh well, have to allocate and map a bounce buffer.
543 map = map_single(hwdev, ptr, size, dir);
544 if (!map) {
545 swiotlb_full(hwdev, size, dir, 1);
546 map = io_tlb_overflow_buffer;
549 dev_addr = virt_to_phys(map);
552 * Ensure that the address returned is DMA'ble
554 if (address_needs_mapping(hwdev, dev_addr))
555 panic("map_single: bounce buffer is not DMA'ble");
557 return dev_addr;
561 * Since DMA is i-cache coherent, any (complete) pages that were written via
562 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
563 * flush them when they get mapped into an executable vm-area.
565 static void
566 mark_clean(void *addr, size_t size)
568 unsigned long pg_addr, end;
570 pg_addr = PAGE_ALIGN((unsigned long) addr);
571 end = (unsigned long) addr + size;
572 while (pg_addr + PAGE_SIZE <= end) {
573 struct page *page = virt_to_page(pg_addr);
574 set_bit(PG_arch_1, &page->flags);
575 pg_addr += PAGE_SIZE;
580 * Unmap a single streaming mode DMA translation. The dma_addr and size must
581 * match what was provided for in a previous swiotlb_map_single call. All
582 * other usages are undefined.
584 * After this call, reads by the cpu to the buffer are guaranteed to see
585 * whatever the device wrote there.
587 void
588 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
589 int dir)
591 char *dma_addr = phys_to_virt(dev_addr);
593 BUG_ON(dir == DMA_NONE);
594 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
595 unmap_single(hwdev, dma_addr, size, dir);
596 else if (dir == DMA_FROM_DEVICE)
597 mark_clean(dma_addr, size);
601 * Make physical memory consistent for a single streaming mode DMA translation
602 * after a transfer.
604 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
605 * using the cpu, yet do not wish to teardown the dma mapping, you must
606 * call this function before doing so. At the next point you give the dma
607 * address back to the card, you must first perform a
608 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
610 static inline void
611 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
612 size_t size, int dir, int target)
614 char *dma_addr = phys_to_virt(dev_addr);
616 BUG_ON(dir == DMA_NONE);
617 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
618 sync_single(hwdev, dma_addr, size, dir, target);
619 else if (dir == DMA_FROM_DEVICE)
620 mark_clean(dma_addr, size);
623 void
624 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
625 size_t size, int dir)
627 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
630 void
631 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
632 size_t size, int dir)
634 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
638 * Same as above, but for a sub-range of the mapping.
640 static inline void
641 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
642 unsigned long offset, size_t size,
643 int dir, int target)
645 char *dma_addr = phys_to_virt(dev_addr) + offset;
647 BUG_ON(dir == DMA_NONE);
648 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
649 sync_single(hwdev, dma_addr, size, dir, target);
650 else if (dir == DMA_FROM_DEVICE)
651 mark_clean(dma_addr, size);
654 void
655 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
656 unsigned long offset, size_t size, int dir)
658 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
659 SYNC_FOR_CPU);
662 void
663 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
664 unsigned long offset, size_t size, int dir)
666 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
667 SYNC_FOR_DEVICE);
671 * Map a set of buffers described by scatterlist in streaming mode for DMA.
672 * This is the scatter-gather version of the above swiotlb_map_single
673 * interface. Here the scatter gather list elements are each tagged with the
674 * appropriate dma address and length. They are obtained via
675 * sg_dma_{address,length}(SG).
677 * NOTE: An implementation may be able to use a smaller number of
678 * DMA address/length pairs than there are SG table elements.
679 * (for example via virtual mapping capabilities)
680 * The routine returns the number of addr/length pairs actually
681 * used, at most nents.
683 * Device ownership issues as mentioned above for swiotlb_map_single are the
684 * same here.
687 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
688 int dir)
690 void *addr;
691 unsigned long dev_addr;
692 int i;
694 BUG_ON(dir == DMA_NONE);
696 for (i = 0; i < nelems; i++, sg++) {
697 addr = SG_ENT_VIRT_ADDRESS(sg);
698 dev_addr = virt_to_phys(addr);
699 if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
700 void *map = map_single(hwdev, addr, sg->length, dir);
701 sg->dma_address = virt_to_bus(map);
702 if (!map) {
703 /* Don't panic here, we expect map_sg users
704 to do proper error handling. */
705 swiotlb_full(hwdev, sg->length, dir, 0);
706 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
707 sg[0].dma_length = 0;
708 return 0;
710 } else
711 sg->dma_address = dev_addr;
712 sg->dma_length = sg->length;
714 return nelems;
718 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
719 * concerning calls here are the same as for swiotlb_unmap_single() above.
721 void
722 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
723 int dir)
725 int i;
727 BUG_ON(dir == DMA_NONE);
729 for (i = 0; i < nelems; i++, sg++)
730 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
731 unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
732 else if (dir == DMA_FROM_DEVICE)
733 mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
737 * Make physical memory consistent for a set of streaming mode DMA translations
738 * after a transfer.
740 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
741 * and usage.
743 static inline void
744 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
745 int nelems, int dir, int target)
747 int i;
749 BUG_ON(dir == DMA_NONE);
751 for (i = 0; i < nelems; i++, sg++)
752 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
753 sync_single(hwdev, (void *) sg->dma_address,
754 sg->dma_length, dir, target);
757 void
758 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
759 int nelems, int dir)
761 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
764 void
765 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
766 int nelems, int dir)
768 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
772 swiotlb_dma_mapping_error(dma_addr_t dma_addr)
774 return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
778 * Return whether the given device DMA address mask can be supported
779 * properly. For example, if your device can only drive the low 24-bits
780 * during bus mastering, then you would pass 0x00ffffff as the mask to
781 * this function.
784 swiotlb_dma_supported (struct device *hwdev, u64 mask)
786 return (virt_to_phys (io_tlb_end) - 1) <= mask;
789 EXPORT_SYMBOL(swiotlb_init);
790 EXPORT_SYMBOL(swiotlb_map_single);
791 EXPORT_SYMBOL(swiotlb_unmap_single);
792 EXPORT_SYMBOL(swiotlb_map_sg);
793 EXPORT_SYMBOL(swiotlb_unmap_sg);
794 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
795 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
796 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
797 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
798 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
799 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
800 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
801 EXPORT_SYMBOL(swiotlb_alloc_coherent);
802 EXPORT_SYMBOL(swiotlb_free_coherent);
803 EXPORT_SYMBOL(swiotlb_dma_supported);