2 * FCC driver for Motorola MPC82xx (PQ2).
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/sched.h>
19 #include <linux/string.h>
20 #include <linux/ptrace.h>
21 #include <linux/errno.h>
22 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
39 #include <asm/immap_cpm2.h>
40 #include <asm/mpc8260.h>
43 #include <asm/pgtable.h>
45 #include <asm/uaccess.h>
49 /*************************************************/
51 /* FCC access macros */
53 #define __fcc_out32(addr, x) out_be32((unsigned *)addr, x)
54 #define __fcc_out16(addr, x) out_be16((unsigned short *)addr, x)
55 #define __fcc_out8(addr, x) out_8((unsigned char *)addr, x)
56 #define __fcc_in32(addr) in_be32((unsigned *)addr)
57 #define __fcc_in16(addr) in_be16((unsigned short *)addr)
58 #define __fcc_in8(addr) in_8((unsigned char *)addr)
62 /* write, read, set bits, clear bits */
63 #define W32(_p, _m, _v) __fcc_out32(&(_p)->_m, (_v))
64 #define R32(_p, _m) __fcc_in32(&(_p)->_m)
65 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
66 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
68 #define W16(_p, _m, _v) __fcc_out16(&(_p)->_m, (_v))
69 #define R16(_p, _m) __fcc_in16(&(_p)->_m)
70 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
71 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
73 #define W8(_p, _m, _v) __fcc_out8(&(_p)->_m, (_v))
74 #define R8(_p, _m) __fcc_in8(&(_p)->_m)
75 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
76 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
78 /*************************************************/
80 #define FCC_MAX_MULTICAST_ADDRS 64
82 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
83 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
86 #define MAX_CR_CMD_LOOPS 10000
88 static inline int fcc_cr_cmd(struct fs_enet_private
*fep
, u32 mcn
, u32 op
)
90 const struct fs_platform_info
*fpi
= fep
->fpi
;
92 cpm2_map_t
*immap
= fs_enet_immap
;
93 cpm_cpm2_t
*cpmp
= &immap
->im_cpm
;
97 /* Currently I don't know what feature call will look like. But
98 I guess there'd be something like do_cpm_cmd() which will require page & sblock */
99 v
= mk_cr_cmd(fpi
->cp_page
, fpi
->cp_block
, mcn
, op
);
100 W32(cpmp
, cp_cpcr
, v
| CPM_CR_FLG
);
101 for (i
= 0; i
< MAX_CR_CMD_LOOPS
; i
++)
102 if ((R32(cpmp
, cp_cpcr
) & CPM_CR_FLG
) == 0)
105 if (i
>= MAX_CR_CMD_LOOPS
) {
106 printk(KERN_ERR
"%s(): Not able to issue CPM command\n",
114 static int do_pd_setup(struct fs_enet_private
*fep
)
116 struct platform_device
*pdev
= to_platform_device(fep
->dev
);
119 /* Fill out IRQ field */
120 fep
->interrupt
= platform_get_irq(pdev
, 0);
121 if (fep
->interrupt
< 0)
124 /* Attach the memory for the FCC Parameter RAM */
125 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "fcc_pram");
126 fep
->fcc
.ep
= (void *)ioremap(r
->start
, r
->end
- r
->start
+ 1);
127 if (fep
->fcc
.ep
== NULL
)
130 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "fcc_regs");
131 fep
->fcc
.fccp
= (void *)ioremap(r
->start
, r
->end
- r
->start
+ 1);
132 if (fep
->fcc
.fccp
== NULL
)
135 if (fep
->fpi
->fcc_regs_c
) {
137 fep
->fcc
.fcccp
= (void *)fep
->fpi
->fcc_regs_c
;
139 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
141 fep
->fcc
.fcccp
= (void *)ioremap(r
->start
,
142 r
->end
- r
->start
+ 1);
145 if (fep
->fcc
.fcccp
== NULL
)
148 fep
->fcc
.mem
= (void *)fep
->fpi
->mem_offset
;
149 if (fep
->fcc
.mem
== NULL
)
155 #define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
156 #define FCC_RX_EVENT (FCC_ENET_RXF)
157 #define FCC_TX_EVENT (FCC_ENET_TXB)
158 #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE | FCC_ENET_BSY)
160 static int setup_data(struct net_device
*dev
)
162 struct fs_enet_private
*fep
= netdev_priv(dev
);
163 const struct fs_platform_info
*fpi
= fep
->fpi
;
165 fep
->fcc
.idx
= fs_get_fcc_index(fpi
->fs_no
);
166 if ((unsigned int)fep
->fcc
.idx
>= 3) /* max 3 FCCs */
169 if (do_pd_setup(fep
) != 0)
172 fep
->ev_napi_rx
= FCC_NAPI_RX_EVENT_MSK
;
173 fep
->ev_rx
= FCC_RX_EVENT
;
174 fep
->ev_tx
= FCC_TX_EVENT
;
175 fep
->ev_err
= FCC_ERR_EVENT_MSK
;
180 static int allocate_bd(struct net_device
*dev
)
182 struct fs_enet_private
*fep
= netdev_priv(dev
);
183 const struct fs_platform_info
*fpi
= fep
->fpi
;
185 fep
->ring_base
= dma_alloc_coherent(fep
->dev
,
186 (fpi
->tx_ring
+ fpi
->rx_ring
) *
187 sizeof(cbd_t
), &fep
->ring_mem_addr
,
189 if (fep
->ring_base
== NULL
)
195 static void free_bd(struct net_device
*dev
)
197 struct fs_enet_private
*fep
= netdev_priv(dev
);
198 const struct fs_platform_info
*fpi
= fep
->fpi
;
201 dma_free_coherent(fep
->dev
,
202 (fpi
->tx_ring
+ fpi
->rx_ring
) * sizeof(cbd_t
),
203 fep
->ring_base
, fep
->ring_mem_addr
);
206 static void cleanup_data(struct net_device
*dev
)
211 static void set_promiscuous_mode(struct net_device
*dev
)
213 struct fs_enet_private
*fep
= netdev_priv(dev
);
214 fcc_t
*fccp
= fep
->fcc
.fccp
;
216 S32(fccp
, fcc_fpsmr
, FCC_PSMR_PRO
);
219 static void set_multicast_start(struct net_device
*dev
)
221 struct fs_enet_private
*fep
= netdev_priv(dev
);
222 fcc_enet_t
*ep
= fep
->fcc
.ep
;
224 W32(ep
, fen_gaddrh
, 0);
225 W32(ep
, fen_gaddrl
, 0);
228 static void set_multicast_one(struct net_device
*dev
, const u8
*mac
)
230 struct fs_enet_private
*fep
= netdev_priv(dev
);
231 fcc_enet_t
*ep
= fep
->fcc
.ep
;
232 u16 taddrh
, taddrm
, taddrl
;
234 taddrh
= ((u16
)mac
[5] << 8) | mac
[4];
235 taddrm
= ((u16
)mac
[3] << 8) | mac
[2];
236 taddrl
= ((u16
)mac
[1] << 8) | mac
[0];
238 W16(ep
, fen_taddrh
, taddrh
);
239 W16(ep
, fen_taddrm
, taddrm
);
240 W16(ep
, fen_taddrl
, taddrl
);
241 fcc_cr_cmd(fep
, 0x0C, CPM_CR_SET_GADDR
);
244 static void set_multicast_finish(struct net_device
*dev
)
246 struct fs_enet_private
*fep
= netdev_priv(dev
);
247 fcc_t
*fccp
= fep
->fcc
.fccp
;
248 fcc_enet_t
*ep
= fep
->fcc
.ep
;
250 /* clear promiscuous always */
251 C32(fccp
, fcc_fpsmr
, FCC_PSMR_PRO
);
253 /* if all multi or too many multicasts; just enable all */
254 if ((dev
->flags
& IFF_ALLMULTI
) != 0 ||
255 dev
->mc_count
> FCC_MAX_MULTICAST_ADDRS
) {
257 W32(ep
, fen_gaddrh
, 0xffffffff);
258 W32(ep
, fen_gaddrl
, 0xffffffff);
262 fep
->fcc
.gaddrh
= R32(ep
, fen_gaddrh
);
263 fep
->fcc
.gaddrl
= R32(ep
, fen_gaddrl
);
266 static void set_multicast_list(struct net_device
*dev
)
268 struct dev_mc_list
*pmc
;
270 if ((dev
->flags
& IFF_PROMISC
) == 0) {
271 set_multicast_start(dev
);
272 for (pmc
= dev
->mc_list
; pmc
!= NULL
; pmc
= pmc
->next
)
273 set_multicast_one(dev
, pmc
->dmi_addr
);
274 set_multicast_finish(dev
);
276 set_promiscuous_mode(dev
);
279 static void restart(struct net_device
*dev
)
281 struct fs_enet_private
*fep
= netdev_priv(dev
);
282 const struct fs_platform_info
*fpi
= fep
->fpi
;
283 fcc_t
*fccp
= fep
->fcc
.fccp
;
284 fcc_c_t
*fcccp
= fep
->fcc
.fcccp
;
285 fcc_enet_t
*ep
= fep
->fcc
.ep
;
286 dma_addr_t rx_bd_base_phys
, tx_bd_base_phys
;
287 u16 paddrh
, paddrm
, paddrl
;
289 const unsigned char *mac
;
292 C32(fccp
, fcc_gfmr
, FCC_GFMR_ENR
| FCC_GFMR_ENT
);
294 /* clear everything (slow & steady does it) */
295 for (i
= 0; i
< sizeof(*ep
); i
++)
296 __fcc_out8((char *)ep
+ i
, 0);
298 /* get physical address */
299 rx_bd_base_phys
= fep
->ring_mem_addr
;
300 tx_bd_base_phys
= rx_bd_base_phys
+ sizeof(cbd_t
) * fpi
->rx_ring
;
303 W32(ep
, fen_genfcc
.fcc_rbase
, rx_bd_base_phys
);
304 W32(ep
, fen_genfcc
.fcc_tbase
, tx_bd_base_phys
);
306 /* Set maximum bytes per receive buffer.
307 * It must be a multiple of 32.
309 W16(ep
, fen_genfcc
.fcc_mrblr
, PKT_MAXBLR_SIZE
);
311 W32(ep
, fen_genfcc
.fcc_rstate
, (CPMFCR_GBL
| CPMFCR_EB
) << 24);
312 W32(ep
, fen_genfcc
.fcc_tstate
, (CPMFCR_GBL
| CPMFCR_EB
) << 24);
314 /* Allocate space in the reserved FCC area of DPRAM for the
315 * internal buffers. No one uses this space (yet), so we
316 * can do this. Later, we will add resource management for
320 mem_addr
= (u32
) fep
->fcc
.mem
; /* de-fixup dpram offset */
322 W16(ep
, fen_genfcc
.fcc_riptr
, (mem_addr
& 0xffff));
323 W16(ep
, fen_genfcc
.fcc_tiptr
, ((mem_addr
+ 32) & 0xffff));
324 W16(ep
, fen_padptr
, mem_addr
+ 64);
326 /* fill with special symbol... */
327 memset(fep
->fcc
.mem
+ fpi
->dpram_offset
+ 64, 0x88, 32);
329 W32(ep
, fen_genfcc
.fcc_rbptr
, 0);
330 W32(ep
, fen_genfcc
.fcc_tbptr
, 0);
331 W32(ep
, fen_genfcc
.fcc_rcrc
, 0);
332 W32(ep
, fen_genfcc
.fcc_tcrc
, 0);
333 W16(ep
, fen_genfcc
.fcc_res1
, 0);
334 W32(ep
, fen_genfcc
.fcc_res2
, 0);
337 W32(ep
, fen_camptr
, 0);
339 /* Set CRC preset and mask */
340 W32(ep
, fen_cmask
, 0xdebb20e3);
341 W32(ep
, fen_cpres
, 0xffffffff);
343 W32(ep
, fen_crcec
, 0); /* CRC Error counter */
344 W32(ep
, fen_alec
, 0); /* alignment error counter */
345 W32(ep
, fen_disfc
, 0); /* discard frame counter */
346 W16(ep
, fen_retlim
, 15); /* Retry limit threshold */
347 W16(ep
, fen_pper
, 0); /* Normal persistence */
349 /* set group address */
350 W32(ep
, fen_gaddrh
, fep
->fcc
.gaddrh
);
351 W32(ep
, fen_gaddrl
, fep
->fcc
.gaddrh
);
353 /* Clear hash filter tables */
354 W32(ep
, fen_iaddrh
, 0);
355 W32(ep
, fen_iaddrl
, 0);
357 /* Clear the Out-of-sequence TxBD */
358 W16(ep
, fen_tfcstat
, 0);
359 W16(ep
, fen_tfclen
, 0);
360 W32(ep
, fen_tfcptr
, 0);
362 W16(ep
, fen_mflr
, PKT_MAXBUF_SIZE
); /* maximum frame length register */
363 W16(ep
, fen_minflr
, PKT_MINBUF_SIZE
); /* minimum frame length register */
367 paddrh
= ((u16
)mac
[5] << 8) | mac
[4];
368 paddrm
= ((u16
)mac
[3] << 8) | mac
[2];
369 paddrl
= ((u16
)mac
[1] << 8) | mac
[0];
371 W16(ep
, fen_paddrh
, paddrh
);
372 W16(ep
, fen_paddrm
, paddrm
);
373 W16(ep
, fen_paddrl
, paddrl
);
375 W16(ep
, fen_taddrh
, 0);
376 W16(ep
, fen_taddrm
, 0);
377 W16(ep
, fen_taddrl
, 0);
379 W16(ep
, fen_maxd1
, 1520); /* maximum DMA1 length */
380 W16(ep
, fen_maxd2
, 1520); /* maximum DMA2 length */
382 /* Clear stat counters, in case we ever enable RMON */
383 W32(ep
, fen_octc
, 0);
384 W32(ep
, fen_colc
, 0);
385 W32(ep
, fen_broc
, 0);
386 W32(ep
, fen_mulc
, 0);
387 W32(ep
, fen_uspc
, 0);
388 W32(ep
, fen_frgc
, 0);
389 W32(ep
, fen_ospc
, 0);
390 W32(ep
, fen_jbrc
, 0);
391 W32(ep
, fen_p64c
, 0);
392 W32(ep
, fen_p65c
, 0);
393 W32(ep
, fen_p128c
, 0);
394 W32(ep
, fen_p256c
, 0);
395 W32(ep
, fen_p512c
, 0);
396 W32(ep
, fen_p1024c
, 0);
398 W16(ep
, fen_rfthr
, 0); /* Suggested by manual */
399 W16(ep
, fen_rfcnt
, 0);
400 W16(ep
, fen_cftype
, 0);
404 /* adjust to speed (for RMII mode) */
406 if (fep
->phydev
->speed
== 100)
407 C8(fcccp
, fcc_gfemr
, 0x20);
409 S8(fcccp
, fcc_gfemr
, 0x20);
412 fcc_cr_cmd(fep
, 0x0c, CPM_CR_INIT_TRX
);
415 W16(fccp
, fcc_fcce
, 0xffff);
417 /* Enable interrupts we wish to service */
418 W16(fccp
, fcc_fccm
, FCC_ENET_TXE
| FCC_ENET_RXF
| FCC_ENET_TXB
);
420 /* Set GFMR to enable Ethernet operating mode */
421 W32(fccp
, fcc_gfmr
, FCC_GFMR_TCI
| FCC_GFMR_MODE_ENET
);
423 /* set sync/delimiters */
424 W16(fccp
, fcc_fdsr
, 0xd555);
426 W32(fccp
, fcc_fpsmr
, FCC_PSMR_ENCRC
);
429 S32(fccp
, fcc_fpsmr
, FCC_PSMR_RMII
);
431 /* adjust to duplex mode */
432 if (fep
->phydev
->duplex
)
433 S32(fccp
, fcc_fpsmr
, FCC_PSMR_FDE
| FCC_PSMR_LPB
);
435 C32(fccp
, fcc_fpsmr
, FCC_PSMR_FDE
| FCC_PSMR_LPB
);
437 S32(fccp
, fcc_gfmr
, FCC_GFMR_ENR
| FCC_GFMR_ENT
);
440 static void stop(struct net_device
*dev
)
442 struct fs_enet_private
*fep
= netdev_priv(dev
);
443 fcc_t
*fccp
= fep
->fcc
.fccp
;
446 C32(fccp
, fcc_gfmr
, FCC_GFMR_ENR
| FCC_GFMR_ENT
);
449 W16(fccp
, fcc_fcce
, 0xffff);
451 /* clear interrupt mask */
452 W16(fccp
, fcc_fccm
, 0);
457 static void pre_request_irq(struct net_device
*dev
, int irq
)
462 static void post_free_irq(struct net_device
*dev
, int irq
)
467 static void napi_clear_rx_event(struct net_device
*dev
)
469 struct fs_enet_private
*fep
= netdev_priv(dev
);
470 fcc_t
*fccp
= fep
->fcc
.fccp
;
472 W16(fccp
, fcc_fcce
, FCC_NAPI_RX_EVENT_MSK
);
475 static void napi_enable_rx(struct net_device
*dev
)
477 struct fs_enet_private
*fep
= netdev_priv(dev
);
478 fcc_t
*fccp
= fep
->fcc
.fccp
;
480 S16(fccp
, fcc_fccm
, FCC_NAPI_RX_EVENT_MSK
);
483 static void napi_disable_rx(struct net_device
*dev
)
485 struct fs_enet_private
*fep
= netdev_priv(dev
);
486 fcc_t
*fccp
= fep
->fcc
.fccp
;
488 C16(fccp
, fcc_fccm
, FCC_NAPI_RX_EVENT_MSK
);
491 static void rx_bd_done(struct net_device
*dev
)
496 static void tx_kickstart(struct net_device
*dev
)
498 struct fs_enet_private
*fep
= netdev_priv(dev
);
499 fcc_t
*fccp
= fep
->fcc
.fccp
;
501 S32(fccp
, fcc_ftodr
, 0x80);
504 static u32
get_int_events(struct net_device
*dev
)
506 struct fs_enet_private
*fep
= netdev_priv(dev
);
507 fcc_t
*fccp
= fep
->fcc
.fccp
;
509 return (u32
)R16(fccp
, fcc_fcce
);
512 static void clear_int_events(struct net_device
*dev
, u32 int_events
)
514 struct fs_enet_private
*fep
= netdev_priv(dev
);
515 fcc_t
*fccp
= fep
->fcc
.fccp
;
517 W16(fccp
, fcc_fcce
, int_events
& 0xffff);
520 static void ev_error(struct net_device
*dev
, u32 int_events
)
522 printk(KERN_WARNING DRV_MODULE_NAME
523 ": %s FS_ENET ERROR(s) 0x%x\n", dev
->name
, int_events
);
526 int get_regs(struct net_device
*dev
, void *p
, int *sizep
)
528 struct fs_enet_private
*fep
= netdev_priv(dev
);
530 if (*sizep
< sizeof(fcc_t
) + sizeof(fcc_c_t
) + sizeof(fcc_enet_t
))
533 memcpy_fromio(p
, fep
->fcc
.fccp
, sizeof(fcc_t
));
534 p
= (char *)p
+ sizeof(fcc_t
);
536 memcpy_fromio(p
, fep
->fcc
.fcccp
, sizeof(fcc_c_t
));
537 p
= (char *)p
+ sizeof(fcc_c_t
);
539 memcpy_fromio(p
, fep
->fcc
.ep
, sizeof(fcc_enet_t
));
544 int get_regs_len(struct net_device
*dev
)
546 return sizeof(fcc_t
) + sizeof(fcc_c_t
) + sizeof(fcc_enet_t
);
549 /* Some transmit errors cause the transmitter to shut
550 * down. We now issue a restart transmit. Since the
551 * errors close the BD and update the pointers, the restart
552 * _should_ pick up without having to reset any of our
553 * pointers either. Also, To workaround 8260 device erratum
554 * CPM37, we must disable and then re-enable the transmitter
555 * following a Late Collision, Underrun, or Retry Limit error.
557 void tx_restart(struct net_device
*dev
)
559 struct fs_enet_private
*fep
= netdev_priv(dev
);
560 fcc_t
*fccp
= fep
->fcc
.fccp
;
562 C32(fccp
, fcc_gfmr
, FCC_GFMR_ENT
);
564 S32(fccp
, fcc_gfmr
, FCC_GFMR_ENT
);
566 fcc_cr_cmd(fep
, 0x0C, CPM_CR_RESTART_TX
);
569 /*************************************************************************/
571 const struct fs_ops fs_fcc_ops
= {
572 .setup_data
= setup_data
,
573 .cleanup_data
= cleanup_data
,
574 .set_multicast_list
= set_multicast_list
,
577 .pre_request_irq
= pre_request_irq
,
578 .post_free_irq
= post_free_irq
,
579 .napi_clear_rx_event
= napi_clear_rx_event
,
580 .napi_enable_rx
= napi_enable_rx
,
581 .napi_disable_rx
= napi_disable_rx
,
582 .rx_bd_done
= rx_bd_done
,
583 .tx_kickstart
= tx_kickstart
,
584 .get_int_events
= get_int_events
,
585 .clear_int_events
= clear_int_events
,
586 .ev_error
= ev_error
,
587 .get_regs
= get_regs
,
588 .get_regs_len
= get_regs_len
,
589 .tx_restart
= tx_restart
,
590 .allocate_bd
= allocate_bd
,