[NET_SCHED]: Fix endless loops caused by inaccurate qlen counters (part 1)
[hh.org.git] / drivers / char / tty_io.c
blob50dc49205a231a2c5854a0e9699e39e5db9e6bed
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct termios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC
121 EXPORT_SYMBOL(tty_std_termios);
123 /* This list gets poked at by procfs and various bits of boot up code. This
124 could do with some rationalisation such as pulling the tty proc function
125 into this file */
127 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
129 /* Semaphore to protect creating and releasing a tty. This is shared with
130 vt.c for deeply disgusting hack reasons */
131 DEFINE_MUTEX(tty_mutex);
132 EXPORT_SYMBOL(tty_mutex);
134 #ifdef CONFIG_UNIX98_PTYS
135 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
136 extern int pty_limit; /* Config limit on Unix98 ptys */
137 static DEFINE_IDR(allocated_ptys);
138 static DECLARE_MUTEX(allocated_ptys_lock);
139 static int ptmx_open(struct inode *, struct file *);
140 #endif
142 extern void disable_early_printk(void);
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 static int tty_fasync(int fd, struct file * filp, int on);
155 static void release_mem(struct tty_struct *tty, int idx);
158 * alloc_tty_struct - allocate a tty object
160 * Return a new empty tty structure. The data fields have not
161 * been initialized in any way but has been zeroed
163 * Locking: none
166 static struct tty_struct *alloc_tty_struct(void)
168 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 static void tty_buffer_free_all(struct tty_struct *);
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
177 * Free the write buffers, tty queue and tty memory itself.
179 * Locking: none. Must be called after tty is definitely unused
182 static inline void free_tty_struct(struct tty_struct *tty)
184 kfree(tty->write_buf);
185 tty_buffer_free_all(tty);
186 kfree(tty);
189 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
192 * tty_name - return tty naming
193 * @tty: tty structure
194 * @buf: buffer for output
196 * Convert a tty structure into a name. The name reflects the kernel
197 * naming policy and if udev is in use may not reflect user space
199 * Locking: none
202 char *tty_name(struct tty_struct *tty, char *buf)
204 if (!tty) /* Hmm. NULL pointer. That's fun. */
205 strcpy(buf, "NULL tty");
206 else
207 strcpy(buf, tty->name);
208 return buf;
211 EXPORT_SYMBOL(tty_name);
213 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
214 const char *routine)
216 #ifdef TTY_PARANOIA_CHECK
217 if (!tty) {
218 printk(KERN_WARNING
219 "null TTY for (%d:%d) in %s\n",
220 imajor(inode), iminor(inode), routine);
221 return 1;
223 if (tty->magic != TTY_MAGIC) {
224 printk(KERN_WARNING
225 "bad magic number for tty struct (%d:%d) in %s\n",
226 imajor(inode), iminor(inode), routine);
227 return 1;
229 #endif
230 return 0;
233 static int check_tty_count(struct tty_struct *tty, const char *routine)
235 #ifdef CHECK_TTY_COUNT
236 struct list_head *p;
237 int count = 0;
239 file_list_lock();
240 list_for_each(p, &tty->tty_files) {
241 count++;
243 file_list_unlock();
244 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
245 tty->driver->subtype == PTY_TYPE_SLAVE &&
246 tty->link && tty->link->count)
247 count++;
248 if (tty->count != count) {
249 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
250 "!= #fd's(%d) in %s\n",
251 tty->name, tty->count, count, routine);
252 return count;
254 #endif
255 return 0;
259 * Tty buffer allocation management
264 * tty_buffer_free_all - free buffers used by a tty
265 * @tty: tty to free from
267 * Remove all the buffers pending on a tty whether queued with data
268 * or in the free ring. Must be called when the tty is no longer in use
270 * Locking: none
275 * tty_buffer_free_all - free buffers used by a tty
276 * @tty: tty to free from
278 * Remove all the buffers pending on a tty whether queued with data
279 * or in the free ring. Must be called when the tty is no longer in use
281 * Locking: none
284 static void tty_buffer_free_all(struct tty_struct *tty)
286 struct tty_buffer *thead;
287 while((thead = tty->buf.head) != NULL) {
288 tty->buf.head = thead->next;
289 kfree(thead);
291 while((thead = tty->buf.free) != NULL) {
292 tty->buf.free = thead->next;
293 kfree(thead);
295 tty->buf.tail = NULL;
296 tty->buf.memory_used = 0;
300 * tty_buffer_init - prepare a tty buffer structure
301 * @tty: tty to initialise
303 * Set up the initial state of the buffer management for a tty device.
304 * Must be called before the other tty buffer functions are used.
306 * Locking: none
309 static void tty_buffer_init(struct tty_struct *tty)
311 spin_lock_init(&tty->buf.lock);
312 tty->buf.head = NULL;
313 tty->buf.tail = NULL;
314 tty->buf.free = NULL;
315 tty->buf.memory_used = 0;
319 * tty_buffer_alloc - allocate a tty buffer
320 * @tty: tty device
321 * @size: desired size (characters)
323 * Allocate a new tty buffer to hold the desired number of characters.
324 * Return NULL if out of memory or the allocation would exceed the
325 * per device queue
327 * Locking: Caller must hold tty->buf.lock
330 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
332 struct tty_buffer *p;
334 if (tty->buf.memory_used + size > 65536)
335 return NULL;
336 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
337 if(p == NULL)
338 return NULL;
339 p->used = 0;
340 p->size = size;
341 p->next = NULL;
342 p->commit = 0;
343 p->read = 0;
344 p->char_buf_ptr = (char *)(p->data);
345 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
346 tty->buf.memory_used += size;
347 return p;
351 * tty_buffer_free - free a tty buffer
352 * @tty: tty owning the buffer
353 * @b: the buffer to free
355 * Free a tty buffer, or add it to the free list according to our
356 * internal strategy
358 * Locking: Caller must hold tty->buf.lock
361 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
363 /* Dumb strategy for now - should keep some stats */
364 tty->buf.memory_used -= b->size;
365 WARN_ON(tty->buf.memory_used < 0);
367 if(b->size >= 512)
368 kfree(b);
369 else {
370 b->next = tty->buf.free;
371 tty->buf.free = b;
376 * tty_buffer_find - find a free tty buffer
377 * @tty: tty owning the buffer
378 * @size: characters wanted
380 * Locate an existing suitable tty buffer or if we are lacking one then
381 * allocate a new one. We round our buffers off in 256 character chunks
382 * to get better allocation behaviour.
384 * Locking: Caller must hold tty->buf.lock
387 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
389 struct tty_buffer **tbh = &tty->buf.free;
390 while((*tbh) != NULL) {
391 struct tty_buffer *t = *tbh;
392 if(t->size >= size) {
393 *tbh = t->next;
394 t->next = NULL;
395 t->used = 0;
396 t->commit = 0;
397 t->read = 0;
398 tty->buf.memory_used += t->size;
399 return t;
401 tbh = &((*tbh)->next);
403 /* Round the buffer size out */
404 size = (size + 0xFF) & ~ 0xFF;
405 return tty_buffer_alloc(tty, size);
406 /* Should possibly check if this fails for the largest buffer we
407 have queued and recycle that ? */
411 * tty_buffer_request_room - grow tty buffer if needed
412 * @tty: tty structure
413 * @size: size desired
415 * Make at least size bytes of linear space available for the tty
416 * buffer. If we fail return the size we managed to find.
418 * Locking: Takes tty->buf.lock
420 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
422 struct tty_buffer *b, *n;
423 int left;
424 unsigned long flags;
426 spin_lock_irqsave(&tty->buf.lock, flags);
428 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
429 remove this conditional if its worth it. This would be invisible
430 to the callers */
431 if ((b = tty->buf.tail) != NULL)
432 left = b->size - b->used;
433 else
434 left = 0;
436 if (left < size) {
437 /* This is the slow path - looking for new buffers to use */
438 if ((n = tty_buffer_find(tty, size)) != NULL) {
439 if (b != NULL) {
440 b->next = n;
441 b->commit = b->used;
442 } else
443 tty->buf.head = n;
444 tty->buf.tail = n;
445 } else
446 size = left;
449 spin_unlock_irqrestore(&tty->buf.lock, flags);
450 return size;
452 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
455 * tty_insert_flip_string - Add characters to the tty buffer
456 * @tty: tty structure
457 * @chars: characters
458 * @size: size
460 * Queue a series of bytes to the tty buffering. All the characters
461 * passed are marked as without error. Returns the number added.
463 * Locking: Called functions may take tty->buf.lock
466 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
467 size_t size)
469 int copied = 0;
470 do {
471 int space = tty_buffer_request_room(tty, size - copied);
472 struct tty_buffer *tb = tty->buf.tail;
473 /* If there is no space then tb may be NULL */
474 if(unlikely(space == 0))
475 break;
476 memcpy(tb->char_buf_ptr + tb->used, chars, space);
477 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
478 tb->used += space;
479 copied += space;
480 chars += space;
481 /* There is a small chance that we need to split the data over
482 several buffers. If this is the case we must loop */
483 } while (unlikely(size > copied));
484 return copied;
486 EXPORT_SYMBOL(tty_insert_flip_string);
489 * tty_insert_flip_string_flags - Add characters to the tty buffer
490 * @tty: tty structure
491 * @chars: characters
492 * @flags: flag bytes
493 * @size: size
495 * Queue a series of bytes to the tty buffering. For each character
496 * the flags array indicates the status of the character. Returns the
497 * number added.
499 * Locking: Called functions may take tty->buf.lock
502 int tty_insert_flip_string_flags(struct tty_struct *tty,
503 const unsigned char *chars, const char *flags, size_t size)
505 int copied = 0;
506 do {
507 int space = tty_buffer_request_room(tty, size - copied);
508 struct tty_buffer *tb = tty->buf.tail;
509 /* If there is no space then tb may be NULL */
510 if(unlikely(space == 0))
511 break;
512 memcpy(tb->char_buf_ptr + tb->used, chars, space);
513 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
514 tb->used += space;
515 copied += space;
516 chars += space;
517 flags += space;
518 /* There is a small chance that we need to split the data over
519 several buffers. If this is the case we must loop */
520 } while (unlikely(size > copied));
521 return copied;
523 EXPORT_SYMBOL(tty_insert_flip_string_flags);
526 * tty_schedule_flip - push characters to ldisc
527 * @tty: tty to push from
529 * Takes any pending buffers and transfers their ownership to the
530 * ldisc side of the queue. It then schedules those characters for
531 * processing by the line discipline.
533 * Locking: Takes tty->buf.lock
536 void tty_schedule_flip(struct tty_struct *tty)
538 unsigned long flags;
539 spin_lock_irqsave(&tty->buf.lock, flags);
540 if (tty->buf.tail != NULL)
541 tty->buf.tail->commit = tty->buf.tail->used;
542 spin_unlock_irqrestore(&tty->buf.lock, flags);
543 schedule_delayed_work(&tty->buf.work, 1);
545 EXPORT_SYMBOL(tty_schedule_flip);
548 * tty_prepare_flip_string - make room for characters
549 * @tty: tty
550 * @chars: return pointer for character write area
551 * @size: desired size
553 * Prepare a block of space in the buffer for data. Returns the length
554 * available and buffer pointer to the space which is now allocated and
555 * accounted for as ready for normal characters. This is used for drivers
556 * that need their own block copy routines into the buffer. There is no
557 * guarantee the buffer is a DMA target!
559 * Locking: May call functions taking tty->buf.lock
562 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
564 int space = tty_buffer_request_room(tty, size);
565 if (likely(space)) {
566 struct tty_buffer *tb = tty->buf.tail;
567 *chars = tb->char_buf_ptr + tb->used;
568 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
569 tb->used += space;
571 return space;
574 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
577 * tty_prepare_flip_string_flags - make room for characters
578 * @tty: tty
579 * @chars: return pointer for character write area
580 * @flags: return pointer for status flag write area
581 * @size: desired size
583 * Prepare a block of space in the buffer for data. Returns the length
584 * available and buffer pointer to the space which is now allocated and
585 * accounted for as ready for characters. This is used for drivers
586 * that need their own block copy routines into the buffer. There is no
587 * guarantee the buffer is a DMA target!
589 * Locking: May call functions taking tty->buf.lock
592 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
594 int space = tty_buffer_request_room(tty, size);
595 if (likely(space)) {
596 struct tty_buffer *tb = tty->buf.tail;
597 *chars = tb->char_buf_ptr + tb->used;
598 *flags = tb->flag_buf_ptr + tb->used;
599 tb->used += space;
601 return space;
604 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
609 * tty_set_termios_ldisc - set ldisc field
610 * @tty: tty structure
611 * @num: line discipline number
613 * This is probably overkill for real world processors but
614 * they are not on hot paths so a little discipline won't do
615 * any harm.
617 * Locking: takes termios_sem
620 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
622 mutex_lock(&tty->termios_mutex);
623 tty->termios->c_line = num;
624 mutex_unlock(&tty->termios_mutex);
628 * This guards the refcounted line discipline lists. The lock
629 * must be taken with irqs off because there are hangup path
630 * callers who will do ldisc lookups and cannot sleep.
633 static DEFINE_SPINLOCK(tty_ldisc_lock);
634 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
635 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
638 * tty_register_ldisc - install a line discipline
639 * @disc: ldisc number
640 * @new_ldisc: pointer to the ldisc object
642 * Installs a new line discipline into the kernel. The discipline
643 * is set up as unreferenced and then made available to the kernel
644 * from this point onwards.
646 * Locking:
647 * takes tty_ldisc_lock to guard against ldisc races
650 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
652 unsigned long flags;
653 int ret = 0;
655 if (disc < N_TTY || disc >= NR_LDISCS)
656 return -EINVAL;
658 spin_lock_irqsave(&tty_ldisc_lock, flags);
659 tty_ldiscs[disc] = *new_ldisc;
660 tty_ldiscs[disc].num = disc;
661 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
662 tty_ldiscs[disc].refcount = 0;
663 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
665 return ret;
667 EXPORT_SYMBOL(tty_register_ldisc);
670 * tty_unregister_ldisc - unload a line discipline
671 * @disc: ldisc number
672 * @new_ldisc: pointer to the ldisc object
674 * Remove a line discipline from the kernel providing it is not
675 * currently in use.
677 * Locking:
678 * takes tty_ldisc_lock to guard against ldisc races
681 int tty_unregister_ldisc(int disc)
683 unsigned long flags;
684 int ret = 0;
686 if (disc < N_TTY || disc >= NR_LDISCS)
687 return -EINVAL;
689 spin_lock_irqsave(&tty_ldisc_lock, flags);
690 if (tty_ldiscs[disc].refcount)
691 ret = -EBUSY;
692 else
693 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
694 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
696 return ret;
698 EXPORT_SYMBOL(tty_unregister_ldisc);
701 * tty_ldisc_get - take a reference to an ldisc
702 * @disc: ldisc number
704 * Takes a reference to a line discipline. Deals with refcounts and
705 * module locking counts. Returns NULL if the discipline is not available.
706 * Returns a pointer to the discipline and bumps the ref count if it is
707 * available
709 * Locking:
710 * takes tty_ldisc_lock to guard against ldisc races
713 struct tty_ldisc *tty_ldisc_get(int disc)
715 unsigned long flags;
716 struct tty_ldisc *ld;
718 if (disc < N_TTY || disc >= NR_LDISCS)
719 return NULL;
721 spin_lock_irqsave(&tty_ldisc_lock, flags);
723 ld = &tty_ldiscs[disc];
724 /* Check the entry is defined */
725 if(ld->flags & LDISC_FLAG_DEFINED)
727 /* If the module is being unloaded we can't use it */
728 if (!try_module_get(ld->owner))
729 ld = NULL;
730 else /* lock it */
731 ld->refcount++;
733 else
734 ld = NULL;
735 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
736 return ld;
739 EXPORT_SYMBOL_GPL(tty_ldisc_get);
742 * tty_ldisc_put - drop ldisc reference
743 * @disc: ldisc number
745 * Drop a reference to a line discipline. Manage refcounts and
746 * module usage counts
748 * Locking:
749 * takes tty_ldisc_lock to guard against ldisc races
752 void tty_ldisc_put(int disc)
754 struct tty_ldisc *ld;
755 unsigned long flags;
757 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
759 spin_lock_irqsave(&tty_ldisc_lock, flags);
760 ld = &tty_ldiscs[disc];
761 BUG_ON(ld->refcount == 0);
762 ld->refcount--;
763 module_put(ld->owner);
764 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
767 EXPORT_SYMBOL_GPL(tty_ldisc_put);
770 * tty_ldisc_assign - set ldisc on a tty
771 * @tty: tty to assign
772 * @ld: line discipline
774 * Install an instance of a line discipline into a tty structure. The
775 * ldisc must have a reference count above zero to ensure it remains/
776 * The tty instance refcount starts at zero.
778 * Locking:
779 * Caller must hold references
782 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
784 tty->ldisc = *ld;
785 tty->ldisc.refcount = 0;
789 * tty_ldisc_try - internal helper
790 * @tty: the tty
792 * Make a single attempt to grab and bump the refcount on
793 * the tty ldisc. Return 0 on failure or 1 on success. This is
794 * used to implement both the waiting and non waiting versions
795 * of tty_ldisc_ref
797 * Locking: takes tty_ldisc_lock
800 static int tty_ldisc_try(struct tty_struct *tty)
802 unsigned long flags;
803 struct tty_ldisc *ld;
804 int ret = 0;
806 spin_lock_irqsave(&tty_ldisc_lock, flags);
807 ld = &tty->ldisc;
808 if(test_bit(TTY_LDISC, &tty->flags))
810 ld->refcount++;
811 ret = 1;
813 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
814 return ret;
818 * tty_ldisc_ref_wait - wait for the tty ldisc
819 * @tty: tty device
821 * Dereference the line discipline for the terminal and take a
822 * reference to it. If the line discipline is in flux then
823 * wait patiently until it changes.
825 * Note: Must not be called from an IRQ/timer context. The caller
826 * must also be careful not to hold other locks that will deadlock
827 * against a discipline change, such as an existing ldisc reference
828 * (which we check for)
830 * Locking: call functions take tty_ldisc_lock
833 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
835 /* wait_event is a macro */
836 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
837 if(tty->ldisc.refcount == 0)
838 printk(KERN_ERR "tty_ldisc_ref_wait\n");
839 return &tty->ldisc;
842 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
845 * tty_ldisc_ref - get the tty ldisc
846 * @tty: tty device
848 * Dereference the line discipline for the terminal and take a
849 * reference to it. If the line discipline is in flux then
850 * return NULL. Can be called from IRQ and timer functions.
852 * Locking: called functions take tty_ldisc_lock
855 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
857 if(tty_ldisc_try(tty))
858 return &tty->ldisc;
859 return NULL;
862 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
865 * tty_ldisc_deref - free a tty ldisc reference
866 * @ld: reference to free up
868 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
869 * be called in IRQ context.
871 * Locking: takes tty_ldisc_lock
874 void tty_ldisc_deref(struct tty_ldisc *ld)
876 unsigned long flags;
878 BUG_ON(ld == NULL);
880 spin_lock_irqsave(&tty_ldisc_lock, flags);
881 if(ld->refcount == 0)
882 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
883 else
884 ld->refcount--;
885 if(ld->refcount == 0)
886 wake_up(&tty_ldisc_wait);
887 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
890 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
893 * tty_ldisc_enable - allow ldisc use
894 * @tty: terminal to activate ldisc on
896 * Set the TTY_LDISC flag when the line discipline can be called
897 * again. Do neccessary wakeups for existing sleepers.
899 * Note: nobody should set this bit except via this function. Clearing
900 * directly is allowed.
903 static void tty_ldisc_enable(struct tty_struct *tty)
905 set_bit(TTY_LDISC, &tty->flags);
906 wake_up(&tty_ldisc_wait);
910 * tty_set_ldisc - set line discipline
911 * @tty: the terminal to set
912 * @ldisc: the line discipline
914 * Set the discipline of a tty line. Must be called from a process
915 * context.
917 * Locking: takes tty_ldisc_lock.
918 * called functions take termios_sem
921 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
923 int retval = 0;
924 struct tty_ldisc o_ldisc;
925 char buf[64];
926 int work;
927 unsigned long flags;
928 struct tty_ldisc *ld;
929 struct tty_struct *o_tty;
931 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
932 return -EINVAL;
934 restart:
936 ld = tty_ldisc_get(ldisc);
937 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
938 /* Cyrus Durgin <cider@speakeasy.org> */
939 if (ld == NULL) {
940 request_module("tty-ldisc-%d", ldisc);
941 ld = tty_ldisc_get(ldisc);
943 if (ld == NULL)
944 return -EINVAL;
947 * No more input please, we are switching. The new ldisc
948 * will update this value in the ldisc open function
951 tty->receive_room = 0;
954 * Problem: What do we do if this blocks ?
957 tty_wait_until_sent(tty, 0);
959 if (tty->ldisc.num == ldisc) {
960 tty_ldisc_put(ldisc);
961 return 0;
964 o_ldisc = tty->ldisc;
965 o_tty = tty->link;
968 * Make sure we don't change while someone holds a
969 * reference to the line discipline. The TTY_LDISC bit
970 * prevents anyone taking a reference once it is clear.
971 * We need the lock to avoid racing reference takers.
974 spin_lock_irqsave(&tty_ldisc_lock, flags);
975 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
976 if(tty->ldisc.refcount) {
977 /* Free the new ldisc we grabbed. Must drop the lock
978 first. */
979 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
980 tty_ldisc_put(ldisc);
982 * There are several reasons we may be busy, including
983 * random momentary I/O traffic. We must therefore
984 * retry. We could distinguish between blocking ops
985 * and retries if we made tty_ldisc_wait() smarter. That
986 * is up for discussion.
988 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
989 return -ERESTARTSYS;
990 goto restart;
992 if(o_tty && o_tty->ldisc.refcount) {
993 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
994 tty_ldisc_put(ldisc);
995 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
996 return -ERESTARTSYS;
997 goto restart;
1001 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1003 if (!test_bit(TTY_LDISC, &tty->flags)) {
1004 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1005 tty_ldisc_put(ldisc);
1006 ld = tty_ldisc_ref_wait(tty);
1007 tty_ldisc_deref(ld);
1008 goto restart;
1011 clear_bit(TTY_LDISC, &tty->flags);
1012 if (o_tty)
1013 clear_bit(TTY_LDISC, &o_tty->flags);
1014 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1017 * From this point on we know nobody has an ldisc
1018 * usage reference, nor can they obtain one until
1019 * we say so later on.
1022 work = cancel_delayed_work(&tty->buf.work);
1024 * Wait for ->hangup_work and ->buf.work handlers to terminate
1027 flush_scheduled_work();
1028 /* Shutdown the current discipline. */
1029 if (tty->ldisc.close)
1030 (tty->ldisc.close)(tty);
1032 /* Now set up the new line discipline. */
1033 tty_ldisc_assign(tty, ld);
1034 tty_set_termios_ldisc(tty, ldisc);
1035 if (tty->ldisc.open)
1036 retval = (tty->ldisc.open)(tty);
1037 if (retval < 0) {
1038 tty_ldisc_put(ldisc);
1039 /* There is an outstanding reference here so this is safe */
1040 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1041 tty_set_termios_ldisc(tty, tty->ldisc.num);
1042 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1043 tty_ldisc_put(o_ldisc.num);
1044 /* This driver is always present */
1045 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1046 tty_set_termios_ldisc(tty, N_TTY);
1047 if (tty->ldisc.open) {
1048 int r = tty->ldisc.open(tty);
1050 if (r < 0)
1051 panic("Couldn't open N_TTY ldisc for "
1052 "%s --- error %d.",
1053 tty_name(tty, buf), r);
1057 /* At this point we hold a reference to the new ldisc and a
1058 a reference to the old ldisc. If we ended up flipping back
1059 to the existing ldisc we have two references to it */
1061 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1062 tty->driver->set_ldisc(tty);
1064 tty_ldisc_put(o_ldisc.num);
1067 * Allow ldisc referencing to occur as soon as the driver
1068 * ldisc callback completes.
1071 tty_ldisc_enable(tty);
1072 if (o_tty)
1073 tty_ldisc_enable(o_tty);
1075 /* Restart it in case no characters kick it off. Safe if
1076 already running */
1077 if (work)
1078 schedule_delayed_work(&tty->buf.work, 1);
1079 return retval;
1083 * get_tty_driver - find device of a tty
1084 * @dev_t: device identifier
1085 * @index: returns the index of the tty
1087 * This routine returns a tty driver structure, given a device number
1088 * and also passes back the index number.
1090 * Locking: caller must hold tty_mutex
1093 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1095 struct tty_driver *p;
1097 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1098 dev_t base = MKDEV(p->major, p->minor_start);
1099 if (device < base || device >= base + p->num)
1100 continue;
1101 *index = device - base;
1102 return p;
1104 return NULL;
1108 * tty_check_change - check for POSIX terminal changes
1109 * @tty: tty to check
1111 * If we try to write to, or set the state of, a terminal and we're
1112 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1113 * ignored, go ahead and perform the operation. (POSIX 7.2)
1115 * Locking: none
1118 int tty_check_change(struct tty_struct * tty)
1120 if (current->signal->tty != tty)
1121 return 0;
1122 if (tty->pgrp <= 0) {
1123 printk(KERN_WARNING "tty_check_change: tty->pgrp <= 0!\n");
1124 return 0;
1126 if (process_group(current) == tty->pgrp)
1127 return 0;
1128 if (is_ignored(SIGTTOU))
1129 return 0;
1130 if (is_orphaned_pgrp(process_group(current)))
1131 return -EIO;
1132 (void) kill_pg(process_group(current), SIGTTOU, 1);
1133 return -ERESTARTSYS;
1136 EXPORT_SYMBOL(tty_check_change);
1138 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1139 size_t count, loff_t *ppos)
1141 return 0;
1144 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1145 size_t count, loff_t *ppos)
1147 return -EIO;
1150 /* No kernel lock held - none needed ;) */
1151 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1153 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1156 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1157 unsigned int cmd, unsigned long arg)
1159 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1162 static const struct file_operations tty_fops = {
1163 .llseek = no_llseek,
1164 .read = tty_read,
1165 .write = tty_write,
1166 .poll = tty_poll,
1167 .ioctl = tty_ioctl,
1168 .open = tty_open,
1169 .release = tty_release,
1170 .fasync = tty_fasync,
1173 #ifdef CONFIG_UNIX98_PTYS
1174 static const struct file_operations ptmx_fops = {
1175 .llseek = no_llseek,
1176 .read = tty_read,
1177 .write = tty_write,
1178 .poll = tty_poll,
1179 .ioctl = tty_ioctl,
1180 .open = ptmx_open,
1181 .release = tty_release,
1182 .fasync = tty_fasync,
1184 #endif
1186 static const struct file_operations console_fops = {
1187 .llseek = no_llseek,
1188 .read = tty_read,
1189 .write = redirected_tty_write,
1190 .poll = tty_poll,
1191 .ioctl = tty_ioctl,
1192 .open = tty_open,
1193 .release = tty_release,
1194 .fasync = tty_fasync,
1197 static const struct file_operations hung_up_tty_fops = {
1198 .llseek = no_llseek,
1199 .read = hung_up_tty_read,
1200 .write = hung_up_tty_write,
1201 .poll = hung_up_tty_poll,
1202 .ioctl = hung_up_tty_ioctl,
1203 .release = tty_release,
1206 static DEFINE_SPINLOCK(redirect_lock);
1207 static struct file *redirect;
1210 * tty_wakeup - request more data
1211 * @tty: terminal
1213 * Internal and external helper for wakeups of tty. This function
1214 * informs the line discipline if present that the driver is ready
1215 * to receive more output data.
1218 void tty_wakeup(struct tty_struct *tty)
1220 struct tty_ldisc *ld;
1222 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1223 ld = tty_ldisc_ref(tty);
1224 if(ld) {
1225 if(ld->write_wakeup)
1226 ld->write_wakeup(tty);
1227 tty_ldisc_deref(ld);
1230 wake_up_interruptible(&tty->write_wait);
1233 EXPORT_SYMBOL_GPL(tty_wakeup);
1236 * tty_ldisc_flush - flush line discipline queue
1237 * @tty: tty
1239 * Flush the line discipline queue (if any) for this tty. If there
1240 * is no line discipline active this is a no-op.
1243 void tty_ldisc_flush(struct tty_struct *tty)
1245 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1246 if(ld) {
1247 if(ld->flush_buffer)
1248 ld->flush_buffer(tty);
1249 tty_ldisc_deref(ld);
1253 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1256 * do_tty_hangup - actual handler for hangup events
1257 * @data: tty device
1259 * This can be called by the "eventd" kernel thread. That is process
1260 * synchronous but doesn't hold any locks, so we need to make sure we
1261 * have the appropriate locks for what we're doing.
1263 * The hangup event clears any pending redirections onto the hung up
1264 * device. It ensures future writes will error and it does the needed
1265 * line discipline hangup and signal delivery. The tty object itself
1266 * remains intact.
1268 * Locking:
1269 * BKL
1270 * redirect lock for undoing redirection
1271 * file list lock for manipulating list of ttys
1272 * tty_ldisc_lock from called functions
1273 * termios_sem resetting termios data
1274 * tasklist_lock to walk task list for hangup event
1277 static void do_tty_hangup(void *data)
1279 struct tty_struct *tty = (struct tty_struct *) data;
1280 struct file * cons_filp = NULL;
1281 struct file *filp, *f = NULL;
1282 struct task_struct *p;
1283 struct tty_ldisc *ld;
1284 int closecount = 0, n;
1286 if (!tty)
1287 return;
1289 /* inuse_filps is protected by the single kernel lock */
1290 lock_kernel();
1292 spin_lock(&redirect_lock);
1293 if (redirect && redirect->private_data == tty) {
1294 f = redirect;
1295 redirect = NULL;
1297 spin_unlock(&redirect_lock);
1299 check_tty_count(tty, "do_tty_hangup");
1300 file_list_lock();
1301 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1302 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1303 if (filp->f_op->write == redirected_tty_write)
1304 cons_filp = filp;
1305 if (filp->f_op->write != tty_write)
1306 continue;
1307 closecount++;
1308 tty_fasync(-1, filp, 0); /* can't block */
1309 filp->f_op = &hung_up_tty_fops;
1311 file_list_unlock();
1313 /* FIXME! What are the locking issues here? This may me overdoing things..
1314 * this question is especially important now that we've removed the irqlock. */
1316 ld = tty_ldisc_ref(tty);
1317 if(ld != NULL) /* We may have no line discipline at this point */
1319 if (ld->flush_buffer)
1320 ld->flush_buffer(tty);
1321 if (tty->driver->flush_buffer)
1322 tty->driver->flush_buffer(tty);
1323 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1324 ld->write_wakeup)
1325 ld->write_wakeup(tty);
1326 if (ld->hangup)
1327 ld->hangup(tty);
1330 /* FIXME: Once we trust the LDISC code better we can wait here for
1331 ldisc completion and fix the driver call race */
1333 wake_up_interruptible(&tty->write_wait);
1334 wake_up_interruptible(&tty->read_wait);
1337 * Shutdown the current line discipline, and reset it to
1338 * N_TTY.
1340 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1342 mutex_lock(&tty->termios_mutex);
1343 *tty->termios = tty->driver->init_termios;
1344 mutex_unlock(&tty->termios_mutex);
1347 /* Defer ldisc switch */
1348 /* tty_deferred_ldisc_switch(N_TTY);
1350 This should get done automatically when the port closes and
1351 tty_release is called */
1353 read_lock(&tasklist_lock);
1354 if (tty->session > 0) {
1355 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
1356 if (p->signal->tty == tty)
1357 p->signal->tty = NULL;
1358 if (!p->signal->leader)
1359 continue;
1360 group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1361 group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1362 if (tty->pgrp > 0)
1363 p->signal->tty_old_pgrp = tty->pgrp;
1364 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
1366 read_unlock(&tasklist_lock);
1368 tty->flags = 0;
1369 tty->session = 0;
1370 tty->pgrp = -1;
1371 tty->ctrl_status = 0;
1373 * If one of the devices matches a console pointer, we
1374 * cannot just call hangup() because that will cause
1375 * tty->count and state->count to go out of sync.
1376 * So we just call close() the right number of times.
1378 if (cons_filp) {
1379 if (tty->driver->close)
1380 for (n = 0; n < closecount; n++)
1381 tty->driver->close(tty, cons_filp);
1382 } else if (tty->driver->hangup)
1383 (tty->driver->hangup)(tty);
1385 /* We don't want to have driver/ldisc interactions beyond
1386 the ones we did here. The driver layer expects no
1387 calls after ->hangup() from the ldisc side. However we
1388 can't yet guarantee all that */
1390 set_bit(TTY_HUPPED, &tty->flags);
1391 if (ld) {
1392 tty_ldisc_enable(tty);
1393 tty_ldisc_deref(ld);
1395 unlock_kernel();
1396 if (f)
1397 fput(f);
1401 * tty_hangup - trigger a hangup event
1402 * @tty: tty to hangup
1404 * A carrier loss (virtual or otherwise) has occurred on this like
1405 * schedule a hangup sequence to run after this event.
1408 void tty_hangup(struct tty_struct * tty)
1410 #ifdef TTY_DEBUG_HANGUP
1411 char buf[64];
1413 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1414 #endif
1415 schedule_work(&tty->hangup_work);
1418 EXPORT_SYMBOL(tty_hangup);
1421 * tty_vhangup - process vhangup
1422 * @tty: tty to hangup
1424 * The user has asked via system call for the terminal to be hung up.
1425 * We do this synchronously so that when the syscall returns the process
1426 * is complete. That guarantee is neccessary for security reasons.
1429 void tty_vhangup(struct tty_struct * tty)
1431 #ifdef TTY_DEBUG_HANGUP
1432 char buf[64];
1434 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1435 #endif
1436 do_tty_hangup((void *) tty);
1438 EXPORT_SYMBOL(tty_vhangup);
1441 * tty_hung_up_p - was tty hung up
1442 * @filp: file pointer of tty
1444 * Return true if the tty has been subject to a vhangup or a carrier
1445 * loss
1448 int tty_hung_up_p(struct file * filp)
1450 return (filp->f_op == &hung_up_tty_fops);
1453 EXPORT_SYMBOL(tty_hung_up_p);
1456 * disassociate_ctty - disconnect controlling tty
1457 * @on_exit: true if exiting so need to "hang up" the session
1459 * This function is typically called only by the session leader, when
1460 * it wants to disassociate itself from its controlling tty.
1462 * It performs the following functions:
1463 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1464 * (2) Clears the tty from being controlling the session
1465 * (3) Clears the controlling tty for all processes in the
1466 * session group.
1468 * The argument on_exit is set to 1 if called when a process is
1469 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1471 * Locking: tty_mutex is taken to protect current->signal->tty
1472 * BKL is taken for hysterical raisins
1473 * Tasklist lock is taken (under tty_mutex) to walk process
1474 * lists for the session.
1477 void disassociate_ctty(int on_exit)
1479 struct tty_struct *tty;
1480 struct task_struct *p;
1481 int tty_pgrp = -1;
1483 lock_kernel();
1485 mutex_lock(&tty_mutex);
1486 tty = current->signal->tty;
1487 if (tty) {
1488 tty_pgrp = tty->pgrp;
1489 mutex_unlock(&tty_mutex);
1490 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1491 tty_vhangup(tty);
1492 } else {
1493 if (current->signal->tty_old_pgrp) {
1494 kill_pg(current->signal->tty_old_pgrp, SIGHUP, on_exit);
1495 kill_pg(current->signal->tty_old_pgrp, SIGCONT, on_exit);
1497 mutex_unlock(&tty_mutex);
1498 unlock_kernel();
1499 return;
1501 if (tty_pgrp > 0) {
1502 kill_pg(tty_pgrp, SIGHUP, on_exit);
1503 if (!on_exit)
1504 kill_pg(tty_pgrp, SIGCONT, on_exit);
1507 /* Must lock changes to tty_old_pgrp */
1508 mutex_lock(&tty_mutex);
1509 current->signal->tty_old_pgrp = 0;
1510 tty->session = 0;
1511 tty->pgrp = -1;
1513 /* Now clear signal->tty under the lock */
1514 read_lock(&tasklist_lock);
1515 do_each_task_pid(current->signal->session, PIDTYPE_SID, p) {
1516 p->signal->tty = NULL;
1517 } while_each_task_pid(current->signal->session, PIDTYPE_SID, p);
1518 read_unlock(&tasklist_lock);
1519 mutex_unlock(&tty_mutex);
1520 unlock_kernel();
1525 * stop_tty - propogate flow control
1526 * @tty: tty to stop
1528 * Perform flow control to the driver. For PTY/TTY pairs we
1529 * must also propogate the TIOCKPKT status. May be called
1530 * on an already stopped device and will not re-call the driver
1531 * method.
1533 * This functionality is used by both the line disciplines for
1534 * halting incoming flow and by the driver. It may therefore be
1535 * called from any context, may be under the tty atomic_write_lock
1536 * but not always.
1538 * Locking:
1539 * Broken. Relies on BKL which is unsafe here.
1542 void stop_tty(struct tty_struct *tty)
1544 if (tty->stopped)
1545 return;
1546 tty->stopped = 1;
1547 if (tty->link && tty->link->packet) {
1548 tty->ctrl_status &= ~TIOCPKT_START;
1549 tty->ctrl_status |= TIOCPKT_STOP;
1550 wake_up_interruptible(&tty->link->read_wait);
1552 if (tty->driver->stop)
1553 (tty->driver->stop)(tty);
1556 EXPORT_SYMBOL(stop_tty);
1559 * start_tty - propogate flow control
1560 * @tty: tty to start
1562 * Start a tty that has been stopped if at all possible. Perform
1563 * any neccessary wakeups and propogate the TIOCPKT status. If this
1564 * is the tty was previous stopped and is being started then the
1565 * driver start method is invoked and the line discipline woken.
1567 * Locking:
1568 * Broken. Relies on BKL which is unsafe here.
1571 void start_tty(struct tty_struct *tty)
1573 if (!tty->stopped || tty->flow_stopped)
1574 return;
1575 tty->stopped = 0;
1576 if (tty->link && tty->link->packet) {
1577 tty->ctrl_status &= ~TIOCPKT_STOP;
1578 tty->ctrl_status |= TIOCPKT_START;
1579 wake_up_interruptible(&tty->link->read_wait);
1581 if (tty->driver->start)
1582 (tty->driver->start)(tty);
1584 /* If we have a running line discipline it may need kicking */
1585 tty_wakeup(tty);
1586 wake_up_interruptible(&tty->write_wait);
1589 EXPORT_SYMBOL(start_tty);
1592 * tty_read - read method for tty device files
1593 * @file: pointer to tty file
1594 * @buf: user buffer
1595 * @count: size of user buffer
1596 * @ppos: unused
1598 * Perform the read system call function on this terminal device. Checks
1599 * for hung up devices before calling the line discipline method.
1601 * Locking:
1602 * Locks the line discipline internally while needed
1603 * For historical reasons the line discipline read method is
1604 * invoked under the BKL. This will go away in time so do not rely on it
1605 * in new code. Multiple read calls may be outstanding in parallel.
1608 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1609 loff_t *ppos)
1611 int i;
1612 struct tty_struct * tty;
1613 struct inode *inode;
1614 struct tty_ldisc *ld;
1616 tty = (struct tty_struct *)file->private_data;
1617 inode = file->f_dentry->d_inode;
1618 if (tty_paranoia_check(tty, inode, "tty_read"))
1619 return -EIO;
1620 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1621 return -EIO;
1623 /* We want to wait for the line discipline to sort out in this
1624 situation */
1625 ld = tty_ldisc_ref_wait(tty);
1626 lock_kernel();
1627 if (ld->read)
1628 i = (ld->read)(tty,file,buf,count);
1629 else
1630 i = -EIO;
1631 tty_ldisc_deref(ld);
1632 unlock_kernel();
1633 if (i > 0)
1634 inode->i_atime = current_fs_time(inode->i_sb);
1635 return i;
1639 * Split writes up in sane blocksizes to avoid
1640 * denial-of-service type attacks
1642 static inline ssize_t do_tty_write(
1643 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1644 struct tty_struct *tty,
1645 struct file *file,
1646 const char __user *buf,
1647 size_t count)
1649 ssize_t ret = 0, written = 0;
1650 unsigned int chunk;
1652 /* FIXME: O_NDELAY ... */
1653 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1654 return -ERESTARTSYS;
1658 * We chunk up writes into a temporary buffer. This
1659 * simplifies low-level drivers immensely, since they
1660 * don't have locking issues and user mode accesses.
1662 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1663 * big chunk-size..
1665 * The default chunk-size is 2kB, because the NTTY
1666 * layer has problems with bigger chunks. It will
1667 * claim to be able to handle more characters than
1668 * it actually does.
1670 * FIXME: This can probably go away now except that 64K chunks
1671 * are too likely to fail unless switched to vmalloc...
1673 chunk = 2048;
1674 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1675 chunk = 65536;
1676 if (count < chunk)
1677 chunk = count;
1679 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1680 if (tty->write_cnt < chunk) {
1681 unsigned char *buf;
1683 if (chunk < 1024)
1684 chunk = 1024;
1686 buf = kmalloc(chunk, GFP_KERNEL);
1687 if (!buf) {
1688 mutex_unlock(&tty->atomic_write_lock);
1689 return -ENOMEM;
1691 kfree(tty->write_buf);
1692 tty->write_cnt = chunk;
1693 tty->write_buf = buf;
1696 /* Do the write .. */
1697 for (;;) {
1698 size_t size = count;
1699 if (size > chunk)
1700 size = chunk;
1701 ret = -EFAULT;
1702 if (copy_from_user(tty->write_buf, buf, size))
1703 break;
1704 lock_kernel();
1705 ret = write(tty, file, tty->write_buf, size);
1706 unlock_kernel();
1707 if (ret <= 0)
1708 break;
1709 written += ret;
1710 buf += ret;
1711 count -= ret;
1712 if (!count)
1713 break;
1714 ret = -ERESTARTSYS;
1715 if (signal_pending(current))
1716 break;
1717 cond_resched();
1719 if (written) {
1720 struct inode *inode = file->f_dentry->d_inode;
1721 inode->i_mtime = current_fs_time(inode->i_sb);
1722 ret = written;
1724 mutex_unlock(&tty->atomic_write_lock);
1725 return ret;
1730 * tty_write - write method for tty device file
1731 * @file: tty file pointer
1732 * @buf: user data to write
1733 * @count: bytes to write
1734 * @ppos: unused
1736 * Write data to a tty device via the line discipline.
1738 * Locking:
1739 * Locks the line discipline as required
1740 * Writes to the tty driver are serialized by the atomic_write_lock
1741 * and are then processed in chunks to the device. The line discipline
1742 * write method will not be involked in parallel for each device
1743 * The line discipline write method is called under the big
1744 * kernel lock for historical reasons. New code should not rely on this.
1747 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1748 loff_t *ppos)
1750 struct tty_struct * tty;
1751 struct inode *inode = file->f_dentry->d_inode;
1752 ssize_t ret;
1753 struct tty_ldisc *ld;
1755 tty = (struct tty_struct *)file->private_data;
1756 if (tty_paranoia_check(tty, inode, "tty_write"))
1757 return -EIO;
1758 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1759 return -EIO;
1761 ld = tty_ldisc_ref_wait(tty);
1762 if (!ld->write)
1763 ret = -EIO;
1764 else
1765 ret = do_tty_write(ld->write, tty, file, buf, count);
1766 tty_ldisc_deref(ld);
1767 return ret;
1770 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1771 loff_t *ppos)
1773 struct file *p = NULL;
1775 spin_lock(&redirect_lock);
1776 if (redirect) {
1777 get_file(redirect);
1778 p = redirect;
1780 spin_unlock(&redirect_lock);
1782 if (p) {
1783 ssize_t res;
1784 res = vfs_write(p, buf, count, &p->f_pos);
1785 fput(p);
1786 return res;
1789 return tty_write(file, buf, count, ppos);
1792 static char ptychar[] = "pqrstuvwxyzabcde";
1795 * pty_line_name - generate name for a pty
1796 * @driver: the tty driver in use
1797 * @index: the minor number
1798 * @p: output buffer of at least 6 bytes
1800 * Generate a name from a driver reference and write it to the output
1801 * buffer.
1803 * Locking: None
1805 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1807 int i = index + driver->name_base;
1808 /* ->name is initialized to "ttyp", but "tty" is expected */
1809 sprintf(p, "%s%c%x",
1810 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1811 ptychar[i >> 4 & 0xf], i & 0xf);
1815 * pty_line_name - generate name for a tty
1816 * @driver: the tty driver in use
1817 * @index: the minor number
1818 * @p: output buffer of at least 7 bytes
1820 * Generate a name from a driver reference and write it to the output
1821 * buffer.
1823 * Locking: None
1825 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1827 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1831 * init_dev - initialise a tty device
1832 * @driver: tty driver we are opening a device on
1833 * @idx: device index
1834 * @tty: returned tty structure
1836 * Prepare a tty device. This may not be a "new" clean device but
1837 * could also be an active device. The pty drivers require special
1838 * handling because of this.
1840 * Locking:
1841 * The function is called under the tty_mutex, which
1842 * protects us from the tty struct or driver itself going away.
1844 * On exit the tty device has the line discipline attached and
1845 * a reference count of 1. If a pair was created for pty/tty use
1846 * and the other was a pty master then it too has a reference count of 1.
1848 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1849 * failed open. The new code protects the open with a mutex, so it's
1850 * really quite straightforward. The mutex locking can probably be
1851 * relaxed for the (most common) case of reopening a tty.
1854 static int init_dev(struct tty_driver *driver, int idx,
1855 struct tty_struct **ret_tty)
1857 struct tty_struct *tty, *o_tty;
1858 struct termios *tp, **tp_loc, *o_tp, **o_tp_loc;
1859 struct termios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1860 int retval = 0;
1862 /* check whether we're reopening an existing tty */
1863 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1864 tty = devpts_get_tty(idx);
1865 if (tty && driver->subtype == PTY_TYPE_MASTER)
1866 tty = tty->link;
1867 } else {
1868 tty = driver->ttys[idx];
1870 if (tty) goto fast_track;
1873 * First time open is complex, especially for PTY devices.
1874 * This code guarantees that either everything succeeds and the
1875 * TTY is ready for operation, or else the table slots are vacated
1876 * and the allocated memory released. (Except that the termios
1877 * and locked termios may be retained.)
1880 if (!try_module_get(driver->owner)) {
1881 retval = -ENODEV;
1882 goto end_init;
1885 o_tty = NULL;
1886 tp = o_tp = NULL;
1887 ltp = o_ltp = NULL;
1889 tty = alloc_tty_struct();
1890 if(!tty)
1891 goto fail_no_mem;
1892 initialize_tty_struct(tty);
1893 tty->driver = driver;
1894 tty->index = idx;
1895 tty_line_name(driver, idx, tty->name);
1897 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1898 tp_loc = &tty->termios;
1899 ltp_loc = &tty->termios_locked;
1900 } else {
1901 tp_loc = &driver->termios[idx];
1902 ltp_loc = &driver->termios_locked[idx];
1905 if (!*tp_loc) {
1906 tp = (struct termios *) kmalloc(sizeof(struct termios),
1907 GFP_KERNEL);
1908 if (!tp)
1909 goto free_mem_out;
1910 *tp = driver->init_termios;
1913 if (!*ltp_loc) {
1914 ltp = (struct termios *) kmalloc(sizeof(struct termios),
1915 GFP_KERNEL);
1916 if (!ltp)
1917 goto free_mem_out;
1918 memset(ltp, 0, sizeof(struct termios));
1921 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1922 o_tty = alloc_tty_struct();
1923 if (!o_tty)
1924 goto free_mem_out;
1925 initialize_tty_struct(o_tty);
1926 o_tty->driver = driver->other;
1927 o_tty->index = idx;
1928 tty_line_name(driver->other, idx, o_tty->name);
1930 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1931 o_tp_loc = &o_tty->termios;
1932 o_ltp_loc = &o_tty->termios_locked;
1933 } else {
1934 o_tp_loc = &driver->other->termios[idx];
1935 o_ltp_loc = &driver->other->termios_locked[idx];
1938 if (!*o_tp_loc) {
1939 o_tp = (struct termios *)
1940 kmalloc(sizeof(struct termios), GFP_KERNEL);
1941 if (!o_tp)
1942 goto free_mem_out;
1943 *o_tp = driver->other->init_termios;
1946 if (!*o_ltp_loc) {
1947 o_ltp = (struct termios *)
1948 kmalloc(sizeof(struct termios), GFP_KERNEL);
1949 if (!o_ltp)
1950 goto free_mem_out;
1951 memset(o_ltp, 0, sizeof(struct termios));
1955 * Everything allocated ... set up the o_tty structure.
1957 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
1958 driver->other->ttys[idx] = o_tty;
1960 if (!*o_tp_loc)
1961 *o_tp_loc = o_tp;
1962 if (!*o_ltp_loc)
1963 *o_ltp_loc = o_ltp;
1964 o_tty->termios = *o_tp_loc;
1965 o_tty->termios_locked = *o_ltp_loc;
1966 driver->other->refcount++;
1967 if (driver->subtype == PTY_TYPE_MASTER)
1968 o_tty->count++;
1970 /* Establish the links in both directions */
1971 tty->link = o_tty;
1972 o_tty->link = tty;
1976 * All structures have been allocated, so now we install them.
1977 * Failures after this point use release_mem to clean up, so
1978 * there's no need to null out the local pointers.
1980 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1981 driver->ttys[idx] = tty;
1984 if (!*tp_loc)
1985 *tp_loc = tp;
1986 if (!*ltp_loc)
1987 *ltp_loc = ltp;
1988 tty->termios = *tp_loc;
1989 tty->termios_locked = *ltp_loc;
1990 driver->refcount++;
1991 tty->count++;
1994 * Structures all installed ... call the ldisc open routines.
1995 * If we fail here just call release_mem to clean up. No need
1996 * to decrement the use counts, as release_mem doesn't care.
1999 if (tty->ldisc.open) {
2000 retval = (tty->ldisc.open)(tty);
2001 if (retval)
2002 goto release_mem_out;
2004 if (o_tty && o_tty->ldisc.open) {
2005 retval = (o_tty->ldisc.open)(o_tty);
2006 if (retval) {
2007 if (tty->ldisc.close)
2008 (tty->ldisc.close)(tty);
2009 goto release_mem_out;
2011 tty_ldisc_enable(o_tty);
2013 tty_ldisc_enable(tty);
2014 goto success;
2017 * This fast open can be used if the tty is already open.
2018 * No memory is allocated, and the only failures are from
2019 * attempting to open a closing tty or attempting multiple
2020 * opens on a pty master.
2022 fast_track:
2023 if (test_bit(TTY_CLOSING, &tty->flags)) {
2024 retval = -EIO;
2025 goto end_init;
2027 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2028 driver->subtype == PTY_TYPE_MASTER) {
2030 * special case for PTY masters: only one open permitted,
2031 * and the slave side open count is incremented as well.
2033 if (tty->count) {
2034 retval = -EIO;
2035 goto end_init;
2037 tty->link->count++;
2039 tty->count++;
2040 tty->driver = driver; /* N.B. why do this every time?? */
2042 /* FIXME */
2043 if(!test_bit(TTY_LDISC, &tty->flags))
2044 printk(KERN_ERR "init_dev but no ldisc\n");
2045 success:
2046 *ret_tty = tty;
2048 /* All paths come through here to release the mutex */
2049 end_init:
2050 return retval;
2052 /* Release locally allocated memory ... nothing placed in slots */
2053 free_mem_out:
2054 kfree(o_tp);
2055 if (o_tty)
2056 free_tty_struct(o_tty);
2057 kfree(ltp);
2058 kfree(tp);
2059 free_tty_struct(tty);
2061 fail_no_mem:
2062 module_put(driver->owner);
2063 retval = -ENOMEM;
2064 goto end_init;
2066 /* call the tty release_mem routine to clean out this slot */
2067 release_mem_out:
2068 if (printk_ratelimit())
2069 printk(KERN_INFO "init_dev: ldisc open failed, "
2070 "clearing slot %d\n", idx);
2071 release_mem(tty, idx);
2072 goto end_init;
2076 * release_mem - release tty structure memory
2078 * Releases memory associated with a tty structure, and clears out the
2079 * driver table slots. This function is called when a device is no longer
2080 * in use. It also gets called when setup of a device fails.
2082 * Locking:
2083 * tty_mutex - sometimes only
2084 * takes the file list lock internally when working on the list
2085 * of ttys that the driver keeps.
2086 * FIXME: should we require tty_mutex is held here ??
2089 static void release_mem(struct tty_struct *tty, int idx)
2091 struct tty_struct *o_tty;
2092 struct termios *tp;
2093 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2095 if ((o_tty = tty->link) != NULL) {
2096 if (!devpts)
2097 o_tty->driver->ttys[idx] = NULL;
2098 if (o_tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2099 tp = o_tty->termios;
2100 if (!devpts)
2101 o_tty->driver->termios[idx] = NULL;
2102 kfree(tp);
2104 tp = o_tty->termios_locked;
2105 if (!devpts)
2106 o_tty->driver->termios_locked[idx] = NULL;
2107 kfree(tp);
2109 o_tty->magic = 0;
2110 o_tty->driver->refcount--;
2111 file_list_lock();
2112 list_del_init(&o_tty->tty_files);
2113 file_list_unlock();
2114 free_tty_struct(o_tty);
2117 if (!devpts)
2118 tty->driver->ttys[idx] = NULL;
2119 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2120 tp = tty->termios;
2121 if (!devpts)
2122 tty->driver->termios[idx] = NULL;
2123 kfree(tp);
2125 tp = tty->termios_locked;
2126 if (!devpts)
2127 tty->driver->termios_locked[idx] = NULL;
2128 kfree(tp);
2131 tty->magic = 0;
2132 tty->driver->refcount--;
2133 file_list_lock();
2134 list_del_init(&tty->tty_files);
2135 file_list_unlock();
2136 module_put(tty->driver->owner);
2137 free_tty_struct(tty);
2141 * Even releasing the tty structures is a tricky business.. We have
2142 * to be very careful that the structures are all released at the
2143 * same time, as interrupts might otherwise get the wrong pointers.
2145 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2146 * lead to double frees or releasing memory still in use.
2148 static void release_dev(struct file * filp)
2150 struct tty_struct *tty, *o_tty;
2151 int pty_master, tty_closing, o_tty_closing, do_sleep;
2152 int devpts;
2153 int idx;
2154 char buf[64];
2155 unsigned long flags;
2157 tty = (struct tty_struct *)filp->private_data;
2158 if (tty_paranoia_check(tty, filp->f_dentry->d_inode, "release_dev"))
2159 return;
2161 check_tty_count(tty, "release_dev");
2163 tty_fasync(-1, filp, 0);
2165 idx = tty->index;
2166 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2167 tty->driver->subtype == PTY_TYPE_MASTER);
2168 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2169 o_tty = tty->link;
2171 #ifdef TTY_PARANOIA_CHECK
2172 if (idx < 0 || idx >= tty->driver->num) {
2173 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2174 "free (%s)\n", tty->name);
2175 return;
2177 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2178 if (tty != tty->driver->ttys[idx]) {
2179 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2180 "for (%s)\n", idx, tty->name);
2181 return;
2183 if (tty->termios != tty->driver->termios[idx]) {
2184 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2185 "for (%s)\n",
2186 idx, tty->name);
2187 return;
2189 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2190 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2191 "termios_locked for (%s)\n",
2192 idx, tty->name);
2193 return;
2196 #endif
2198 #ifdef TTY_DEBUG_HANGUP
2199 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2200 tty_name(tty, buf), tty->count);
2201 #endif
2203 #ifdef TTY_PARANOIA_CHECK
2204 if (tty->driver->other &&
2205 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2206 if (o_tty != tty->driver->other->ttys[idx]) {
2207 printk(KERN_DEBUG "release_dev: other->table[%d] "
2208 "not o_tty for (%s)\n",
2209 idx, tty->name);
2210 return;
2212 if (o_tty->termios != tty->driver->other->termios[idx]) {
2213 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2214 "not o_termios for (%s)\n",
2215 idx, tty->name);
2216 return;
2218 if (o_tty->termios_locked !=
2219 tty->driver->other->termios_locked[idx]) {
2220 printk(KERN_DEBUG "release_dev: other->termios_locked["
2221 "%d] not o_termios_locked for (%s)\n",
2222 idx, tty->name);
2223 return;
2225 if (o_tty->link != tty) {
2226 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2227 return;
2230 #endif
2231 if (tty->driver->close)
2232 tty->driver->close(tty, filp);
2235 * Sanity check: if tty->count is going to zero, there shouldn't be
2236 * any waiters on tty->read_wait or tty->write_wait. We test the
2237 * wait queues and kick everyone out _before_ actually starting to
2238 * close. This ensures that we won't block while releasing the tty
2239 * structure.
2241 * The test for the o_tty closing is necessary, since the master and
2242 * slave sides may close in any order. If the slave side closes out
2243 * first, its count will be one, since the master side holds an open.
2244 * Thus this test wouldn't be triggered at the time the slave closes,
2245 * so we do it now.
2247 * Note that it's possible for the tty to be opened again while we're
2248 * flushing out waiters. By recalculating the closing flags before
2249 * each iteration we avoid any problems.
2251 while (1) {
2252 /* Guard against races with tty->count changes elsewhere and
2253 opens on /dev/tty */
2255 mutex_lock(&tty_mutex);
2256 tty_closing = tty->count <= 1;
2257 o_tty_closing = o_tty &&
2258 (o_tty->count <= (pty_master ? 1 : 0));
2259 do_sleep = 0;
2261 if (tty_closing) {
2262 if (waitqueue_active(&tty->read_wait)) {
2263 wake_up(&tty->read_wait);
2264 do_sleep++;
2266 if (waitqueue_active(&tty->write_wait)) {
2267 wake_up(&tty->write_wait);
2268 do_sleep++;
2271 if (o_tty_closing) {
2272 if (waitqueue_active(&o_tty->read_wait)) {
2273 wake_up(&o_tty->read_wait);
2274 do_sleep++;
2276 if (waitqueue_active(&o_tty->write_wait)) {
2277 wake_up(&o_tty->write_wait);
2278 do_sleep++;
2281 if (!do_sleep)
2282 break;
2284 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2285 "active!\n", tty_name(tty, buf));
2286 mutex_unlock(&tty_mutex);
2287 schedule();
2291 * The closing flags are now consistent with the open counts on
2292 * both sides, and we've completed the last operation that could
2293 * block, so it's safe to proceed with closing.
2295 if (pty_master) {
2296 if (--o_tty->count < 0) {
2297 printk(KERN_WARNING "release_dev: bad pty slave count "
2298 "(%d) for %s\n",
2299 o_tty->count, tty_name(o_tty, buf));
2300 o_tty->count = 0;
2303 if (--tty->count < 0) {
2304 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2305 tty->count, tty_name(tty, buf));
2306 tty->count = 0;
2310 * We've decremented tty->count, so we need to remove this file
2311 * descriptor off the tty->tty_files list; this serves two
2312 * purposes:
2313 * - check_tty_count sees the correct number of file descriptors
2314 * associated with this tty.
2315 * - do_tty_hangup no longer sees this file descriptor as
2316 * something that needs to be handled for hangups.
2318 file_kill(filp);
2319 filp->private_data = NULL;
2322 * Perform some housekeeping before deciding whether to return.
2324 * Set the TTY_CLOSING flag if this was the last open. In the
2325 * case of a pty we may have to wait around for the other side
2326 * to close, and TTY_CLOSING makes sure we can't be reopened.
2328 if(tty_closing)
2329 set_bit(TTY_CLOSING, &tty->flags);
2330 if(o_tty_closing)
2331 set_bit(TTY_CLOSING, &o_tty->flags);
2334 * If _either_ side is closing, make sure there aren't any
2335 * processes that still think tty or o_tty is their controlling
2336 * tty.
2338 if (tty_closing || o_tty_closing) {
2339 struct task_struct *p;
2341 read_lock(&tasklist_lock);
2342 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
2343 p->signal->tty = NULL;
2344 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
2345 if (o_tty)
2346 do_each_task_pid(o_tty->session, PIDTYPE_SID, p) {
2347 p->signal->tty = NULL;
2348 } while_each_task_pid(o_tty->session, PIDTYPE_SID, p);
2349 read_unlock(&tasklist_lock);
2352 mutex_unlock(&tty_mutex);
2354 /* check whether both sides are closing ... */
2355 if (!tty_closing || (o_tty && !o_tty_closing))
2356 return;
2358 #ifdef TTY_DEBUG_HANGUP
2359 printk(KERN_DEBUG "freeing tty structure...");
2360 #endif
2362 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2363 * kill any delayed work. As this is the final close it does not
2364 * race with the set_ldisc code path.
2366 clear_bit(TTY_LDISC, &tty->flags);
2367 cancel_delayed_work(&tty->buf.work);
2370 * Wait for ->hangup_work and ->buf.work handlers to terminate
2373 flush_scheduled_work();
2376 * Wait for any short term users (we know they are just driver
2377 * side waiters as the file is closing so user count on the file
2378 * side is zero.
2380 spin_lock_irqsave(&tty_ldisc_lock, flags);
2381 while(tty->ldisc.refcount)
2383 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2384 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2385 spin_lock_irqsave(&tty_ldisc_lock, flags);
2387 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2389 * Shutdown the current line discipline, and reset it to N_TTY.
2390 * N.B. why reset ldisc when we're releasing the memory??
2392 * FIXME: this MUST get fixed for the new reflocking
2394 if (tty->ldisc.close)
2395 (tty->ldisc.close)(tty);
2396 tty_ldisc_put(tty->ldisc.num);
2399 * Switch the line discipline back
2401 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2402 tty_set_termios_ldisc(tty,N_TTY);
2403 if (o_tty) {
2404 /* FIXME: could o_tty be in setldisc here ? */
2405 clear_bit(TTY_LDISC, &o_tty->flags);
2406 if (o_tty->ldisc.close)
2407 (o_tty->ldisc.close)(o_tty);
2408 tty_ldisc_put(o_tty->ldisc.num);
2409 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2410 tty_set_termios_ldisc(o_tty,N_TTY);
2413 * The release_mem function takes care of the details of clearing
2414 * the slots and preserving the termios structure.
2416 release_mem(tty, idx);
2418 #ifdef CONFIG_UNIX98_PTYS
2419 /* Make this pty number available for reallocation */
2420 if (devpts) {
2421 down(&allocated_ptys_lock);
2422 idr_remove(&allocated_ptys, idx);
2423 up(&allocated_ptys_lock);
2425 #endif
2430 * tty_open - open a tty device
2431 * @inode: inode of device file
2432 * @filp: file pointer to tty
2434 * tty_open and tty_release keep up the tty count that contains the
2435 * number of opens done on a tty. We cannot use the inode-count, as
2436 * different inodes might point to the same tty.
2438 * Open-counting is needed for pty masters, as well as for keeping
2439 * track of serial lines: DTR is dropped when the last close happens.
2440 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2442 * The termios state of a pty is reset on first open so that
2443 * settings don't persist across reuse.
2445 * Locking: tty_mutex protects current->signal->tty, get_tty_driver and
2446 * init_dev work. tty->count should protect the rest.
2447 * task_lock is held to update task details for sessions
2450 static int tty_open(struct inode * inode, struct file * filp)
2452 struct tty_struct *tty;
2453 int noctty, retval;
2454 struct tty_driver *driver;
2455 int index;
2456 dev_t device = inode->i_rdev;
2457 unsigned short saved_flags = filp->f_flags;
2459 nonseekable_open(inode, filp);
2461 retry_open:
2462 noctty = filp->f_flags & O_NOCTTY;
2463 index = -1;
2464 retval = 0;
2466 mutex_lock(&tty_mutex);
2468 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2469 if (!current->signal->tty) {
2470 mutex_unlock(&tty_mutex);
2471 return -ENXIO;
2473 driver = current->signal->tty->driver;
2474 index = current->signal->tty->index;
2475 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2476 /* noctty = 1; */
2477 goto got_driver;
2479 #ifdef CONFIG_VT
2480 if (device == MKDEV(TTY_MAJOR,0)) {
2481 extern struct tty_driver *console_driver;
2482 driver = console_driver;
2483 index = fg_console;
2484 noctty = 1;
2485 goto got_driver;
2487 #endif
2488 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2489 driver = console_device(&index);
2490 if (driver) {
2491 /* Don't let /dev/console block */
2492 filp->f_flags |= O_NONBLOCK;
2493 noctty = 1;
2494 goto got_driver;
2496 mutex_unlock(&tty_mutex);
2497 return -ENODEV;
2500 driver = get_tty_driver(device, &index);
2501 if (!driver) {
2502 mutex_unlock(&tty_mutex);
2503 return -ENODEV;
2505 got_driver:
2506 retval = init_dev(driver, index, &tty);
2507 mutex_unlock(&tty_mutex);
2508 if (retval)
2509 return retval;
2511 filp->private_data = tty;
2512 file_move(filp, &tty->tty_files);
2513 check_tty_count(tty, "tty_open");
2514 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2515 tty->driver->subtype == PTY_TYPE_MASTER)
2516 noctty = 1;
2517 #ifdef TTY_DEBUG_HANGUP
2518 printk(KERN_DEBUG "opening %s...", tty->name);
2519 #endif
2520 if (!retval) {
2521 if (tty->driver->open)
2522 retval = tty->driver->open(tty, filp);
2523 else
2524 retval = -ENODEV;
2526 filp->f_flags = saved_flags;
2528 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2529 retval = -EBUSY;
2531 if (retval) {
2532 #ifdef TTY_DEBUG_HANGUP
2533 printk(KERN_DEBUG "error %d in opening %s...", retval,
2534 tty->name);
2535 #endif
2536 release_dev(filp);
2537 if (retval != -ERESTARTSYS)
2538 return retval;
2539 if (signal_pending(current))
2540 return retval;
2541 schedule();
2543 * Need to reset f_op in case a hangup happened.
2545 if (filp->f_op == &hung_up_tty_fops)
2546 filp->f_op = &tty_fops;
2547 goto retry_open;
2549 if (!noctty &&
2550 current->signal->leader &&
2551 !current->signal->tty &&
2552 tty->session == 0) {
2553 task_lock(current);
2554 current->signal->tty = tty;
2555 task_unlock(current);
2556 current->signal->tty_old_pgrp = 0;
2557 tty->session = current->signal->session;
2558 tty->pgrp = process_group(current);
2560 return 0;
2563 #ifdef CONFIG_UNIX98_PTYS
2565 * ptmx_open - open a unix 98 pty master
2566 * @inode: inode of device file
2567 * @filp: file pointer to tty
2569 * Allocate a unix98 pty master device from the ptmx driver.
2571 * Locking: tty_mutex protects theinit_dev work. tty->count should
2572 protect the rest.
2573 * allocated_ptys_lock handles the list of free pty numbers
2576 static int ptmx_open(struct inode * inode, struct file * filp)
2578 struct tty_struct *tty;
2579 int retval;
2580 int index;
2581 int idr_ret;
2583 nonseekable_open(inode, filp);
2585 /* find a device that is not in use. */
2586 down(&allocated_ptys_lock);
2587 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2588 up(&allocated_ptys_lock);
2589 return -ENOMEM;
2591 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2592 if (idr_ret < 0) {
2593 up(&allocated_ptys_lock);
2594 if (idr_ret == -EAGAIN)
2595 return -ENOMEM;
2596 return -EIO;
2598 if (index >= pty_limit) {
2599 idr_remove(&allocated_ptys, index);
2600 up(&allocated_ptys_lock);
2601 return -EIO;
2603 up(&allocated_ptys_lock);
2605 mutex_lock(&tty_mutex);
2606 retval = init_dev(ptm_driver, index, &tty);
2607 mutex_unlock(&tty_mutex);
2609 if (retval)
2610 goto out;
2612 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2613 filp->private_data = tty;
2614 file_move(filp, &tty->tty_files);
2616 retval = -ENOMEM;
2617 if (devpts_pty_new(tty->link))
2618 goto out1;
2620 check_tty_count(tty, "tty_open");
2621 retval = ptm_driver->open(tty, filp);
2622 if (!retval)
2623 return 0;
2624 out1:
2625 release_dev(filp);
2626 return retval;
2627 out:
2628 down(&allocated_ptys_lock);
2629 idr_remove(&allocated_ptys, index);
2630 up(&allocated_ptys_lock);
2631 return retval;
2633 #endif
2636 * tty_release - vfs callback for close
2637 * @inode: inode of tty
2638 * @filp: file pointer for handle to tty
2640 * Called the last time each file handle is closed that references
2641 * this tty. There may however be several such references.
2643 * Locking:
2644 * Takes bkl. See release_dev
2647 static int tty_release(struct inode * inode, struct file * filp)
2649 lock_kernel();
2650 release_dev(filp);
2651 unlock_kernel();
2652 return 0;
2656 * tty_poll - check tty status
2657 * @filp: file being polled
2658 * @wait: poll wait structures to update
2660 * Call the line discipline polling method to obtain the poll
2661 * status of the device.
2663 * Locking: locks called line discipline but ldisc poll method
2664 * may be re-entered freely by other callers.
2667 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2669 struct tty_struct * tty;
2670 struct tty_ldisc *ld;
2671 int ret = 0;
2673 tty = (struct tty_struct *)filp->private_data;
2674 if (tty_paranoia_check(tty, filp->f_dentry->d_inode, "tty_poll"))
2675 return 0;
2677 ld = tty_ldisc_ref_wait(tty);
2678 if (ld->poll)
2679 ret = (ld->poll)(tty, filp, wait);
2680 tty_ldisc_deref(ld);
2681 return ret;
2684 static int tty_fasync(int fd, struct file * filp, int on)
2686 struct tty_struct * tty;
2687 int retval;
2689 tty = (struct tty_struct *)filp->private_data;
2690 if (tty_paranoia_check(tty, filp->f_dentry->d_inode, "tty_fasync"))
2691 return 0;
2693 retval = fasync_helper(fd, filp, on, &tty->fasync);
2694 if (retval <= 0)
2695 return retval;
2697 if (on) {
2698 if (!waitqueue_active(&tty->read_wait))
2699 tty->minimum_to_wake = 1;
2700 retval = f_setown(filp, (-tty->pgrp) ? : current->pid, 0);
2701 if (retval)
2702 return retval;
2703 } else {
2704 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2705 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2707 return 0;
2711 * tiocsti - fake input character
2712 * @tty: tty to fake input into
2713 * @p: pointer to character
2715 * Fake input to a tty device. Does the neccessary locking and
2716 * input management.
2718 * FIXME: does not honour flow control ??
2720 * Locking:
2721 * Called functions take tty_ldisc_lock
2722 * current->signal->tty check is safe without locks
2724 * FIXME: may race normal receive processing
2727 static int tiocsti(struct tty_struct *tty, char __user *p)
2729 char ch, mbz = 0;
2730 struct tty_ldisc *ld;
2732 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2733 return -EPERM;
2734 if (get_user(ch, p))
2735 return -EFAULT;
2736 ld = tty_ldisc_ref_wait(tty);
2737 ld->receive_buf(tty, &ch, &mbz, 1);
2738 tty_ldisc_deref(ld);
2739 return 0;
2743 * tiocgwinsz - implement window query ioctl
2744 * @tty; tty
2745 * @arg: user buffer for result
2747 * Copies the kernel idea of the window size into the user buffer.
2749 * Locking: tty->termios_sem is taken to ensure the winsize data
2750 * is consistent.
2753 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2755 int err;
2757 mutex_lock(&tty->termios_mutex);
2758 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2759 mutex_unlock(&tty->termios_mutex);
2761 return err ? -EFAULT: 0;
2765 * tiocswinsz - implement window size set ioctl
2766 * @tty; tty
2767 * @arg: user buffer for result
2769 * Copies the user idea of the window size to the kernel. Traditionally
2770 * this is just advisory information but for the Linux console it
2771 * actually has driver level meaning and triggers a VC resize.
2773 * Locking:
2774 * Called function use the console_sem is used to ensure we do
2775 * not try and resize the console twice at once.
2776 * The tty->termios_sem is used to ensure we don't double
2777 * resize and get confused. Lock order - tty->termios.sem before
2778 * console sem
2781 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2782 struct winsize __user * arg)
2784 struct winsize tmp_ws;
2786 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2787 return -EFAULT;
2789 mutex_lock(&tty->termios_mutex);
2790 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2791 goto done;
2793 #ifdef CONFIG_VT
2794 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2795 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2796 tmp_ws.ws_row)) {
2797 mutex_unlock(&tty->termios_mutex);
2798 return -ENXIO;
2801 #endif
2802 if (tty->pgrp > 0)
2803 kill_pg(tty->pgrp, SIGWINCH, 1);
2804 if ((real_tty->pgrp != tty->pgrp) && (real_tty->pgrp > 0))
2805 kill_pg(real_tty->pgrp, SIGWINCH, 1);
2806 tty->winsize = tmp_ws;
2807 real_tty->winsize = tmp_ws;
2808 done:
2809 mutex_unlock(&tty->termios_mutex);
2810 return 0;
2814 * tioccons - allow admin to move logical console
2815 * @file: the file to become console
2817 * Allow the adminstrator to move the redirected console device
2819 * Locking: uses redirect_lock to guard the redirect information
2822 static int tioccons(struct file *file)
2824 if (!capable(CAP_SYS_ADMIN))
2825 return -EPERM;
2826 if (file->f_op->write == redirected_tty_write) {
2827 struct file *f;
2828 spin_lock(&redirect_lock);
2829 f = redirect;
2830 redirect = NULL;
2831 spin_unlock(&redirect_lock);
2832 if (f)
2833 fput(f);
2834 return 0;
2836 spin_lock(&redirect_lock);
2837 if (redirect) {
2838 spin_unlock(&redirect_lock);
2839 return -EBUSY;
2841 get_file(file);
2842 redirect = file;
2843 spin_unlock(&redirect_lock);
2844 return 0;
2848 * fionbio - non blocking ioctl
2849 * @file: file to set blocking value
2850 * @p: user parameter
2852 * Historical tty interfaces had a blocking control ioctl before
2853 * the generic functionality existed. This piece of history is preserved
2854 * in the expected tty API of posix OS's.
2856 * Locking: none, the open fle handle ensures it won't go away.
2859 static int fionbio(struct file *file, int __user *p)
2861 int nonblock;
2863 if (get_user(nonblock, p))
2864 return -EFAULT;
2866 if (nonblock)
2867 file->f_flags |= O_NONBLOCK;
2868 else
2869 file->f_flags &= ~O_NONBLOCK;
2870 return 0;
2874 * tiocsctty - set controlling tty
2875 * @tty: tty structure
2876 * @arg: user argument
2878 * This ioctl is used to manage job control. It permits a session
2879 * leader to set this tty as the controlling tty for the session.
2881 * Locking:
2882 * Takes tasklist lock internally to walk sessions
2883 * Takes task_lock() when updating signal->tty
2884 * Takes tty_mutex() to protect tty instance
2888 static int tiocsctty(struct tty_struct *tty, int arg)
2890 struct task_struct *p;
2892 if (current->signal->leader &&
2893 (current->signal->session == tty->session))
2894 return 0;
2896 * The process must be a session leader and
2897 * not have a controlling tty already.
2899 if (!current->signal->leader || current->signal->tty)
2900 return -EPERM;
2901 if (tty->session > 0) {
2903 * This tty is already the controlling
2904 * tty for another session group!
2906 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2908 * Steal it away
2911 read_lock(&tasklist_lock);
2912 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
2913 p->signal->tty = NULL;
2914 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
2915 read_unlock(&tasklist_lock);
2916 } else
2917 return -EPERM;
2919 mutex_lock(&tty_mutex);
2920 task_lock(current);
2921 current->signal->tty = tty;
2922 task_unlock(current);
2923 mutex_unlock(&tty_mutex);
2924 current->signal->tty_old_pgrp = 0;
2925 tty->session = current->signal->session;
2926 tty->pgrp = process_group(current);
2927 return 0;
2931 * tiocgpgrp - get process group
2932 * @tty: tty passed by user
2933 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2934 * @p: returned pid
2936 * Obtain the process group of the tty. If there is no process group
2937 * return an error.
2939 * Locking: none. Reference to ->signal->tty is safe.
2942 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2945 * (tty == real_tty) is a cheap way of
2946 * testing if the tty is NOT a master pty.
2948 if (tty == real_tty && current->signal->tty != real_tty)
2949 return -ENOTTY;
2950 return put_user(real_tty->pgrp, p);
2954 * tiocspgrp - attempt to set process group
2955 * @tty: tty passed by user
2956 * @real_tty: tty side device matching tty passed by user
2957 * @p: pid pointer
2959 * Set the process group of the tty to the session passed. Only
2960 * permitted where the tty session is our session.
2962 * Locking: None
2965 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2967 pid_t pgrp;
2968 int retval = tty_check_change(real_tty);
2970 if (retval == -EIO)
2971 return -ENOTTY;
2972 if (retval)
2973 return retval;
2974 if (!current->signal->tty ||
2975 (current->signal->tty != real_tty) ||
2976 (real_tty->session != current->signal->session))
2977 return -ENOTTY;
2978 if (get_user(pgrp, p))
2979 return -EFAULT;
2980 if (pgrp < 0)
2981 return -EINVAL;
2982 if (session_of_pgrp(pgrp) != current->signal->session)
2983 return -EPERM;
2984 real_tty->pgrp = pgrp;
2985 return 0;
2989 * tiocgsid - get session id
2990 * @tty: tty passed by user
2991 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2992 * @p: pointer to returned session id
2994 * Obtain the session id of the tty. If there is no session
2995 * return an error.
2997 * Locking: none. Reference to ->signal->tty is safe.
3000 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3003 * (tty == real_tty) is a cheap way of
3004 * testing if the tty is NOT a master pty.
3006 if (tty == real_tty && current->signal->tty != real_tty)
3007 return -ENOTTY;
3008 if (real_tty->session <= 0)
3009 return -ENOTTY;
3010 return put_user(real_tty->session, p);
3014 * tiocsetd - set line discipline
3015 * @tty: tty device
3016 * @p: pointer to user data
3018 * Set the line discipline according to user request.
3020 * Locking: see tty_set_ldisc, this function is just a helper
3023 static int tiocsetd(struct tty_struct *tty, int __user *p)
3025 int ldisc;
3027 if (get_user(ldisc, p))
3028 return -EFAULT;
3029 return tty_set_ldisc(tty, ldisc);
3033 * send_break - performed time break
3034 * @tty: device to break on
3035 * @duration: timeout in mS
3037 * Perform a timed break on hardware that lacks its own driver level
3038 * timed break functionality.
3040 * Locking:
3041 * atomic_write_lock serializes
3045 static int send_break(struct tty_struct *tty, unsigned int duration)
3047 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3048 return -EINTR;
3049 tty->driver->break_ctl(tty, -1);
3050 if (!signal_pending(current)) {
3051 msleep_interruptible(duration);
3053 tty->driver->break_ctl(tty, 0);
3054 mutex_unlock(&tty->atomic_write_lock);
3055 if (signal_pending(current))
3056 return -EINTR;
3057 return 0;
3061 * tiocmget - get modem status
3062 * @tty: tty device
3063 * @file: user file pointer
3064 * @p: pointer to result
3066 * Obtain the modem status bits from the tty driver if the feature
3067 * is supported. Return -EINVAL if it is not available.
3069 * Locking: none (up to the driver)
3072 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3074 int retval = -EINVAL;
3076 if (tty->driver->tiocmget) {
3077 retval = tty->driver->tiocmget(tty, file);
3079 if (retval >= 0)
3080 retval = put_user(retval, p);
3082 return retval;
3086 * tiocmset - set modem status
3087 * @tty: tty device
3088 * @file: user file pointer
3089 * @cmd: command - clear bits, set bits or set all
3090 * @p: pointer to desired bits
3092 * Set the modem status bits from the tty driver if the feature
3093 * is supported. Return -EINVAL if it is not available.
3095 * Locking: none (up to the driver)
3098 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3099 unsigned __user *p)
3101 int retval = -EINVAL;
3103 if (tty->driver->tiocmset) {
3104 unsigned int set, clear, val;
3106 retval = get_user(val, p);
3107 if (retval)
3108 return retval;
3110 set = clear = 0;
3111 switch (cmd) {
3112 case TIOCMBIS:
3113 set = val;
3114 break;
3115 case TIOCMBIC:
3116 clear = val;
3117 break;
3118 case TIOCMSET:
3119 set = val;
3120 clear = ~val;
3121 break;
3124 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3125 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3127 retval = tty->driver->tiocmset(tty, file, set, clear);
3129 return retval;
3133 * Split this up, as gcc can choke on it otherwise..
3135 int tty_ioctl(struct inode * inode, struct file * file,
3136 unsigned int cmd, unsigned long arg)
3138 struct tty_struct *tty, *real_tty;
3139 void __user *p = (void __user *)arg;
3140 int retval;
3141 struct tty_ldisc *ld;
3143 tty = (struct tty_struct *)file->private_data;
3144 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3145 return -EINVAL;
3147 /* CHECKME: is this safe as one end closes ? */
3149 real_tty = tty;
3150 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3151 tty->driver->subtype == PTY_TYPE_MASTER)
3152 real_tty = tty->link;
3155 * Break handling by driver
3157 if (!tty->driver->break_ctl) {
3158 switch(cmd) {
3159 case TIOCSBRK:
3160 case TIOCCBRK:
3161 if (tty->driver->ioctl)
3162 return tty->driver->ioctl(tty, file, cmd, arg);
3163 return -EINVAL;
3165 /* These two ioctl's always return success; even if */
3166 /* the driver doesn't support them. */
3167 case TCSBRK:
3168 case TCSBRKP:
3169 if (!tty->driver->ioctl)
3170 return 0;
3171 retval = tty->driver->ioctl(tty, file, cmd, arg);
3172 if (retval == -ENOIOCTLCMD)
3173 retval = 0;
3174 return retval;
3179 * Factor out some common prep work
3181 switch (cmd) {
3182 case TIOCSETD:
3183 case TIOCSBRK:
3184 case TIOCCBRK:
3185 case TCSBRK:
3186 case TCSBRKP:
3187 retval = tty_check_change(tty);
3188 if (retval)
3189 return retval;
3190 if (cmd != TIOCCBRK) {
3191 tty_wait_until_sent(tty, 0);
3192 if (signal_pending(current))
3193 return -EINTR;
3195 break;
3198 switch (cmd) {
3199 case TIOCSTI:
3200 return tiocsti(tty, p);
3201 case TIOCGWINSZ:
3202 return tiocgwinsz(tty, p);
3203 case TIOCSWINSZ:
3204 return tiocswinsz(tty, real_tty, p);
3205 case TIOCCONS:
3206 return real_tty!=tty ? -EINVAL : tioccons(file);
3207 case FIONBIO:
3208 return fionbio(file, p);
3209 case TIOCEXCL:
3210 set_bit(TTY_EXCLUSIVE, &tty->flags);
3211 return 0;
3212 case TIOCNXCL:
3213 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3214 return 0;
3215 case TIOCNOTTY:
3216 /* FIXME: taks lock or tty_mutex ? */
3217 if (current->signal->tty != tty)
3218 return -ENOTTY;
3219 if (current->signal->leader)
3220 disassociate_ctty(0);
3221 task_lock(current);
3222 current->signal->tty = NULL;
3223 task_unlock(current);
3224 return 0;
3225 case TIOCSCTTY:
3226 return tiocsctty(tty, arg);
3227 case TIOCGPGRP:
3228 return tiocgpgrp(tty, real_tty, p);
3229 case TIOCSPGRP:
3230 return tiocspgrp(tty, real_tty, p);
3231 case TIOCGSID:
3232 return tiocgsid(tty, real_tty, p);
3233 case TIOCGETD:
3234 /* FIXME: check this is ok */
3235 return put_user(tty->ldisc.num, (int __user *)p);
3236 case TIOCSETD:
3237 return tiocsetd(tty, p);
3238 #ifdef CONFIG_VT
3239 case TIOCLINUX:
3240 return tioclinux(tty, arg);
3241 #endif
3243 * Break handling
3245 case TIOCSBRK: /* Turn break on, unconditionally */
3246 tty->driver->break_ctl(tty, -1);
3247 return 0;
3249 case TIOCCBRK: /* Turn break off, unconditionally */
3250 tty->driver->break_ctl(tty, 0);
3251 return 0;
3252 case TCSBRK: /* SVID version: non-zero arg --> no break */
3253 /* non-zero arg means wait for all output data
3254 * to be sent (performed above) but don't send break.
3255 * This is used by the tcdrain() termios function.
3257 if (!arg)
3258 return send_break(tty, 250);
3259 return 0;
3260 case TCSBRKP: /* support for POSIX tcsendbreak() */
3261 return send_break(tty, arg ? arg*100 : 250);
3263 case TIOCMGET:
3264 return tty_tiocmget(tty, file, p);
3266 case TIOCMSET:
3267 case TIOCMBIC:
3268 case TIOCMBIS:
3269 return tty_tiocmset(tty, file, cmd, p);
3271 if (tty->driver->ioctl) {
3272 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3273 if (retval != -ENOIOCTLCMD)
3274 return retval;
3276 ld = tty_ldisc_ref_wait(tty);
3277 retval = -EINVAL;
3278 if (ld->ioctl) {
3279 retval = ld->ioctl(tty, file, cmd, arg);
3280 if (retval == -ENOIOCTLCMD)
3281 retval = -EINVAL;
3283 tty_ldisc_deref(ld);
3284 return retval;
3289 * This implements the "Secure Attention Key" --- the idea is to
3290 * prevent trojan horses by killing all processes associated with this
3291 * tty when the user hits the "Secure Attention Key". Required for
3292 * super-paranoid applications --- see the Orange Book for more details.
3294 * This code could be nicer; ideally it should send a HUP, wait a few
3295 * seconds, then send a INT, and then a KILL signal. But you then
3296 * have to coordinate with the init process, since all processes associated
3297 * with the current tty must be dead before the new getty is allowed
3298 * to spawn.
3300 * Now, if it would be correct ;-/ The current code has a nasty hole -
3301 * it doesn't catch files in flight. We may send the descriptor to ourselves
3302 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3304 * Nasty bug: do_SAK is being called in interrupt context. This can
3305 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3307 static void __do_SAK(void *arg)
3309 #ifdef TTY_SOFT_SAK
3310 tty_hangup(tty);
3311 #else
3312 struct tty_struct *tty = arg;
3313 struct task_struct *g, *p;
3314 int session;
3315 int i;
3316 struct file *filp;
3317 struct tty_ldisc *disc;
3318 struct fdtable *fdt;
3320 if (!tty)
3321 return;
3322 session = tty->session;
3324 /* We don't want an ldisc switch during this */
3325 disc = tty_ldisc_ref(tty);
3326 if (disc && disc->flush_buffer)
3327 disc->flush_buffer(tty);
3328 tty_ldisc_deref(disc);
3330 if (tty->driver->flush_buffer)
3331 tty->driver->flush_buffer(tty);
3333 read_lock(&tasklist_lock);
3334 /* Kill the entire session */
3335 do_each_task_pid(session, PIDTYPE_SID, p) {
3336 printk(KERN_NOTICE "SAK: killed process %d"
3337 " (%s): p->signal->session==tty->session\n",
3338 p->pid, p->comm);
3339 send_sig(SIGKILL, p, 1);
3340 } while_each_task_pid(session, PIDTYPE_SID, p);
3341 /* Now kill any processes that happen to have the
3342 * tty open.
3344 do_each_thread(g, p) {
3345 if (p->signal->tty == tty) {
3346 printk(KERN_NOTICE "SAK: killed process %d"
3347 " (%s): p->signal->session==tty->session\n",
3348 p->pid, p->comm);
3349 send_sig(SIGKILL, p, 1);
3350 continue;
3352 task_lock(p);
3353 if (p->files) {
3355 * We don't take a ref to the file, so we must
3356 * hold ->file_lock instead.
3358 spin_lock(&p->files->file_lock);
3359 fdt = files_fdtable(p->files);
3360 for (i=0; i < fdt->max_fds; i++) {
3361 filp = fcheck_files(p->files, i);
3362 if (!filp)
3363 continue;
3364 if (filp->f_op->read == tty_read &&
3365 filp->private_data == tty) {
3366 printk(KERN_NOTICE "SAK: killed process %d"
3367 " (%s): fd#%d opened to the tty\n",
3368 p->pid, p->comm, i);
3369 force_sig(SIGKILL, p);
3370 break;
3373 spin_unlock(&p->files->file_lock);
3375 task_unlock(p);
3376 } while_each_thread(g, p);
3377 read_unlock(&tasklist_lock);
3378 #endif
3382 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3383 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3384 * the values which we write to it will be identical to the values which it
3385 * already has. --akpm
3387 void do_SAK(struct tty_struct *tty)
3389 if (!tty)
3390 return;
3391 PREPARE_WORK(&tty->SAK_work, __do_SAK, tty);
3392 schedule_work(&tty->SAK_work);
3395 EXPORT_SYMBOL(do_SAK);
3398 * flush_to_ldisc
3399 * @private_: tty structure passed from work queue.
3401 * This routine is called out of the software interrupt to flush data
3402 * from the buffer chain to the line discipline.
3404 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3405 * while invoking the line discipline receive_buf method. The
3406 * receive_buf method is single threaded for each tty instance.
3409 static void flush_to_ldisc(void *private_)
3411 struct tty_struct *tty = (struct tty_struct *) private_;
3412 unsigned long flags;
3413 struct tty_ldisc *disc;
3414 struct tty_buffer *tbuf, *head;
3415 char *char_buf;
3416 unsigned char *flag_buf;
3418 disc = tty_ldisc_ref(tty);
3419 if (disc == NULL) /* !TTY_LDISC */
3420 return;
3422 spin_lock_irqsave(&tty->buf.lock, flags);
3423 head = tty->buf.head;
3424 if (head != NULL) {
3425 tty->buf.head = NULL;
3426 for (;;) {
3427 int count = head->commit - head->read;
3428 if (!count) {
3429 if (head->next == NULL)
3430 break;
3431 tbuf = head;
3432 head = head->next;
3433 tty_buffer_free(tty, tbuf);
3434 continue;
3436 if (!tty->receive_room) {
3437 schedule_delayed_work(&tty->buf.work, 1);
3438 break;
3440 if (count > tty->receive_room)
3441 count = tty->receive_room;
3442 char_buf = head->char_buf_ptr + head->read;
3443 flag_buf = head->flag_buf_ptr + head->read;
3444 head->read += count;
3445 spin_unlock_irqrestore(&tty->buf.lock, flags);
3446 disc->receive_buf(tty, char_buf, flag_buf, count);
3447 spin_lock_irqsave(&tty->buf.lock, flags);
3449 tty->buf.head = head;
3451 spin_unlock_irqrestore(&tty->buf.lock, flags);
3453 tty_ldisc_deref(disc);
3457 * Routine which returns the baud rate of the tty
3459 * Note that the baud_table needs to be kept in sync with the
3460 * include/asm/termbits.h file.
3462 static int baud_table[] = {
3463 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
3464 9600, 19200, 38400, 57600, 115200, 230400, 460800,
3465 #ifdef __sparc__
3466 76800, 153600, 307200, 614400, 921600
3467 #else
3468 500000, 576000, 921600, 1000000, 1152000, 1500000, 2000000,
3469 2500000, 3000000, 3500000, 4000000
3470 #endif
3473 static int n_baud_table = ARRAY_SIZE(baud_table);
3476 * tty_termios_baud_rate
3477 * @termios: termios structure
3479 * Convert termios baud rate data into a speed. This should be called
3480 * with the termios lock held if this termios is a terminal termios
3481 * structure. May change the termios data.
3483 * Locking: none
3486 int tty_termios_baud_rate(struct termios *termios)
3488 unsigned int cbaud;
3490 cbaud = termios->c_cflag & CBAUD;
3492 if (cbaud & CBAUDEX) {
3493 cbaud &= ~CBAUDEX;
3495 if (cbaud < 1 || cbaud + 15 > n_baud_table)
3496 termios->c_cflag &= ~CBAUDEX;
3497 else
3498 cbaud += 15;
3500 return baud_table[cbaud];
3503 EXPORT_SYMBOL(tty_termios_baud_rate);
3506 * tty_get_baud_rate - get tty bit rates
3507 * @tty: tty to query
3509 * Returns the baud rate as an integer for this terminal. The
3510 * termios lock must be held by the caller and the terminal bit
3511 * flags may be updated.
3513 * Locking: none
3516 int tty_get_baud_rate(struct tty_struct *tty)
3518 int baud = tty_termios_baud_rate(tty->termios);
3520 if (baud == 38400 && tty->alt_speed) {
3521 if (!tty->warned) {
3522 printk(KERN_WARNING "Use of setserial/setrocket to "
3523 "set SPD_* flags is deprecated\n");
3524 tty->warned = 1;
3526 baud = tty->alt_speed;
3529 return baud;
3532 EXPORT_SYMBOL(tty_get_baud_rate);
3535 * tty_flip_buffer_push - terminal
3536 * @tty: tty to push
3538 * Queue a push of the terminal flip buffers to the line discipline. This
3539 * function must not be called from IRQ context if tty->low_latency is set.
3541 * In the event of the queue being busy for flipping the work will be
3542 * held off and retried later.
3544 * Locking: tty buffer lock. Driver locks in low latency mode.
3547 void tty_flip_buffer_push(struct tty_struct *tty)
3549 unsigned long flags;
3550 spin_lock_irqsave(&tty->buf.lock, flags);
3551 if (tty->buf.tail != NULL)
3552 tty->buf.tail->commit = tty->buf.tail->used;
3553 spin_unlock_irqrestore(&tty->buf.lock, flags);
3555 if (tty->low_latency)
3556 flush_to_ldisc((void *) tty);
3557 else
3558 schedule_delayed_work(&tty->buf.work, 1);
3561 EXPORT_SYMBOL(tty_flip_buffer_push);
3565 * initialize_tty_struct
3566 * @tty: tty to initialize
3568 * This subroutine initializes a tty structure that has been newly
3569 * allocated.
3571 * Locking: none - tty in question must not be exposed at this point
3574 static void initialize_tty_struct(struct tty_struct *tty)
3576 memset(tty, 0, sizeof(struct tty_struct));
3577 tty->magic = TTY_MAGIC;
3578 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3579 tty->pgrp = -1;
3580 tty->overrun_time = jiffies;
3581 tty->buf.head = tty->buf.tail = NULL;
3582 tty_buffer_init(tty);
3583 INIT_WORK(&tty->buf.work, flush_to_ldisc, tty);
3584 init_MUTEX(&tty->buf.pty_sem);
3585 mutex_init(&tty->termios_mutex);
3586 init_waitqueue_head(&tty->write_wait);
3587 init_waitqueue_head(&tty->read_wait);
3588 INIT_WORK(&tty->hangup_work, do_tty_hangup, tty);
3589 mutex_init(&tty->atomic_read_lock);
3590 mutex_init(&tty->atomic_write_lock);
3591 spin_lock_init(&tty->read_lock);
3592 INIT_LIST_HEAD(&tty->tty_files);
3593 INIT_WORK(&tty->SAK_work, NULL, NULL);
3597 * The default put_char routine if the driver did not define one.
3600 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3602 tty->driver->write(tty, &ch, 1);
3605 static struct class *tty_class;
3608 * tty_register_device - register a tty device
3609 * @driver: the tty driver that describes the tty device
3610 * @index: the index in the tty driver for this tty device
3611 * @device: a struct device that is associated with this tty device.
3612 * This field is optional, if there is no known struct device
3613 * for this tty device it can be set to NULL safely.
3615 * Returns a pointer to the struct device for this tty device
3616 * (or ERR_PTR(-EFOO) on error).
3618 * This call is required to be made to register an individual tty device
3619 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3620 * that bit is not set, this function should not be called by a tty
3621 * driver.
3623 * Locking: ??
3626 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3627 struct device *device)
3629 char name[64];
3630 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3632 if (index >= driver->num) {
3633 printk(KERN_ERR "Attempt to register invalid tty line number "
3634 " (%d).\n", index);
3635 return ERR_PTR(-EINVAL);
3638 if (driver->type == TTY_DRIVER_TYPE_PTY)
3639 pty_line_name(driver, index, name);
3640 else
3641 tty_line_name(driver, index, name);
3643 return device_create(tty_class, device, dev, name);
3647 * tty_unregister_device - unregister a tty device
3648 * @driver: the tty driver that describes the tty device
3649 * @index: the index in the tty driver for this tty device
3651 * If a tty device is registered with a call to tty_register_device() then
3652 * this function must be called when the tty device is gone.
3654 * Locking: ??
3657 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3659 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3662 EXPORT_SYMBOL(tty_register_device);
3663 EXPORT_SYMBOL(tty_unregister_device);
3665 struct tty_driver *alloc_tty_driver(int lines)
3667 struct tty_driver *driver;
3669 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3670 if (driver) {
3671 memset(driver, 0, sizeof(struct tty_driver));
3672 driver->magic = TTY_DRIVER_MAGIC;
3673 driver->num = lines;
3674 /* later we'll move allocation of tables here */
3676 return driver;
3679 void put_tty_driver(struct tty_driver *driver)
3681 kfree(driver);
3684 void tty_set_operations(struct tty_driver *driver,
3685 const struct tty_operations *op)
3687 driver->open = op->open;
3688 driver->close = op->close;
3689 driver->write = op->write;
3690 driver->put_char = op->put_char;
3691 driver->flush_chars = op->flush_chars;
3692 driver->write_room = op->write_room;
3693 driver->chars_in_buffer = op->chars_in_buffer;
3694 driver->ioctl = op->ioctl;
3695 driver->set_termios = op->set_termios;
3696 driver->throttle = op->throttle;
3697 driver->unthrottle = op->unthrottle;
3698 driver->stop = op->stop;
3699 driver->start = op->start;
3700 driver->hangup = op->hangup;
3701 driver->break_ctl = op->break_ctl;
3702 driver->flush_buffer = op->flush_buffer;
3703 driver->set_ldisc = op->set_ldisc;
3704 driver->wait_until_sent = op->wait_until_sent;
3705 driver->send_xchar = op->send_xchar;
3706 driver->read_proc = op->read_proc;
3707 driver->write_proc = op->write_proc;
3708 driver->tiocmget = op->tiocmget;
3709 driver->tiocmset = op->tiocmset;
3713 EXPORT_SYMBOL(alloc_tty_driver);
3714 EXPORT_SYMBOL(put_tty_driver);
3715 EXPORT_SYMBOL(tty_set_operations);
3718 * Called by a tty driver to register itself.
3720 int tty_register_driver(struct tty_driver *driver)
3722 int error;
3723 int i;
3724 dev_t dev;
3725 void **p = NULL;
3727 if (driver->flags & TTY_DRIVER_INSTALLED)
3728 return 0;
3730 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3731 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3732 if (!p)
3733 return -ENOMEM;
3734 memset(p, 0, driver->num * 3 * sizeof(void *));
3737 if (!driver->major) {
3738 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3739 (char*)driver->name);
3740 if (!error) {
3741 driver->major = MAJOR(dev);
3742 driver->minor_start = MINOR(dev);
3744 } else {
3745 dev = MKDEV(driver->major, driver->minor_start);
3746 error = register_chrdev_region(dev, driver->num,
3747 (char*)driver->name);
3749 if (error < 0) {
3750 kfree(p);
3751 return error;
3754 if (p) {
3755 driver->ttys = (struct tty_struct **)p;
3756 driver->termios = (struct termios **)(p + driver->num);
3757 driver->termios_locked = (struct termios **)(p + driver->num * 2);
3758 } else {
3759 driver->ttys = NULL;
3760 driver->termios = NULL;
3761 driver->termios_locked = NULL;
3764 cdev_init(&driver->cdev, &tty_fops);
3765 driver->cdev.owner = driver->owner;
3766 error = cdev_add(&driver->cdev, dev, driver->num);
3767 if (error) {
3768 unregister_chrdev_region(dev, driver->num);
3769 driver->ttys = NULL;
3770 driver->termios = driver->termios_locked = NULL;
3771 kfree(p);
3772 return error;
3775 if (!driver->put_char)
3776 driver->put_char = tty_default_put_char;
3778 list_add(&driver->tty_drivers, &tty_drivers);
3780 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3781 for(i = 0; i < driver->num; i++)
3782 tty_register_device(driver, i, NULL);
3784 proc_tty_register_driver(driver);
3785 return 0;
3788 EXPORT_SYMBOL(tty_register_driver);
3791 * Called by a tty driver to unregister itself.
3793 int tty_unregister_driver(struct tty_driver *driver)
3795 int i;
3796 struct termios *tp;
3797 void *p;
3799 if (driver->refcount)
3800 return -EBUSY;
3802 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3803 driver->num);
3805 list_del(&driver->tty_drivers);
3808 * Free the termios and termios_locked structures because
3809 * we don't want to get memory leaks when modular tty
3810 * drivers are removed from the kernel.
3812 for (i = 0; i < driver->num; i++) {
3813 tp = driver->termios[i];
3814 if (tp) {
3815 driver->termios[i] = NULL;
3816 kfree(tp);
3818 tp = driver->termios_locked[i];
3819 if (tp) {
3820 driver->termios_locked[i] = NULL;
3821 kfree(tp);
3823 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3824 tty_unregister_device(driver, i);
3826 p = driver->ttys;
3827 proc_tty_unregister_driver(driver);
3828 driver->ttys = NULL;
3829 driver->termios = driver->termios_locked = NULL;
3830 kfree(p);
3831 cdev_del(&driver->cdev);
3832 return 0;
3835 EXPORT_SYMBOL(tty_unregister_driver);
3839 * Initialize the console device. This is called *early*, so
3840 * we can't necessarily depend on lots of kernel help here.
3841 * Just do some early initializations, and do the complex setup
3842 * later.
3844 void __init console_init(void)
3846 initcall_t *call;
3848 /* Setup the default TTY line discipline. */
3849 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3852 * set up the console device so that later boot sequences can
3853 * inform about problems etc..
3855 #ifdef CONFIG_EARLY_PRINTK
3856 disable_early_printk();
3857 #endif
3858 call = __con_initcall_start;
3859 while (call < __con_initcall_end) {
3860 (*call)();
3861 call++;
3865 #ifdef CONFIG_VT
3866 extern int vty_init(void);
3867 #endif
3869 static int __init tty_class_init(void)
3871 tty_class = class_create(THIS_MODULE, "tty");
3872 if (IS_ERR(tty_class))
3873 return PTR_ERR(tty_class);
3874 return 0;
3877 postcore_initcall(tty_class_init);
3879 /* 3/2004 jmc: why do these devices exist? */
3881 static struct cdev tty_cdev, console_cdev;
3882 #ifdef CONFIG_UNIX98_PTYS
3883 static struct cdev ptmx_cdev;
3884 #endif
3885 #ifdef CONFIG_VT
3886 static struct cdev vc0_cdev;
3887 #endif
3890 * Ok, now we can initialize the rest of the tty devices and can count
3891 * on memory allocations, interrupts etc..
3893 static int __init tty_init(void)
3895 cdev_init(&tty_cdev, &tty_fops);
3896 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3897 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3898 panic("Couldn't register /dev/tty driver\n");
3899 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3901 cdev_init(&console_cdev, &console_fops);
3902 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3903 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3904 panic("Couldn't register /dev/console driver\n");
3905 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3907 #ifdef CONFIG_UNIX98_PTYS
3908 cdev_init(&ptmx_cdev, &ptmx_fops);
3909 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3910 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3911 panic("Couldn't register /dev/ptmx driver\n");
3912 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3913 #endif
3915 #ifdef CONFIG_VT
3916 cdev_init(&vc0_cdev, &console_fops);
3917 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3918 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3919 panic("Couldn't register /dev/tty0 driver\n");
3920 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3922 vty_init();
3923 #endif
3924 return 0;
3926 module_init(tty_init);