[NETFILTER]: ip6table_mangle: reroute when nfmark changes in NF_IP6_LOCAL_OUT
[hh.org.git] / drivers / char / istallion.c
blob84dfc4278139eaf809b666d47bd7de8623aa9898
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cdk.h>
36 #include <linux/comstats.h>
37 #include <linux/istallion.h>
38 #include <linux/ioport.h>
39 #include <linux/delay.h>
40 #include <linux/init.h>
41 #include <linux/device.h>
42 #include <linux/wait.h>
43 #include <linux/eisa.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
48 #include <linux/pci.h>
50 /*****************************************************************************/
53 * Define different board types. Not all of the following board types
54 * are supported by this driver. But I will use the standard "assigned"
55 * board numbers. Currently supported boards are abbreviated as:
56 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
57 * STAL = Stallion.
59 #define BRD_UNKNOWN 0
60 #define BRD_STALLION 1
61 #define BRD_BRUMBY4 2
62 #define BRD_ONBOARD2 3
63 #define BRD_ONBOARD 4
64 #define BRD_BRUMBY8 5
65 #define BRD_BRUMBY16 6
66 #define BRD_ONBOARDE 7
67 #define BRD_ONBOARD32 9
68 #define BRD_ONBOARD2_32 10
69 #define BRD_ONBOARDRS 11
70 #define BRD_EASYIO 20
71 #define BRD_ECH 21
72 #define BRD_ECHMC 22
73 #define BRD_ECP 23
74 #define BRD_ECPE 24
75 #define BRD_ECPMC 25
76 #define BRD_ECHPCI 26
77 #define BRD_ECH64PCI 27
78 #define BRD_EASYIOPCI 28
79 #define BRD_ECPPCI 29
81 #define BRD_BRUMBY BRD_BRUMBY4
84 * Define a configuration structure to hold the board configuration.
85 * Need to set this up in the code (for now) with the boards that are
86 * to be configured into the system. This is what needs to be modified
87 * when adding/removing/modifying boards. Each line entry in the
88 * stli_brdconf[] array is a board. Each line contains io/irq/memory
89 * ranges for that board (as well as what type of board it is).
90 * Some examples:
91 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
92 * This line will configure an EasyConnection 8/64 at io address 2a0,
93 * and shared memory address of cc000. Multiple EasyConnection 8/64
94 * boards can share the same shared memory address space. No interrupt
95 * is required for this board type.
96 * Another example:
97 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
98 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
99 * shared memory address of 0x80000000 (2 GByte). Multiple
100 * EasyConnection 8/64 EISA boards can share the same shared memory
101 * address space. No interrupt is required for this board type.
102 * Another example:
103 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
104 * This line will configure an ONboard (ISA type) at io address 240,
105 * and shared memory address of d0000. Multiple ONboards can share
106 * the same shared memory address space. No interrupt required.
107 * Another example:
108 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
109 * This line will configure a Brumby board (any number of ports!) at
110 * io address 360 and shared memory address of c8000. All Brumby boards
111 * configured into a system must have their own separate io and memory
112 * addresses. No interrupt is required.
113 * Another example:
114 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
115 * This line will configure an original Stallion board at io address 330
116 * and shared memory address d0000 (this would only be valid for a "V4.0"
117 * or Rev.O Stallion board). All Stallion boards configured into the
118 * system must have their own separate io and memory addresses. No
119 * interrupt is required.
122 typedef struct {
123 int brdtype;
124 int ioaddr1;
125 int ioaddr2;
126 unsigned long memaddr;
127 int irq;
128 int irqtype;
129 } stlconf_t;
131 static stlconf_t stli_brdconf[] = {
132 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
135 static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
137 /* stli_lock must NOT be taken holding brd_lock */
138 static spinlock_t stli_lock; /* TTY logic lock */
139 static spinlock_t brd_lock; /* Board logic lock */
142 * There is some experimental EISA board detection code in this driver.
143 * By default it is disabled, but for those that want to try it out,
144 * then set the define below to be 1.
146 #define STLI_EISAPROBE 0
148 /*****************************************************************************/
151 * Define some important driver characteristics. Device major numbers
152 * allocated as per Linux Device Registry.
154 #ifndef STL_SIOMEMMAJOR
155 #define STL_SIOMEMMAJOR 28
156 #endif
157 #ifndef STL_SERIALMAJOR
158 #define STL_SERIALMAJOR 24
159 #endif
160 #ifndef STL_CALLOUTMAJOR
161 #define STL_CALLOUTMAJOR 25
162 #endif
164 /*****************************************************************************/
167 * Define our local driver identity first. Set up stuff to deal with
168 * all the local structures required by a serial tty driver.
170 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
171 static char *stli_drvname = "istallion";
172 static char *stli_drvversion = "5.6.0";
173 static char *stli_serialname = "ttyE";
175 static struct tty_driver *stli_serial;
178 #define STLI_TXBUFSIZE 4096
181 * Use a fast local buffer for cooked characters. Typically a whole
182 * bunch of cooked characters come in for a port, 1 at a time. So we
183 * save those up into a local buffer, then write out the whole lot
184 * with a large memcpy. Just use 1 buffer for all ports, since its
185 * use it is only need for short periods of time by each port.
187 static char *stli_txcookbuf;
188 static int stli_txcooksize;
189 static int stli_txcookrealsize;
190 static struct tty_struct *stli_txcooktty;
193 * Define a local default termios struct. All ports will be created
194 * with this termios initially. Basically all it defines is a raw port
195 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
197 static struct termios stli_deftermios = {
198 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
199 .c_cc = INIT_C_CC,
203 * Define global stats structures. Not used often, and can be
204 * re-used for each stats call.
206 static comstats_t stli_comstats;
207 static combrd_t stli_brdstats;
208 static asystats_t stli_cdkstats;
209 static stlibrd_t stli_dummybrd;
210 static stliport_t stli_dummyport;
212 /*****************************************************************************/
214 static stlibrd_t *stli_brds[STL_MAXBRDS];
216 static int stli_shared;
219 * Per board state flags. Used with the state field of the board struct.
220 * Not really much here... All we need to do is keep track of whether
221 * the board has been detected, and whether it is actually running a slave
222 * or not.
224 #define BST_FOUND 0x1
225 #define BST_STARTED 0x2
228 * Define the set of port state flags. These are marked for internal
229 * state purposes only, usually to do with the state of communications
230 * with the slave. Most of them need to be updated atomically, so always
231 * use the bit setting operations (unless protected by cli/sti).
233 #define ST_INITIALIZING 1
234 #define ST_OPENING 2
235 #define ST_CLOSING 3
236 #define ST_CMDING 4
237 #define ST_TXBUSY 5
238 #define ST_RXING 6
239 #define ST_DOFLUSHRX 7
240 #define ST_DOFLUSHTX 8
241 #define ST_DOSIGS 9
242 #define ST_RXSTOP 10
243 #define ST_GETSIGS 11
246 * Define an array of board names as printable strings. Handy for
247 * referencing boards when printing trace and stuff.
249 static char *stli_brdnames[] = {
250 "Unknown",
251 "Stallion",
252 "Brumby",
253 "ONboard-MC",
254 "ONboard",
255 "Brumby",
256 "Brumby",
257 "ONboard-EI",
258 (char *) NULL,
259 "ONboard",
260 "ONboard-MC",
261 "ONboard-MC",
262 (char *) NULL,
263 (char *) NULL,
264 (char *) NULL,
265 (char *) NULL,
266 (char *) NULL,
267 (char *) NULL,
268 (char *) NULL,
269 (char *) NULL,
270 "EasyIO",
271 "EC8/32-AT",
272 "EC8/32-MC",
273 "EC8/64-AT",
274 "EC8/64-EI",
275 "EC8/64-MC",
276 "EC8/32-PCI",
277 "EC8/64-PCI",
278 "EasyIO-PCI",
279 "EC/RA-PCI",
282 /*****************************************************************************/
285 * Define some string labels for arguments passed from the module
286 * load line. These allow for easy board definitions, and easy
287 * modification of the io, memory and irq resoucres.
290 static char *board0[8];
291 static char *board1[8];
292 static char *board2[8];
293 static char *board3[8];
295 static char **stli_brdsp[] = {
296 (char **) &board0,
297 (char **) &board1,
298 (char **) &board2,
299 (char **) &board3
303 * Define a set of common board names, and types. This is used to
304 * parse any module arguments.
307 typedef struct stlibrdtype {
308 char *name;
309 int type;
310 } stlibrdtype_t;
312 static stlibrdtype_t stli_brdstr[] = {
313 { "stallion", BRD_STALLION },
314 { "1", BRD_STALLION },
315 { "brumby", BRD_BRUMBY },
316 { "brumby4", BRD_BRUMBY },
317 { "brumby/4", BRD_BRUMBY },
318 { "brumby-4", BRD_BRUMBY },
319 { "brumby8", BRD_BRUMBY },
320 { "brumby/8", BRD_BRUMBY },
321 { "brumby-8", BRD_BRUMBY },
322 { "brumby16", BRD_BRUMBY },
323 { "brumby/16", BRD_BRUMBY },
324 { "brumby-16", BRD_BRUMBY },
325 { "2", BRD_BRUMBY },
326 { "onboard2", BRD_ONBOARD2 },
327 { "onboard-2", BRD_ONBOARD2 },
328 { "onboard/2", BRD_ONBOARD2 },
329 { "onboard-mc", BRD_ONBOARD2 },
330 { "onboard/mc", BRD_ONBOARD2 },
331 { "onboard-mca", BRD_ONBOARD2 },
332 { "onboard/mca", BRD_ONBOARD2 },
333 { "3", BRD_ONBOARD2 },
334 { "onboard", BRD_ONBOARD },
335 { "onboardat", BRD_ONBOARD },
336 { "4", BRD_ONBOARD },
337 { "onboarde", BRD_ONBOARDE },
338 { "onboard-e", BRD_ONBOARDE },
339 { "onboard/e", BRD_ONBOARDE },
340 { "onboard-ei", BRD_ONBOARDE },
341 { "onboard/ei", BRD_ONBOARDE },
342 { "7", BRD_ONBOARDE },
343 { "ecp", BRD_ECP },
344 { "ecpat", BRD_ECP },
345 { "ec8/64", BRD_ECP },
346 { "ec8/64-at", BRD_ECP },
347 { "ec8/64-isa", BRD_ECP },
348 { "23", BRD_ECP },
349 { "ecpe", BRD_ECPE },
350 { "ecpei", BRD_ECPE },
351 { "ec8/64-e", BRD_ECPE },
352 { "ec8/64-ei", BRD_ECPE },
353 { "24", BRD_ECPE },
354 { "ecpmc", BRD_ECPMC },
355 { "ec8/64-mc", BRD_ECPMC },
356 { "ec8/64-mca", BRD_ECPMC },
357 { "25", BRD_ECPMC },
358 { "ecppci", BRD_ECPPCI },
359 { "ec/ra", BRD_ECPPCI },
360 { "ec/ra-pc", BRD_ECPPCI },
361 { "ec/ra-pci", BRD_ECPPCI },
362 { "29", BRD_ECPPCI },
366 * Define the module agruments.
368 MODULE_AUTHOR("Greg Ungerer");
369 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
370 MODULE_LICENSE("GPL");
373 module_param_array(board0, charp, NULL, 0);
374 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
375 module_param_array(board1, charp, NULL, 0);
376 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
377 module_param_array(board2, charp, NULL, 0);
378 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
379 module_param_array(board3, charp, NULL, 0);
380 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
383 * Set up a default memory address table for EISA board probing.
384 * The default addresses are all bellow 1Mbyte, which has to be the
385 * case anyway. They should be safe, since we only read values from
386 * them, and interrupts are disabled while we do it. If the higher
387 * memory support is compiled in then we also try probing around
388 * the 1Gb, 2Gb and 3Gb areas as well...
390 static unsigned long stli_eisamemprobeaddrs[] = {
391 0xc0000, 0xd0000, 0xe0000, 0xf0000,
392 0x80000000, 0x80010000, 0x80020000, 0x80030000,
393 0x40000000, 0x40010000, 0x40020000, 0x40030000,
394 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
395 0xff000000, 0xff010000, 0xff020000, 0xff030000,
398 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
401 * Define the Stallion PCI vendor and device IDs.
403 #ifdef CONFIG_PCI
404 #ifndef PCI_VENDOR_ID_STALLION
405 #define PCI_VENDOR_ID_STALLION 0x124d
406 #endif
407 #ifndef PCI_DEVICE_ID_ECRA
408 #define PCI_DEVICE_ID_ECRA 0x0004
409 #endif
411 static struct pci_device_id istallion_pci_tbl[] = {
412 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
413 { 0 }
415 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
417 #endif /* CONFIG_PCI */
419 /*****************************************************************************/
422 * Hardware configuration info for ECP boards. These defines apply
423 * to the directly accessible io ports of the ECP. There is a set of
424 * defines for each ECP board type, ISA, EISA, MCA and PCI.
426 #define ECP_IOSIZE 4
428 #define ECP_MEMSIZE (128 * 1024)
429 #define ECP_PCIMEMSIZE (256 * 1024)
431 #define ECP_ATPAGESIZE (4 * 1024)
432 #define ECP_MCPAGESIZE (4 * 1024)
433 #define ECP_EIPAGESIZE (64 * 1024)
434 #define ECP_PCIPAGESIZE (64 * 1024)
436 #define STL_EISAID 0x8c4e
439 * Important defines for the ISA class of ECP board.
441 #define ECP_ATIREG 0
442 #define ECP_ATCONFR 1
443 #define ECP_ATMEMAR 2
444 #define ECP_ATMEMPR 3
445 #define ECP_ATSTOP 0x1
446 #define ECP_ATINTENAB 0x10
447 #define ECP_ATENABLE 0x20
448 #define ECP_ATDISABLE 0x00
449 #define ECP_ATADDRMASK 0x3f000
450 #define ECP_ATADDRSHFT 12
453 * Important defines for the EISA class of ECP board.
455 #define ECP_EIIREG 0
456 #define ECP_EIMEMARL 1
457 #define ECP_EICONFR 2
458 #define ECP_EIMEMARH 3
459 #define ECP_EIENABLE 0x1
460 #define ECP_EIDISABLE 0x0
461 #define ECP_EISTOP 0x4
462 #define ECP_EIEDGE 0x00
463 #define ECP_EILEVEL 0x80
464 #define ECP_EIADDRMASKL 0x00ff0000
465 #define ECP_EIADDRSHFTL 16
466 #define ECP_EIADDRMASKH 0xff000000
467 #define ECP_EIADDRSHFTH 24
468 #define ECP_EIBRDENAB 0xc84
470 #define ECP_EISAID 0x4
473 * Important defines for the Micro-channel class of ECP board.
474 * (It has a lot in common with the ISA boards.)
476 #define ECP_MCIREG 0
477 #define ECP_MCCONFR 1
478 #define ECP_MCSTOP 0x20
479 #define ECP_MCENABLE 0x80
480 #define ECP_MCDISABLE 0x00
483 * Important defines for the PCI class of ECP board.
484 * (It has a lot in common with the other ECP boards.)
486 #define ECP_PCIIREG 0
487 #define ECP_PCICONFR 1
488 #define ECP_PCISTOP 0x01
491 * Hardware configuration info for ONboard and Brumby boards. These
492 * defines apply to the directly accessible io ports of these boards.
494 #define ONB_IOSIZE 16
495 #define ONB_MEMSIZE (64 * 1024)
496 #define ONB_ATPAGESIZE (64 * 1024)
497 #define ONB_MCPAGESIZE (64 * 1024)
498 #define ONB_EIMEMSIZE (128 * 1024)
499 #define ONB_EIPAGESIZE (64 * 1024)
502 * Important defines for the ISA class of ONboard board.
504 #define ONB_ATIREG 0
505 #define ONB_ATMEMAR 1
506 #define ONB_ATCONFR 2
507 #define ONB_ATSTOP 0x4
508 #define ONB_ATENABLE 0x01
509 #define ONB_ATDISABLE 0x00
510 #define ONB_ATADDRMASK 0xff0000
511 #define ONB_ATADDRSHFT 16
513 #define ONB_MEMENABLO 0
514 #define ONB_MEMENABHI 0x02
517 * Important defines for the EISA class of ONboard board.
519 #define ONB_EIIREG 0
520 #define ONB_EIMEMARL 1
521 #define ONB_EICONFR 2
522 #define ONB_EIMEMARH 3
523 #define ONB_EIENABLE 0x1
524 #define ONB_EIDISABLE 0x0
525 #define ONB_EISTOP 0x4
526 #define ONB_EIEDGE 0x00
527 #define ONB_EILEVEL 0x80
528 #define ONB_EIADDRMASKL 0x00ff0000
529 #define ONB_EIADDRSHFTL 16
530 #define ONB_EIADDRMASKH 0xff000000
531 #define ONB_EIADDRSHFTH 24
532 #define ONB_EIBRDENAB 0xc84
534 #define ONB_EISAID 0x1
537 * Important defines for the Brumby boards. They are pretty simple,
538 * there is not much that is programmably configurable.
540 #define BBY_IOSIZE 16
541 #define BBY_MEMSIZE (64 * 1024)
542 #define BBY_PAGESIZE (16 * 1024)
544 #define BBY_ATIREG 0
545 #define BBY_ATCONFR 1
546 #define BBY_ATSTOP 0x4
549 * Important defines for the Stallion boards. They are pretty simple,
550 * there is not much that is programmably configurable.
552 #define STAL_IOSIZE 16
553 #define STAL_MEMSIZE (64 * 1024)
554 #define STAL_PAGESIZE (64 * 1024)
557 * Define the set of status register values for EasyConnection panels.
558 * The signature will return with the status value for each panel. From
559 * this we can determine what is attached to the board - before we have
560 * actually down loaded any code to it.
562 #define ECH_PNLSTATUS 2
563 #define ECH_PNL16PORT 0x20
564 #define ECH_PNLIDMASK 0x07
565 #define ECH_PNLXPID 0x40
566 #define ECH_PNLINTRPEND 0x80
569 * Define some macros to do things to the board. Even those these boards
570 * are somewhat related there is often significantly different ways of
571 * doing some operation on it (like enable, paging, reset, etc). So each
572 * board class has a set of functions which do the commonly required
573 * operations. The macros below basically just call these functions,
574 * generally checking for a NULL function - which means that the board
575 * needs nothing done to it to achieve this operation!
577 #define EBRDINIT(brdp) \
578 if (brdp->init != NULL) \
579 (* brdp->init)(brdp)
581 #define EBRDENABLE(brdp) \
582 if (brdp->enable != NULL) \
583 (* brdp->enable)(brdp);
585 #define EBRDDISABLE(brdp) \
586 if (brdp->disable != NULL) \
587 (* brdp->disable)(brdp);
589 #define EBRDINTR(brdp) \
590 if (brdp->intr != NULL) \
591 (* brdp->intr)(brdp);
593 #define EBRDRESET(brdp) \
594 if (brdp->reset != NULL) \
595 (* brdp->reset)(brdp);
597 #define EBRDGETMEMPTR(brdp,offset) \
598 (* brdp->getmemptr)(brdp, offset, __LINE__)
601 * Define the maximal baud rate, and the default baud base for ports.
603 #define STL_MAXBAUD 460800
604 #define STL_BAUDBASE 115200
605 #define STL_CLOSEDELAY (5 * HZ / 10)
607 /*****************************************************************************/
610 * Define macros to extract a brd or port number from a minor number.
612 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
613 #define MINOR2PORT(min) ((min) & 0x3f)
616 * Define a baud rate table that converts termios baud rate selector
617 * into the actual baud rate value. All baud rate calculations are based
618 * on the actual baud rate required.
620 static unsigned int stli_baudrates[] = {
621 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
622 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
625 /*****************************************************************************/
628 * Define some handy local macros...
630 #undef MIN
631 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
633 #undef TOLOWER
634 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
636 /*****************************************************************************/
639 * Prototype all functions in this driver!
642 static int stli_parsebrd(stlconf_t *confp, char **argp);
643 static int stli_init(void);
644 static int stli_open(struct tty_struct *tty, struct file *filp);
645 static void stli_close(struct tty_struct *tty, struct file *filp);
646 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
647 static void stli_putchar(struct tty_struct *tty, unsigned char ch);
648 static void stli_flushchars(struct tty_struct *tty);
649 static int stli_writeroom(struct tty_struct *tty);
650 static int stli_charsinbuffer(struct tty_struct *tty);
651 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
652 static void stli_settermios(struct tty_struct *tty, struct termios *old);
653 static void stli_throttle(struct tty_struct *tty);
654 static void stli_unthrottle(struct tty_struct *tty);
655 static void stli_stop(struct tty_struct *tty);
656 static void stli_start(struct tty_struct *tty);
657 static void stli_flushbuffer(struct tty_struct *tty);
658 static void stli_breakctl(struct tty_struct *tty, int state);
659 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
660 static void stli_sendxchar(struct tty_struct *tty, char ch);
661 static void stli_hangup(struct tty_struct *tty);
662 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
664 static int stli_brdinit(stlibrd_t *brdp);
665 static int stli_startbrd(stlibrd_t *brdp);
666 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
667 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
668 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
669 static void stli_brdpoll(stlibrd_t *brdp, cdkhdr_t __iomem *hdrp);
670 static void stli_poll(unsigned long arg);
671 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
672 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
673 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
674 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
675 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
676 static void stli_dohangup(void *arg);
677 static int stli_setport(stliport_t *portp);
678 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
679 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
680 static void __stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
681 static void stli_dodelaycmd(stliport_t *portp, cdkctrl_t __iomem *cp);
682 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
683 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
684 static long stli_mktiocm(unsigned long sigvalue);
685 static void stli_read(stlibrd_t *brdp, stliport_t *portp);
686 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
687 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
688 static int stli_getbrdstats(combrd_t __user *bp);
689 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
690 static int stli_portcmdstats(stliport_t *portp);
691 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
692 static int stli_getportstruct(stliport_t __user *arg);
693 static int stli_getbrdstruct(stlibrd_t __user *arg);
694 static stlibrd_t *stli_allocbrd(void);
696 static void stli_ecpinit(stlibrd_t *brdp);
697 static void stli_ecpenable(stlibrd_t *brdp);
698 static void stli_ecpdisable(stlibrd_t *brdp);
699 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
700 static void stli_ecpreset(stlibrd_t *brdp);
701 static void stli_ecpintr(stlibrd_t *brdp);
702 static void stli_ecpeiinit(stlibrd_t *brdp);
703 static void stli_ecpeienable(stlibrd_t *brdp);
704 static void stli_ecpeidisable(stlibrd_t *brdp);
705 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
706 static void stli_ecpeireset(stlibrd_t *brdp);
707 static void stli_ecpmcenable(stlibrd_t *brdp);
708 static void stli_ecpmcdisable(stlibrd_t *brdp);
709 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
710 static void stli_ecpmcreset(stlibrd_t *brdp);
711 static void stli_ecppciinit(stlibrd_t *brdp);
712 static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
713 static void stli_ecppcireset(stlibrd_t *brdp);
715 static void stli_onbinit(stlibrd_t *brdp);
716 static void stli_onbenable(stlibrd_t *brdp);
717 static void stli_onbdisable(stlibrd_t *brdp);
718 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
719 static void stli_onbreset(stlibrd_t *brdp);
720 static void stli_onbeinit(stlibrd_t *brdp);
721 static void stli_onbeenable(stlibrd_t *brdp);
722 static void stli_onbedisable(stlibrd_t *brdp);
723 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
724 static void stli_onbereset(stlibrd_t *brdp);
725 static void stli_bbyinit(stlibrd_t *brdp);
726 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
727 static void stli_bbyreset(stlibrd_t *brdp);
728 static void stli_stalinit(stlibrd_t *brdp);
729 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
730 static void stli_stalreset(stlibrd_t *brdp);
732 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
734 static int stli_initecp(stlibrd_t *brdp);
735 static int stli_initonb(stlibrd_t *brdp);
736 static int stli_eisamemprobe(stlibrd_t *brdp);
737 static int stli_initports(stlibrd_t *brdp);
739 #ifdef CONFIG_PCI
740 static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
741 #endif
743 /*****************************************************************************/
746 * Define the driver info for a user level shared memory device. This
747 * device will work sort of like the /dev/kmem device - except that it
748 * will give access to the shared memory on the Stallion intelligent
749 * board. This is also a very useful debugging tool.
751 static const struct file_operations stli_fsiomem = {
752 .owner = THIS_MODULE,
753 .read = stli_memread,
754 .write = stli_memwrite,
755 .ioctl = stli_memioctl,
758 /*****************************************************************************/
761 * Define a timer_list entry for our poll routine. The slave board
762 * is polled every so often to see if anything needs doing. This is
763 * much cheaper on host cpu than using interrupts. It turns out to
764 * not increase character latency by much either...
766 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
768 static int stli_timeron;
771 * Define the calculation for the timeout routine.
773 #define STLI_TIMEOUT (jiffies + 1)
775 /*****************************************************************************/
777 static struct class *istallion_class;
780 * Loadable module initialization stuff.
783 static int __init istallion_module_init(void)
785 stli_init();
786 return 0;
789 /*****************************************************************************/
791 static void __exit istallion_module_exit(void)
793 stlibrd_t *brdp;
794 stliport_t *portp;
795 int i, j;
797 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
798 stli_drvversion);
801 * Free up all allocated resources used by the ports. This includes
802 * memory and interrupts.
804 if (stli_timeron) {
805 stli_timeron = 0;
806 del_timer_sync(&stli_timerlist);
809 i = tty_unregister_driver(stli_serial);
810 if (i) {
811 printk("STALLION: failed to un-register tty driver, "
812 "errno=%d\n", -i);
813 return;
815 put_tty_driver(stli_serial);
816 for (i = 0; i < 4; i++)
817 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
818 class_destroy(istallion_class);
819 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
820 printk("STALLION: failed to un-register serial memory device, "
821 "errno=%d\n", -i);
823 kfree(stli_txcookbuf);
825 for (i = 0; (i < stli_nrbrds); i++) {
826 if ((brdp = stli_brds[i]) == NULL)
827 continue;
828 for (j = 0; (j < STL_MAXPORTS); j++) {
829 portp = brdp->ports[j];
830 if (portp != NULL) {
831 if (portp->tty != NULL)
832 tty_hangup(portp->tty);
833 kfree(portp);
837 iounmap(brdp->membase);
838 if (brdp->iosize > 0)
839 release_region(brdp->iobase, brdp->iosize);
840 kfree(brdp);
841 stli_brds[i] = NULL;
845 module_init(istallion_module_init);
846 module_exit(istallion_module_exit);
848 /*****************************************************************************/
851 * Check for any arguments passed in on the module load command line.
854 static void stli_argbrds(void)
856 stlconf_t conf;
857 stlibrd_t *brdp;
858 int i;
860 for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
861 memset(&conf, 0, sizeof(conf));
862 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
863 continue;
864 if ((brdp = stli_allocbrd()) == NULL)
865 continue;
866 stli_nrbrds = i + 1;
867 brdp->brdnr = i;
868 brdp->brdtype = conf.brdtype;
869 brdp->iobase = conf.ioaddr1;
870 brdp->memaddr = conf.memaddr;
871 stli_brdinit(brdp);
875 /*****************************************************************************/
878 * Convert an ascii string number into an unsigned long.
881 static unsigned long stli_atol(char *str)
883 unsigned long val;
884 int base, c;
885 char *sp;
887 val = 0;
888 sp = str;
889 if ((*sp == '0') && (*(sp+1) == 'x')) {
890 base = 16;
891 sp += 2;
892 } else if (*sp == '0') {
893 base = 8;
894 sp++;
895 } else {
896 base = 10;
899 for (; (*sp != 0); sp++) {
900 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
901 if ((c < 0) || (c >= base)) {
902 printk("STALLION: invalid argument %s\n", str);
903 val = 0;
904 break;
906 val = (val * base) + c;
908 return(val);
911 /*****************************************************************************/
914 * Parse the supplied argument string, into the board conf struct.
917 static int stli_parsebrd(stlconf_t *confp, char **argp)
919 char *sp;
920 int i;
922 if (argp[0] == NULL || *argp[0] == 0)
923 return 0;
925 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
926 *sp = TOLOWER(*sp);
928 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
929 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
930 break;
932 if (i == ARRAY_SIZE(stli_brdstr)) {
933 printk("STALLION: unknown board name, %s?\n", argp[0]);
934 return 0;
937 confp->brdtype = stli_brdstr[i].type;
938 if (argp[1] != NULL && *argp[1] != 0)
939 confp->ioaddr1 = stli_atol(argp[1]);
940 if (argp[2] != NULL && *argp[2] != 0)
941 confp->memaddr = stli_atol(argp[2]);
942 return(1);
945 /*****************************************************************************/
947 static int stli_open(struct tty_struct *tty, struct file *filp)
949 stlibrd_t *brdp;
950 stliport_t *portp;
951 unsigned int minordev;
952 int brdnr, portnr, rc;
954 minordev = tty->index;
955 brdnr = MINOR2BRD(minordev);
956 if (brdnr >= stli_nrbrds)
957 return -ENODEV;
958 brdp = stli_brds[brdnr];
959 if (brdp == NULL)
960 return -ENODEV;
961 if ((brdp->state & BST_STARTED) == 0)
962 return -ENODEV;
963 portnr = MINOR2PORT(minordev);
964 if ((portnr < 0) || (portnr > brdp->nrports))
965 return -ENODEV;
967 portp = brdp->ports[portnr];
968 if (portp == NULL)
969 return -ENODEV;
970 if (portp->devnr < 1)
971 return -ENODEV;
975 * Check if this port is in the middle of closing. If so then wait
976 * until it is closed then return error status based on flag settings.
977 * The sleep here does not need interrupt protection since the wakeup
978 * for it is done with the same context.
980 if (portp->flags & ASYNC_CLOSING) {
981 interruptible_sleep_on(&portp->close_wait);
982 if (portp->flags & ASYNC_HUP_NOTIFY)
983 return -EAGAIN;
984 return -ERESTARTSYS;
988 * On the first open of the device setup the port hardware, and
989 * initialize the per port data structure. Since initializing the port
990 * requires several commands to the board we will need to wait for any
991 * other open that is already initializing the port.
993 portp->tty = tty;
994 tty->driver_data = portp;
995 portp->refcount++;
997 wait_event_interruptible(portp->raw_wait,
998 !test_bit(ST_INITIALIZING, &portp->state));
999 if (signal_pending(current))
1000 return -ERESTARTSYS;
1002 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1003 set_bit(ST_INITIALIZING, &portp->state);
1004 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1005 portp->flags |= ASYNC_INITIALIZED;
1006 clear_bit(TTY_IO_ERROR, &tty->flags);
1008 clear_bit(ST_INITIALIZING, &portp->state);
1009 wake_up_interruptible(&portp->raw_wait);
1010 if (rc < 0)
1011 return rc;
1015 * Check if this port is in the middle of closing. If so then wait
1016 * until it is closed then return error status, based on flag settings.
1017 * The sleep here does not need interrupt protection since the wakeup
1018 * for it is done with the same context.
1020 if (portp->flags & ASYNC_CLOSING) {
1021 interruptible_sleep_on(&portp->close_wait);
1022 if (portp->flags & ASYNC_HUP_NOTIFY)
1023 return -EAGAIN;
1024 return -ERESTARTSYS;
1028 * Based on type of open being done check if it can overlap with any
1029 * previous opens still in effect. If we are a normal serial device
1030 * then also we might have to wait for carrier.
1032 if (!(filp->f_flags & O_NONBLOCK)) {
1033 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1034 return rc;
1036 portp->flags |= ASYNC_NORMAL_ACTIVE;
1037 return 0;
1040 /*****************************************************************************/
1042 static void stli_close(struct tty_struct *tty, struct file *filp)
1044 stlibrd_t *brdp;
1045 stliport_t *portp;
1046 unsigned long flags;
1048 portp = tty->driver_data;
1049 if (portp == NULL)
1050 return;
1052 spin_lock_irqsave(&stli_lock, flags);
1053 if (tty_hung_up_p(filp)) {
1054 spin_unlock_irqrestore(&stli_lock, flags);
1055 return;
1057 if ((tty->count == 1) && (portp->refcount != 1))
1058 portp->refcount = 1;
1059 if (portp->refcount-- > 1) {
1060 spin_unlock_irqrestore(&stli_lock, flags);
1061 return;
1064 portp->flags |= ASYNC_CLOSING;
1067 * May want to wait for data to drain before closing. The BUSY flag
1068 * keeps track of whether we are still transmitting or not. It is
1069 * updated by messages from the slave - indicating when all chars
1070 * really have drained.
1072 if (tty == stli_txcooktty)
1073 stli_flushchars(tty);
1074 tty->closing = 1;
1075 spin_unlock_irqrestore(&stli_lock, flags);
1077 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1078 tty_wait_until_sent(tty, portp->closing_wait);
1080 portp->flags &= ~ASYNC_INITIALIZED;
1081 brdp = stli_brds[portp->brdnr];
1082 stli_rawclose(brdp, portp, 0, 0);
1083 if (tty->termios->c_cflag & HUPCL) {
1084 stli_mkasysigs(&portp->asig, 0, 0);
1085 if (test_bit(ST_CMDING, &portp->state))
1086 set_bit(ST_DOSIGS, &portp->state);
1087 else
1088 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1089 sizeof(asysigs_t), 0);
1091 clear_bit(ST_TXBUSY, &portp->state);
1092 clear_bit(ST_RXSTOP, &portp->state);
1093 set_bit(TTY_IO_ERROR, &tty->flags);
1094 if (tty->ldisc.flush_buffer)
1095 (tty->ldisc.flush_buffer)(tty);
1096 set_bit(ST_DOFLUSHRX, &portp->state);
1097 stli_flushbuffer(tty);
1099 tty->closing = 0;
1100 portp->tty = NULL;
1102 if (portp->openwaitcnt) {
1103 if (portp->close_delay)
1104 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1105 wake_up_interruptible(&portp->open_wait);
1108 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1109 wake_up_interruptible(&portp->close_wait);
1112 /*****************************************************************************/
1115 * Carry out first open operations on a port. This involves a number of
1116 * commands to be sent to the slave. We need to open the port, set the
1117 * notification events, set the initial port settings, get and set the
1118 * initial signal values. We sleep and wait in between each one. But
1119 * this still all happens pretty quickly.
1122 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1124 struct tty_struct *tty;
1125 asynotify_t nt;
1126 asyport_t aport;
1127 int rc;
1129 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1130 return rc;
1132 memset(&nt, 0, sizeof(asynotify_t));
1133 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1134 nt.signal = SG_DCD;
1135 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1136 sizeof(asynotify_t), 0)) < 0)
1137 return rc;
1139 tty = portp->tty;
1140 if (tty == NULL)
1141 return -ENODEV;
1142 stli_mkasyport(portp, &aport, tty->termios);
1143 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1144 sizeof(asyport_t), 0)) < 0)
1145 return rc;
1147 set_bit(ST_GETSIGS, &portp->state);
1148 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1149 sizeof(asysigs_t), 1)) < 0)
1150 return rc;
1151 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1152 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1153 stli_mkasysigs(&portp->asig, 1, 1);
1154 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1155 sizeof(asysigs_t), 0)) < 0)
1156 return rc;
1158 return 0;
1161 /*****************************************************************************/
1164 * Send an open message to the slave. This will sleep waiting for the
1165 * acknowledgement, so must have user context. We need to co-ordinate
1166 * with close events here, since we don't want open and close events
1167 * to overlap.
1170 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1172 cdkhdr_t __iomem *hdrp;
1173 cdkctrl_t __iomem *cp;
1174 unsigned char __iomem *bits;
1175 unsigned long flags;
1176 int rc;
1179 * Send a message to the slave to open this port.
1183 * Slave is already closing this port. This can happen if a hangup
1184 * occurs on this port. So we must wait until it is complete. The
1185 * order of opens and closes may not be preserved across shared
1186 * memory, so we must wait until it is complete.
1188 wait_event_interruptible(portp->raw_wait,
1189 !test_bit(ST_CLOSING, &portp->state));
1190 if (signal_pending(current)) {
1191 return -ERESTARTSYS;
1195 * Everything is ready now, so write the open message into shared
1196 * memory. Once the message is in set the service bits to say that
1197 * this port wants service.
1199 spin_lock_irqsave(&brd_lock, flags);
1200 EBRDENABLE(brdp);
1201 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1202 writel(arg, &cp->openarg);
1203 writeb(1, &cp->open);
1204 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1205 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1206 portp->portidx;
1207 writeb(readb(bits) | portp->portbit, bits);
1208 EBRDDISABLE(brdp);
1210 if (wait == 0) {
1211 spin_unlock_irqrestore(&brd_lock, flags);
1212 return 0;
1216 * Slave is in action, so now we must wait for the open acknowledgment
1217 * to come back.
1219 rc = 0;
1220 set_bit(ST_OPENING, &portp->state);
1221 spin_unlock_irqrestore(&brd_lock, flags);
1223 wait_event_interruptible(portp->raw_wait,
1224 !test_bit(ST_OPENING, &portp->state));
1225 if (signal_pending(current))
1226 rc = -ERESTARTSYS;
1228 if ((rc == 0) && (portp->rc != 0))
1229 rc = -EIO;
1230 return rc;
1233 /*****************************************************************************/
1236 * Send a close message to the slave. Normally this will sleep waiting
1237 * for the acknowledgement, but if wait parameter is 0 it will not. If
1238 * wait is true then must have user context (to sleep).
1241 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1243 cdkhdr_t __iomem *hdrp;
1244 cdkctrl_t __iomem *cp;
1245 unsigned char __iomem *bits;
1246 unsigned long flags;
1247 int rc;
1250 * Slave is already closing this port. This can happen if a hangup
1251 * occurs on this port.
1253 if (wait) {
1254 wait_event_interruptible(portp->raw_wait,
1255 !test_bit(ST_CLOSING, &portp->state));
1256 if (signal_pending(current)) {
1257 return -ERESTARTSYS;
1262 * Write the close command into shared memory.
1264 spin_lock_irqsave(&brd_lock, flags);
1265 EBRDENABLE(brdp);
1266 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1267 writel(arg, &cp->closearg);
1268 writeb(1, &cp->close);
1269 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1270 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1271 portp->portidx;
1272 writeb(readb(bits) |portp->portbit, bits);
1273 EBRDDISABLE(brdp);
1275 set_bit(ST_CLOSING, &portp->state);
1276 spin_unlock_irqrestore(&brd_lock, flags);
1278 if (wait == 0)
1279 return 0;
1282 * Slave is in action, so now we must wait for the open acknowledgment
1283 * to come back.
1285 rc = 0;
1286 wait_event_interruptible(portp->raw_wait,
1287 !test_bit(ST_CLOSING, &portp->state));
1288 if (signal_pending(current))
1289 rc = -ERESTARTSYS;
1291 if ((rc == 0) && (portp->rc != 0))
1292 rc = -EIO;
1293 return rc;
1296 /*****************************************************************************/
1299 * Send a command to the slave and wait for the response. This must
1300 * have user context (it sleeps). This routine is generic in that it
1301 * can send any type of command. Its purpose is to wait for that command
1302 * to complete (as opposed to initiating the command then returning).
1305 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1307 wait_event_interruptible(portp->raw_wait,
1308 !test_bit(ST_CMDING, &portp->state));
1309 if (signal_pending(current))
1310 return -ERESTARTSYS;
1312 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1314 wait_event_interruptible(portp->raw_wait,
1315 !test_bit(ST_CMDING, &portp->state));
1316 if (signal_pending(current))
1317 return -ERESTARTSYS;
1319 if (portp->rc != 0)
1320 return -EIO;
1321 return 0;
1324 /*****************************************************************************/
1327 * Send the termios settings for this port to the slave. This sleeps
1328 * waiting for the command to complete - so must have user context.
1331 static int stli_setport(stliport_t *portp)
1333 stlibrd_t *brdp;
1334 asyport_t aport;
1336 if (portp == NULL)
1337 return -ENODEV;
1338 if (portp->tty == NULL)
1339 return -ENODEV;
1340 if (portp->brdnr < 0 && portp->brdnr >= stli_nrbrds)
1341 return -ENODEV;
1342 brdp = stli_brds[portp->brdnr];
1343 if (brdp == NULL)
1344 return -ENODEV;
1346 stli_mkasyport(portp, &aport, portp->tty->termios);
1347 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1350 /*****************************************************************************/
1353 * Possibly need to wait for carrier (DCD signal) to come high. Say
1354 * maybe because if we are clocal then we don't need to wait...
1357 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1359 unsigned long flags;
1360 int rc, doclocal;
1362 rc = 0;
1363 doclocal = 0;
1365 if (portp->tty->termios->c_cflag & CLOCAL)
1366 doclocal++;
1368 spin_lock_irqsave(&stli_lock, flags);
1369 portp->openwaitcnt++;
1370 if (! tty_hung_up_p(filp))
1371 portp->refcount--;
1372 spin_unlock_irqrestore(&stli_lock, flags);
1374 for (;;) {
1375 stli_mkasysigs(&portp->asig, 1, 1);
1376 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1377 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1378 break;
1379 if (tty_hung_up_p(filp) ||
1380 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1381 if (portp->flags & ASYNC_HUP_NOTIFY)
1382 rc = -EBUSY;
1383 else
1384 rc = -ERESTARTSYS;
1385 break;
1387 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1388 (doclocal || (portp->sigs & TIOCM_CD))) {
1389 break;
1391 if (signal_pending(current)) {
1392 rc = -ERESTARTSYS;
1393 break;
1395 interruptible_sleep_on(&portp->open_wait);
1398 spin_lock_irqsave(&stli_lock, flags);
1399 if (! tty_hung_up_p(filp))
1400 portp->refcount++;
1401 portp->openwaitcnt--;
1402 spin_unlock_irqrestore(&stli_lock, flags);
1404 return rc;
1407 /*****************************************************************************/
1410 * Write routine. Take the data and put it in the shared memory ring
1411 * queue. If port is not already sending chars then need to mark the
1412 * service bits for this port.
1415 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1417 cdkasy_t __iomem *ap;
1418 cdkhdr_t __iomem *hdrp;
1419 unsigned char __iomem *bits;
1420 unsigned char __iomem *shbuf;
1421 unsigned char *chbuf;
1422 stliport_t *portp;
1423 stlibrd_t *brdp;
1424 unsigned int len, stlen, head, tail, size;
1425 unsigned long flags;
1427 if (tty == stli_txcooktty)
1428 stli_flushchars(tty);
1429 portp = tty->driver_data;
1430 if (portp == NULL)
1431 return 0;
1432 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1433 return 0;
1434 brdp = stli_brds[portp->brdnr];
1435 if (brdp == NULL)
1436 return 0;
1437 chbuf = (unsigned char *) buf;
1440 * All data is now local, shove as much as possible into shared memory.
1442 spin_lock_irqsave(&brd_lock, flags);
1443 EBRDENABLE(brdp);
1444 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1445 head = (unsigned int) readw(&ap->txq.head);
1446 tail = (unsigned int) readw(&ap->txq.tail);
1447 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1448 tail = (unsigned int) readw(&ap->txq.tail);
1449 size = portp->txsize;
1450 if (head >= tail) {
1451 len = size - (head - tail) - 1;
1452 stlen = size - head;
1453 } else {
1454 len = tail - head - 1;
1455 stlen = len;
1458 len = MIN(len, count);
1459 count = 0;
1460 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1462 while (len > 0) {
1463 stlen = MIN(len, stlen);
1464 memcpy_toio(shbuf + head, chbuf, stlen);
1465 chbuf += stlen;
1466 len -= stlen;
1467 count += stlen;
1468 head += stlen;
1469 if (head >= size) {
1470 head = 0;
1471 stlen = tail;
1475 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1476 writew(head, &ap->txq.head);
1477 if (test_bit(ST_TXBUSY, &portp->state)) {
1478 if (readl(&ap->changed.data) & DT_TXEMPTY)
1479 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1481 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1482 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1483 portp->portidx;
1484 writeb(readb(bits) | portp->portbit, bits);
1485 set_bit(ST_TXBUSY, &portp->state);
1486 EBRDDISABLE(brdp);
1487 spin_unlock_irqrestore(&brd_lock, flags);
1489 return(count);
1492 /*****************************************************************************/
1495 * Output a single character. We put it into a temporary local buffer
1496 * (for speed) then write out that buffer when the flushchars routine
1497 * is called. There is a safety catch here so that if some other port
1498 * writes chars before the current buffer has been, then we write them
1499 * first them do the new ports.
1502 static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1504 if (tty != stli_txcooktty) {
1505 if (stli_txcooktty != NULL)
1506 stli_flushchars(stli_txcooktty);
1507 stli_txcooktty = tty;
1510 stli_txcookbuf[stli_txcooksize++] = ch;
1513 /*****************************************************************************/
1516 * Transfer characters from the local TX cooking buffer to the board.
1517 * We sort of ignore the tty that gets passed in here. We rely on the
1518 * info stored with the TX cook buffer to tell us which port to flush
1519 * the data on. In any case we clean out the TX cook buffer, for re-use
1520 * by someone else.
1523 static void stli_flushchars(struct tty_struct *tty)
1525 cdkhdr_t __iomem *hdrp;
1526 unsigned char __iomem *bits;
1527 cdkasy_t __iomem *ap;
1528 struct tty_struct *cooktty;
1529 stliport_t *portp;
1530 stlibrd_t *brdp;
1531 unsigned int len, stlen, head, tail, size, count, cooksize;
1532 unsigned char *buf;
1533 unsigned char __iomem *shbuf;
1534 unsigned long flags;
1536 cooksize = stli_txcooksize;
1537 cooktty = stli_txcooktty;
1538 stli_txcooksize = 0;
1539 stli_txcookrealsize = 0;
1540 stli_txcooktty = NULL;
1542 if (tty == NULL)
1543 return;
1544 if (cooktty == NULL)
1545 return;
1546 if (tty != cooktty)
1547 tty = cooktty;
1548 if (cooksize == 0)
1549 return;
1551 portp = tty->driver_data;
1552 if (portp == NULL)
1553 return;
1554 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1555 return;
1556 brdp = stli_brds[portp->brdnr];
1557 if (brdp == NULL)
1558 return;
1560 spin_lock_irqsave(&brd_lock, flags);
1561 EBRDENABLE(brdp);
1563 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1564 head = (unsigned int) readw(&ap->txq.head);
1565 tail = (unsigned int) readw(&ap->txq.tail);
1566 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1567 tail = (unsigned int) readw(&ap->txq.tail);
1568 size = portp->txsize;
1569 if (head >= tail) {
1570 len = size - (head - tail) - 1;
1571 stlen = size - head;
1572 } else {
1573 len = tail - head - 1;
1574 stlen = len;
1577 len = MIN(len, cooksize);
1578 count = 0;
1579 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1580 buf = stli_txcookbuf;
1582 while (len > 0) {
1583 stlen = MIN(len, stlen);
1584 memcpy_toio(shbuf + head, buf, stlen);
1585 buf += stlen;
1586 len -= stlen;
1587 count += stlen;
1588 head += stlen;
1589 if (head >= size) {
1590 head = 0;
1591 stlen = tail;
1595 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1596 writew(head, &ap->txq.head);
1598 if (test_bit(ST_TXBUSY, &portp->state)) {
1599 if (readl(&ap->changed.data) & DT_TXEMPTY)
1600 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1602 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1603 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1604 portp->portidx;
1605 writeb(readb(bits) | portp->portbit, bits);
1606 set_bit(ST_TXBUSY, &portp->state);
1608 EBRDDISABLE(brdp);
1609 spin_unlock_irqrestore(&brd_lock, flags);
1612 /*****************************************************************************/
1614 static int stli_writeroom(struct tty_struct *tty)
1616 cdkasyrq_t __iomem *rp;
1617 stliport_t *portp;
1618 stlibrd_t *brdp;
1619 unsigned int head, tail, len;
1620 unsigned long flags;
1622 if (tty == stli_txcooktty) {
1623 if (stli_txcookrealsize != 0) {
1624 len = stli_txcookrealsize - stli_txcooksize;
1625 return len;
1629 portp = tty->driver_data;
1630 if (portp == NULL)
1631 return 0;
1632 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1633 return 0;
1634 brdp = stli_brds[portp->brdnr];
1635 if (brdp == NULL)
1636 return 0;
1638 spin_lock_irqsave(&brd_lock, flags);
1639 EBRDENABLE(brdp);
1640 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1641 head = (unsigned int) readw(&rp->head);
1642 tail = (unsigned int) readw(&rp->tail);
1643 if (tail != ((unsigned int) readw(&rp->tail)))
1644 tail = (unsigned int) readw(&rp->tail);
1645 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1646 len--;
1647 EBRDDISABLE(brdp);
1648 spin_unlock_irqrestore(&brd_lock, flags);
1650 if (tty == stli_txcooktty) {
1651 stli_txcookrealsize = len;
1652 len -= stli_txcooksize;
1654 return len;
1657 /*****************************************************************************/
1660 * Return the number of characters in the transmit buffer. Normally we
1661 * will return the number of chars in the shared memory ring queue.
1662 * We need to kludge around the case where the shared memory buffer is
1663 * empty but not all characters have drained yet, for this case just
1664 * return that there is 1 character in the buffer!
1667 static int stli_charsinbuffer(struct tty_struct *tty)
1669 cdkasyrq_t __iomem *rp;
1670 stliport_t *portp;
1671 stlibrd_t *brdp;
1672 unsigned int head, tail, len;
1673 unsigned long flags;
1675 if (tty == stli_txcooktty)
1676 stli_flushchars(tty);
1677 portp = tty->driver_data;
1678 if (portp == NULL)
1679 return 0;
1680 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1681 return 0;
1682 brdp = stli_brds[portp->brdnr];
1683 if (brdp == NULL)
1684 return 0;
1686 spin_lock_irqsave(&brd_lock, flags);
1687 EBRDENABLE(brdp);
1688 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1689 head = (unsigned int) readw(&rp->head);
1690 tail = (unsigned int) readw(&rp->tail);
1691 if (tail != ((unsigned int) readw(&rp->tail)))
1692 tail = (unsigned int) readw(&rp->tail);
1693 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1694 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1695 len = 1;
1696 EBRDDISABLE(brdp);
1697 spin_unlock_irqrestore(&brd_lock, flags);
1699 return len;
1702 /*****************************************************************************/
1705 * Generate the serial struct info.
1708 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1710 struct serial_struct sio;
1711 stlibrd_t *brdp;
1713 memset(&sio, 0, sizeof(struct serial_struct));
1714 sio.type = PORT_UNKNOWN;
1715 sio.line = portp->portnr;
1716 sio.irq = 0;
1717 sio.flags = portp->flags;
1718 sio.baud_base = portp->baud_base;
1719 sio.close_delay = portp->close_delay;
1720 sio.closing_wait = portp->closing_wait;
1721 sio.custom_divisor = portp->custom_divisor;
1722 sio.xmit_fifo_size = 0;
1723 sio.hub6 = 0;
1725 brdp = stli_brds[portp->brdnr];
1726 if (brdp != NULL)
1727 sio.port = brdp->iobase;
1729 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1730 -EFAULT : 0;
1733 /*****************************************************************************/
1736 * Set port according to the serial struct info.
1737 * At this point we do not do any auto-configure stuff, so we will
1738 * just quietly ignore any requests to change irq, etc.
1741 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1743 struct serial_struct sio;
1744 int rc;
1746 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1747 return -EFAULT;
1748 if (!capable(CAP_SYS_ADMIN)) {
1749 if ((sio.baud_base != portp->baud_base) ||
1750 (sio.close_delay != portp->close_delay) ||
1751 ((sio.flags & ~ASYNC_USR_MASK) !=
1752 (portp->flags & ~ASYNC_USR_MASK)))
1753 return -EPERM;
1756 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1757 (sio.flags & ASYNC_USR_MASK);
1758 portp->baud_base = sio.baud_base;
1759 portp->close_delay = sio.close_delay;
1760 portp->closing_wait = sio.closing_wait;
1761 portp->custom_divisor = sio.custom_divisor;
1763 if ((rc = stli_setport(portp)) < 0)
1764 return rc;
1765 return 0;
1768 /*****************************************************************************/
1770 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1772 stliport_t *portp = tty->driver_data;
1773 stlibrd_t *brdp;
1774 int rc;
1776 if (portp == NULL)
1777 return -ENODEV;
1778 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1779 return 0;
1780 brdp = stli_brds[portp->brdnr];
1781 if (brdp == NULL)
1782 return 0;
1783 if (tty->flags & (1 << TTY_IO_ERROR))
1784 return -EIO;
1786 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1787 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1788 return rc;
1790 return stli_mktiocm(portp->asig.sigvalue);
1793 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1794 unsigned int set, unsigned int clear)
1796 stliport_t *portp = tty->driver_data;
1797 stlibrd_t *brdp;
1798 int rts = -1, dtr = -1;
1800 if (portp == NULL)
1801 return -ENODEV;
1802 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1803 return 0;
1804 brdp = stli_brds[portp->brdnr];
1805 if (brdp == NULL)
1806 return 0;
1807 if (tty->flags & (1 << TTY_IO_ERROR))
1808 return -EIO;
1810 if (set & TIOCM_RTS)
1811 rts = 1;
1812 if (set & TIOCM_DTR)
1813 dtr = 1;
1814 if (clear & TIOCM_RTS)
1815 rts = 0;
1816 if (clear & TIOCM_DTR)
1817 dtr = 0;
1819 stli_mkasysigs(&portp->asig, dtr, rts);
1821 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1822 sizeof(asysigs_t), 0);
1825 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1827 stliport_t *portp;
1828 stlibrd_t *brdp;
1829 unsigned int ival;
1830 int rc;
1831 void __user *argp = (void __user *)arg;
1833 portp = tty->driver_data;
1834 if (portp == NULL)
1835 return -ENODEV;
1836 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1837 return 0;
1838 brdp = stli_brds[portp->brdnr];
1839 if (brdp == NULL)
1840 return 0;
1842 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1843 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1844 if (tty->flags & (1 << TTY_IO_ERROR))
1845 return -EIO;
1848 rc = 0;
1850 switch (cmd) {
1851 case TIOCGSOFTCAR:
1852 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1853 (unsigned __user *) arg);
1854 break;
1855 case TIOCSSOFTCAR:
1856 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
1857 tty->termios->c_cflag =
1858 (tty->termios->c_cflag & ~CLOCAL) |
1859 (ival ? CLOCAL : 0);
1860 break;
1861 case TIOCGSERIAL:
1862 rc = stli_getserial(portp, argp);
1863 break;
1864 case TIOCSSERIAL:
1865 rc = stli_setserial(portp, argp);
1866 break;
1867 case STL_GETPFLAG:
1868 rc = put_user(portp->pflag, (unsigned __user *)argp);
1869 break;
1870 case STL_SETPFLAG:
1871 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1872 stli_setport(portp);
1873 break;
1874 case COM_GETPORTSTATS:
1875 rc = stli_getportstats(portp, argp);
1876 break;
1877 case COM_CLRPORTSTATS:
1878 rc = stli_clrportstats(portp, argp);
1879 break;
1880 case TIOCSERCONFIG:
1881 case TIOCSERGWILD:
1882 case TIOCSERSWILD:
1883 case TIOCSERGETLSR:
1884 case TIOCSERGSTRUCT:
1885 case TIOCSERGETMULTI:
1886 case TIOCSERSETMULTI:
1887 default:
1888 rc = -ENOIOCTLCMD;
1889 break;
1892 return rc;
1895 /*****************************************************************************/
1898 * This routine assumes that we have user context and can sleep.
1899 * Looks like it is true for the current ttys implementation..!!
1902 static void stli_settermios(struct tty_struct *tty, struct termios *old)
1904 stliport_t *portp;
1905 stlibrd_t *brdp;
1906 struct termios *tiosp;
1907 asyport_t aport;
1909 if (tty == NULL)
1910 return;
1911 portp = tty->driver_data;
1912 if (portp == NULL)
1913 return;
1914 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1915 return;
1916 brdp = stli_brds[portp->brdnr];
1917 if (brdp == NULL)
1918 return;
1920 tiosp = tty->termios;
1921 if ((tiosp->c_cflag == old->c_cflag) &&
1922 (tiosp->c_iflag == old->c_iflag))
1923 return;
1925 stli_mkasyport(portp, &aport, tiosp);
1926 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1927 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1928 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1929 sizeof(asysigs_t), 0);
1930 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1931 tty->hw_stopped = 0;
1932 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1933 wake_up_interruptible(&portp->open_wait);
1936 /*****************************************************************************/
1939 * Attempt to flow control who ever is sending us data. We won't really
1940 * do any flow control action here. We can't directly, and even if we
1941 * wanted to we would have to send a command to the slave. The slave
1942 * knows how to flow control, and will do so when its buffers reach its
1943 * internal high water marks. So what we will do is set a local state
1944 * bit that will stop us sending any RX data up from the poll routine
1945 * (which is the place where RX data from the slave is handled).
1948 static void stli_throttle(struct tty_struct *tty)
1950 stliport_t *portp = tty->driver_data;
1951 if (portp == NULL)
1952 return;
1953 set_bit(ST_RXSTOP, &portp->state);
1956 /*****************************************************************************/
1959 * Unflow control the device sending us data... That means that all
1960 * we have to do is clear the RXSTOP state bit. The next poll call
1961 * will then be able to pass the RX data back up.
1964 static void stli_unthrottle(struct tty_struct *tty)
1966 stliport_t *portp = tty->driver_data;
1967 if (portp == NULL)
1968 return;
1969 clear_bit(ST_RXSTOP, &portp->state);
1972 /*****************************************************************************/
1975 * Stop the transmitter.
1978 static void stli_stop(struct tty_struct *tty)
1982 /*****************************************************************************/
1985 * Start the transmitter again.
1988 static void stli_start(struct tty_struct *tty)
1992 /*****************************************************************************/
1995 * Scheduler called hang up routine. This is called from the scheduler,
1996 * not direct from the driver "poll" routine. We can't call it there
1997 * since the real local hangup code will enable/disable the board and
1998 * other things that we can't do while handling the poll. Much easier
1999 * to deal with it some time later (don't really care when, hangups
2000 * aren't that time critical).
2003 static void stli_dohangup(void *arg)
2005 stliport_t *portp = (stliport_t *) arg;
2006 if (portp->tty != NULL) {
2007 tty_hangup(portp->tty);
2011 /*****************************************************************************/
2014 * Hangup this port. This is pretty much like closing the port, only
2015 * a little more brutal. No waiting for data to drain. Shutdown the
2016 * port and maybe drop signals. This is rather tricky really. We want
2017 * to close the port as well.
2020 static void stli_hangup(struct tty_struct *tty)
2022 stliport_t *portp;
2023 stlibrd_t *brdp;
2024 unsigned long flags;
2026 portp = tty->driver_data;
2027 if (portp == NULL)
2028 return;
2029 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2030 return;
2031 brdp = stli_brds[portp->brdnr];
2032 if (brdp == NULL)
2033 return;
2035 portp->flags &= ~ASYNC_INITIALIZED;
2037 if (!test_bit(ST_CLOSING, &portp->state))
2038 stli_rawclose(brdp, portp, 0, 0);
2040 spin_lock_irqsave(&stli_lock, flags);
2041 if (tty->termios->c_cflag & HUPCL) {
2042 stli_mkasysigs(&portp->asig, 0, 0);
2043 if (test_bit(ST_CMDING, &portp->state)) {
2044 set_bit(ST_DOSIGS, &portp->state);
2045 set_bit(ST_DOFLUSHTX, &portp->state);
2046 set_bit(ST_DOFLUSHRX, &portp->state);
2047 } else {
2048 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2049 &portp->asig, sizeof(asysigs_t), 0);
2053 clear_bit(ST_TXBUSY, &portp->state);
2054 clear_bit(ST_RXSTOP, &portp->state);
2055 set_bit(TTY_IO_ERROR, &tty->flags);
2056 portp->tty = NULL;
2057 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2058 portp->refcount = 0;
2059 spin_unlock_irqrestore(&stli_lock, flags);
2061 wake_up_interruptible(&portp->open_wait);
2064 /*****************************************************************************/
2067 * Flush characters from the lower buffer. We may not have user context
2068 * so we cannot sleep waiting for it to complete. Also we need to check
2069 * if there is chars for this port in the TX cook buffer, and flush them
2070 * as well.
2073 static void stli_flushbuffer(struct tty_struct *tty)
2075 stliport_t *portp;
2076 stlibrd_t *brdp;
2077 unsigned long ftype, flags;
2079 portp = tty->driver_data;
2080 if (portp == NULL)
2081 return;
2082 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2083 return;
2084 brdp = stli_brds[portp->brdnr];
2085 if (brdp == NULL)
2086 return;
2088 spin_lock_irqsave(&brd_lock, flags);
2089 if (tty == stli_txcooktty) {
2090 stli_txcooktty = NULL;
2091 stli_txcooksize = 0;
2092 stli_txcookrealsize = 0;
2094 if (test_bit(ST_CMDING, &portp->state)) {
2095 set_bit(ST_DOFLUSHTX, &portp->state);
2096 } else {
2097 ftype = FLUSHTX;
2098 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2099 ftype |= FLUSHRX;
2100 clear_bit(ST_DOFLUSHRX, &portp->state);
2102 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
2104 spin_unlock_irqrestore(&brd_lock, flags);
2105 tty_wakeup(tty);
2108 /*****************************************************************************/
2110 static void stli_breakctl(struct tty_struct *tty, int state)
2112 stlibrd_t *brdp;
2113 stliport_t *portp;
2114 long arg;
2116 portp = tty->driver_data;
2117 if (portp == NULL)
2118 return;
2119 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2120 return;
2121 brdp = stli_brds[portp->brdnr];
2122 if (brdp == NULL)
2123 return;
2125 arg = (state == -1) ? BREAKON : BREAKOFF;
2126 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2129 /*****************************************************************************/
2131 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2133 stliport_t *portp;
2134 unsigned long tend;
2136 if (tty == NULL)
2137 return;
2138 portp = tty->driver_data;
2139 if (portp == NULL)
2140 return;
2142 if (timeout == 0)
2143 timeout = HZ;
2144 tend = jiffies + timeout;
2146 while (test_bit(ST_TXBUSY, &portp->state)) {
2147 if (signal_pending(current))
2148 break;
2149 msleep_interruptible(20);
2150 if (time_after_eq(jiffies, tend))
2151 break;
2155 /*****************************************************************************/
2157 static void stli_sendxchar(struct tty_struct *tty, char ch)
2159 stlibrd_t *brdp;
2160 stliport_t *portp;
2161 asyctrl_t actrl;
2163 portp = tty->driver_data;
2164 if (portp == NULL)
2165 return;
2166 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2167 return;
2168 brdp = stli_brds[portp->brdnr];
2169 if (brdp == NULL)
2170 return;
2172 memset(&actrl, 0, sizeof(asyctrl_t));
2173 if (ch == STOP_CHAR(tty)) {
2174 actrl.rxctrl = CT_STOPFLOW;
2175 } else if (ch == START_CHAR(tty)) {
2176 actrl.rxctrl = CT_STARTFLOW;
2177 } else {
2178 actrl.txctrl = CT_SENDCHR;
2179 actrl.tximdch = ch;
2181 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2184 /*****************************************************************************/
2186 #define MAXLINE 80
2189 * Format info for a specified port. The line is deliberately limited
2190 * to 80 characters. (If it is too long it will be truncated, if too
2191 * short then padded with spaces).
2194 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2196 char *sp, *uart;
2197 int rc, cnt;
2199 rc = stli_portcmdstats(portp);
2201 uart = "UNKNOWN";
2202 if (brdp->state & BST_STARTED) {
2203 switch (stli_comstats.hwid) {
2204 case 0: uart = "2681"; break;
2205 case 1: uart = "SC26198"; break;
2206 default:uart = "CD1400"; break;
2210 sp = pos;
2211 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2213 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2214 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2215 (int) stli_comstats.rxtotal);
2217 if (stli_comstats.rxframing)
2218 sp += sprintf(sp, " fe:%d",
2219 (int) stli_comstats.rxframing);
2220 if (stli_comstats.rxparity)
2221 sp += sprintf(sp, " pe:%d",
2222 (int) stli_comstats.rxparity);
2223 if (stli_comstats.rxbreaks)
2224 sp += sprintf(sp, " brk:%d",
2225 (int) stli_comstats.rxbreaks);
2226 if (stli_comstats.rxoverrun)
2227 sp += sprintf(sp, " oe:%d",
2228 (int) stli_comstats.rxoverrun);
2230 cnt = sprintf(sp, "%s%s%s%s%s ",
2231 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2232 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2233 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2234 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2235 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2236 *sp = ' ';
2237 sp += cnt;
2240 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2241 *sp++ = ' ';
2242 if (cnt >= MAXLINE)
2243 pos[(MAXLINE - 2)] = '+';
2244 pos[(MAXLINE - 1)] = '\n';
2246 return(MAXLINE);
2249 /*****************************************************************************/
2252 * Port info, read from the /proc file system.
2255 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2257 stlibrd_t *brdp;
2258 stliport_t *portp;
2259 int brdnr, portnr, totalport;
2260 int curoff, maxoff;
2261 char *pos;
2263 pos = page;
2264 totalport = 0;
2265 curoff = 0;
2267 if (off == 0) {
2268 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2269 stli_drvversion);
2270 while (pos < (page + MAXLINE - 1))
2271 *pos++ = ' ';
2272 *pos++ = '\n';
2274 curoff = MAXLINE;
2277 * We scan through for each board, panel and port. The offset is
2278 * calculated on the fly, and irrelevant ports are skipped.
2280 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2281 brdp = stli_brds[brdnr];
2282 if (brdp == NULL)
2283 continue;
2284 if (brdp->state == 0)
2285 continue;
2287 maxoff = curoff + (brdp->nrports * MAXLINE);
2288 if (off >= maxoff) {
2289 curoff = maxoff;
2290 continue;
2293 totalport = brdnr * STL_MAXPORTS;
2294 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2295 totalport++) {
2296 portp = brdp->ports[portnr];
2297 if (portp == NULL)
2298 continue;
2299 if (off >= (curoff += MAXLINE))
2300 continue;
2301 if ((pos - page + MAXLINE) > count)
2302 goto stli_readdone;
2303 pos += stli_portinfo(brdp, portp, totalport, pos);
2307 *eof = 1;
2309 stli_readdone:
2310 *start = page;
2311 return(pos - page);
2314 /*****************************************************************************/
2317 * Generic send command routine. This will send a message to the slave,
2318 * of the specified type with the specified argument. Must be very
2319 * careful of data that will be copied out from shared memory -
2320 * containing command results. The command completion is all done from
2321 * a poll routine that does not have user context. Therefore you cannot
2322 * copy back directly into user space, or to the kernel stack of a
2323 * process. This routine does not sleep, so can be called from anywhere.
2325 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2326 * entry point)
2329 static void __stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2331 cdkhdr_t __iomem *hdrp;
2332 cdkctrl_t __iomem *cp;
2333 unsigned char __iomem *bits;
2334 unsigned long flags;
2336 spin_lock_irqsave(&brd_lock, flags);
2338 if (test_bit(ST_CMDING, &portp->state)) {
2339 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2340 (int) cmd);
2341 spin_unlock_irqrestore(&brd_lock, flags);
2342 return;
2345 EBRDENABLE(brdp);
2346 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2347 if (size > 0) {
2348 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2349 if (copyback) {
2350 portp->argp = arg;
2351 portp->argsize = size;
2354 writel(0, &cp->status);
2355 writel(cmd, &cp->cmd);
2356 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2357 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2358 portp->portidx;
2359 writeb(readb(bits) | portp->portbit, bits);
2360 set_bit(ST_CMDING, &portp->state);
2361 EBRDDISABLE(brdp);
2362 spin_unlock_irqrestore(&brd_lock, flags);
2365 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2367 unsigned long flags;
2369 spin_lock_irqsave(&brd_lock, flags);
2370 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2371 spin_unlock_irqrestore(&brd_lock, flags);
2374 /*****************************************************************************/
2377 * Read data from shared memory. This assumes that the shared memory
2378 * is enabled and that interrupts are off. Basically we just empty out
2379 * the shared memory buffer into the tty buffer. Must be careful to
2380 * handle the case where we fill up the tty buffer, but still have
2381 * more chars to unload.
2384 static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2386 cdkasyrq_t __iomem *rp;
2387 char __iomem *shbuf;
2388 struct tty_struct *tty;
2389 unsigned int head, tail, size;
2390 unsigned int len, stlen;
2392 if (test_bit(ST_RXSTOP, &portp->state))
2393 return;
2394 tty = portp->tty;
2395 if (tty == NULL)
2396 return;
2398 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2399 head = (unsigned int) readw(&rp->head);
2400 if (head != ((unsigned int) readw(&rp->head)))
2401 head = (unsigned int) readw(&rp->head);
2402 tail = (unsigned int) readw(&rp->tail);
2403 size = portp->rxsize;
2404 if (head >= tail) {
2405 len = head - tail;
2406 stlen = len;
2407 } else {
2408 len = size - (tail - head);
2409 stlen = size - tail;
2412 len = tty_buffer_request_room(tty, len);
2414 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2416 while (len > 0) {
2417 unsigned char *cptr;
2419 stlen = MIN(len, stlen);
2420 tty_prepare_flip_string(tty, &cptr, stlen);
2421 memcpy_fromio(cptr, shbuf + tail, stlen);
2422 len -= stlen;
2423 tail += stlen;
2424 if (tail >= size) {
2425 tail = 0;
2426 stlen = head;
2429 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2430 writew(tail, &rp->tail);
2432 if (head != tail)
2433 set_bit(ST_RXING, &portp->state);
2435 tty_schedule_flip(tty);
2438 /*****************************************************************************/
2441 * Set up and carry out any delayed commands. There is only a small set
2442 * of slave commands that can be done "off-level". So it is not too
2443 * difficult to deal with them here.
2446 static void stli_dodelaycmd(stliport_t *portp, cdkctrl_t __iomem *cp)
2448 int cmd;
2450 if (test_bit(ST_DOSIGS, &portp->state)) {
2451 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2452 test_bit(ST_DOFLUSHRX, &portp->state))
2453 cmd = A_SETSIGNALSF;
2454 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2455 cmd = A_SETSIGNALSFTX;
2456 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2457 cmd = A_SETSIGNALSFRX;
2458 else
2459 cmd = A_SETSIGNALS;
2460 clear_bit(ST_DOFLUSHTX, &portp->state);
2461 clear_bit(ST_DOFLUSHRX, &portp->state);
2462 clear_bit(ST_DOSIGS, &portp->state);
2463 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2464 sizeof(asysigs_t));
2465 writel(0, &cp->status);
2466 writel(cmd, &cp->cmd);
2467 set_bit(ST_CMDING, &portp->state);
2468 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2469 test_bit(ST_DOFLUSHRX, &portp->state)) {
2470 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2471 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2472 clear_bit(ST_DOFLUSHTX, &portp->state);
2473 clear_bit(ST_DOFLUSHRX, &portp->state);
2474 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2475 writel(0, &cp->status);
2476 writel(A_FLUSH, &cp->cmd);
2477 set_bit(ST_CMDING, &portp->state);
2481 /*****************************************************************************/
2484 * Host command service checking. This handles commands or messages
2485 * coming from the slave to the host. Must have board shared memory
2486 * enabled and interrupts off when called. Notice that by servicing the
2487 * read data last we don't need to change the shared memory pointer
2488 * during processing (which is a slow IO operation).
2489 * Return value indicates if this port is still awaiting actions from
2490 * the slave (like open, command, or even TX data being sent). If 0
2491 * then port is still busy, otherwise no longer busy.
2494 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2496 cdkasy_t __iomem *ap;
2497 cdkctrl_t __iomem *cp;
2498 struct tty_struct *tty;
2499 asynotify_t nt;
2500 unsigned long oldsigs;
2501 int rc, donerx;
2503 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2504 cp = &ap->ctrl;
2507 * Check if we are waiting for an open completion message.
2509 if (test_bit(ST_OPENING, &portp->state)) {
2510 rc = readl(&cp->openarg);
2511 if (readb(&cp->open) == 0 && rc != 0) {
2512 if (rc > 0)
2513 rc--;
2514 writel(0, &cp->openarg);
2515 portp->rc = rc;
2516 clear_bit(ST_OPENING, &portp->state);
2517 wake_up_interruptible(&portp->raw_wait);
2522 * Check if we are waiting for a close completion message.
2524 if (test_bit(ST_CLOSING, &portp->state)) {
2525 rc = (int) readl(&cp->closearg);
2526 if (readb(&cp->close) == 0 && rc != 0) {
2527 if (rc > 0)
2528 rc--;
2529 writel(0, &cp->closearg);
2530 portp->rc = rc;
2531 clear_bit(ST_CLOSING, &portp->state);
2532 wake_up_interruptible(&portp->raw_wait);
2537 * Check if we are waiting for a command completion message. We may
2538 * need to copy out the command results associated with this command.
2540 if (test_bit(ST_CMDING, &portp->state)) {
2541 rc = readl(&cp->status);
2542 if (readl(&cp->cmd) == 0 && rc != 0) {
2543 if (rc > 0)
2544 rc--;
2545 if (portp->argp != NULL) {
2546 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2547 portp->argsize);
2548 portp->argp = NULL;
2550 writel(0, &cp->status);
2551 portp->rc = rc;
2552 clear_bit(ST_CMDING, &portp->state);
2553 stli_dodelaycmd(portp, cp);
2554 wake_up_interruptible(&portp->raw_wait);
2559 * Check for any notification messages ready. This includes lots of
2560 * different types of events - RX chars ready, RX break received,
2561 * TX data low or empty in the slave, modem signals changed state.
2563 donerx = 0;
2565 if (ap->notify) {
2566 nt = ap->changed;
2567 ap->notify = 0;
2568 tty = portp->tty;
2570 if (nt.signal & SG_DCD) {
2571 oldsigs = portp->sigs;
2572 portp->sigs = stli_mktiocm(nt.sigvalue);
2573 clear_bit(ST_GETSIGS, &portp->state);
2574 if ((portp->sigs & TIOCM_CD) &&
2575 ((oldsigs & TIOCM_CD) == 0))
2576 wake_up_interruptible(&portp->open_wait);
2577 if ((oldsigs & TIOCM_CD) &&
2578 ((portp->sigs & TIOCM_CD) == 0)) {
2579 if (portp->flags & ASYNC_CHECK_CD) {
2580 if (tty)
2581 schedule_work(&portp->tqhangup);
2586 if (nt.data & DT_TXEMPTY)
2587 clear_bit(ST_TXBUSY, &portp->state);
2588 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2589 if (tty != NULL) {
2590 tty_wakeup(tty);
2591 EBRDENABLE(brdp);
2592 wake_up_interruptible(&tty->write_wait);
2596 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2597 if (tty != NULL) {
2598 tty_insert_flip_char(tty, 0, TTY_BREAK);
2599 if (portp->flags & ASYNC_SAK) {
2600 do_SAK(tty);
2601 EBRDENABLE(brdp);
2603 tty_schedule_flip(tty);
2607 if (nt.data & DT_RXBUSY) {
2608 donerx++;
2609 stli_read(brdp, portp);
2614 * It might seem odd that we are checking for more RX chars here.
2615 * But, we need to handle the case where the tty buffer was previously
2616 * filled, but we had more characters to pass up. The slave will not
2617 * send any more RX notify messages until the RX buffer has been emptied.
2618 * But it will leave the service bits on (since the buffer is not empty).
2619 * So from here we can try to process more RX chars.
2621 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2622 clear_bit(ST_RXING, &portp->state);
2623 stli_read(brdp, portp);
2626 return((test_bit(ST_OPENING, &portp->state) ||
2627 test_bit(ST_CLOSING, &portp->state) ||
2628 test_bit(ST_CMDING, &portp->state) ||
2629 test_bit(ST_TXBUSY, &portp->state) ||
2630 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2633 /*****************************************************************************/
2636 * Service all ports on a particular board. Assumes that the boards
2637 * shared memory is enabled, and that the page pointer is pointed
2638 * at the cdk header structure.
2641 static void stli_brdpoll(stlibrd_t *brdp, cdkhdr_t __iomem *hdrp)
2643 stliport_t *portp;
2644 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2645 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2646 unsigned char __iomem *slavep;
2647 int bitpos, bitat, bitsize;
2648 int channr, nrdevs, slavebitchange;
2650 bitsize = brdp->bitsize;
2651 nrdevs = brdp->nrdevs;
2654 * Check if slave wants any service. Basically we try to do as
2655 * little work as possible here. There are 2 levels of service
2656 * bits. So if there is nothing to do we bail early. We check
2657 * 8 service bits at a time in the inner loop, so we can bypass
2658 * the lot if none of them want service.
2660 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2661 bitsize);
2663 memset(&slavebits[0], 0, bitsize);
2664 slavebitchange = 0;
2666 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2667 if (hostbits[bitpos] == 0)
2668 continue;
2669 channr = bitpos * 8;
2670 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2671 if (hostbits[bitpos] & bitat) {
2672 portp = brdp->ports[(channr - 1)];
2673 if (stli_hostcmd(brdp, portp)) {
2674 slavebitchange++;
2675 slavebits[bitpos] |= bitat;
2682 * If any of the ports are no longer busy then update them in the
2683 * slave request bits. We need to do this after, since a host port
2684 * service may initiate more slave requests.
2686 if (slavebitchange) {
2687 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2688 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2689 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2690 if (readb(slavebits + bitpos))
2691 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2696 /*****************************************************************************/
2699 * Driver poll routine. This routine polls the boards in use and passes
2700 * messages back up to host when necessary. This is actually very
2701 * CPU efficient, since we will always have the kernel poll clock, it
2702 * adds only a few cycles when idle (since board service can be
2703 * determined very easily), but when loaded generates no interrupts
2704 * (with their expensive associated context change).
2707 static void stli_poll(unsigned long arg)
2709 cdkhdr_t __iomem *hdrp;
2710 stlibrd_t *brdp;
2711 int brdnr;
2713 stli_timerlist.expires = STLI_TIMEOUT;
2714 add_timer(&stli_timerlist);
2717 * Check each board and do any servicing required.
2719 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2720 brdp = stli_brds[brdnr];
2721 if (brdp == NULL)
2722 continue;
2723 if ((brdp->state & BST_STARTED) == 0)
2724 continue;
2726 spin_lock(&brd_lock);
2727 EBRDENABLE(brdp);
2728 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2729 if (readb(&hdrp->hostreq))
2730 stli_brdpoll(brdp, hdrp);
2731 EBRDDISABLE(brdp);
2732 spin_unlock(&brd_lock);
2736 /*****************************************************************************/
2739 * Translate the termios settings into the port setting structure of
2740 * the slave.
2743 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
2745 memset(pp, 0, sizeof(asyport_t));
2748 * Start of by setting the baud, char size, parity and stop bit info.
2750 pp->baudout = tiosp->c_cflag & CBAUD;
2751 if (pp->baudout & CBAUDEX) {
2752 pp->baudout &= ~CBAUDEX;
2753 if ((pp->baudout < 1) || (pp->baudout > 4))
2754 tiosp->c_cflag &= ~CBAUDEX;
2755 else
2756 pp->baudout += 15;
2758 pp->baudout = stli_baudrates[pp->baudout];
2759 if ((tiosp->c_cflag & CBAUD) == B38400) {
2760 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2761 pp->baudout = 57600;
2762 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2763 pp->baudout = 115200;
2764 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2765 pp->baudout = 230400;
2766 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2767 pp->baudout = 460800;
2768 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2769 pp->baudout = (portp->baud_base / portp->custom_divisor);
2771 if (pp->baudout > STL_MAXBAUD)
2772 pp->baudout = STL_MAXBAUD;
2773 pp->baudin = pp->baudout;
2775 switch (tiosp->c_cflag & CSIZE) {
2776 case CS5:
2777 pp->csize = 5;
2778 break;
2779 case CS6:
2780 pp->csize = 6;
2781 break;
2782 case CS7:
2783 pp->csize = 7;
2784 break;
2785 default:
2786 pp->csize = 8;
2787 break;
2790 if (tiosp->c_cflag & CSTOPB)
2791 pp->stopbs = PT_STOP2;
2792 else
2793 pp->stopbs = PT_STOP1;
2795 if (tiosp->c_cflag & PARENB) {
2796 if (tiosp->c_cflag & PARODD)
2797 pp->parity = PT_ODDPARITY;
2798 else
2799 pp->parity = PT_EVENPARITY;
2800 } else {
2801 pp->parity = PT_NOPARITY;
2805 * Set up any flow control options enabled.
2807 if (tiosp->c_iflag & IXON) {
2808 pp->flow |= F_IXON;
2809 if (tiosp->c_iflag & IXANY)
2810 pp->flow |= F_IXANY;
2812 if (tiosp->c_cflag & CRTSCTS)
2813 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2815 pp->startin = tiosp->c_cc[VSTART];
2816 pp->stopin = tiosp->c_cc[VSTOP];
2817 pp->startout = tiosp->c_cc[VSTART];
2818 pp->stopout = tiosp->c_cc[VSTOP];
2821 * Set up the RX char marking mask with those RX error types we must
2822 * catch. We can get the slave to help us out a little here, it will
2823 * ignore parity errors and breaks for us, and mark parity errors in
2824 * the data stream.
2826 if (tiosp->c_iflag & IGNPAR)
2827 pp->iflag |= FI_IGNRXERRS;
2828 if (tiosp->c_iflag & IGNBRK)
2829 pp->iflag |= FI_IGNBREAK;
2831 portp->rxmarkmsk = 0;
2832 if (tiosp->c_iflag & (INPCK | PARMRK))
2833 pp->iflag |= FI_1MARKRXERRS;
2834 if (tiosp->c_iflag & BRKINT)
2835 portp->rxmarkmsk |= BRKINT;
2838 * Set up clocal processing as required.
2840 if (tiosp->c_cflag & CLOCAL)
2841 portp->flags &= ~ASYNC_CHECK_CD;
2842 else
2843 portp->flags |= ASYNC_CHECK_CD;
2846 * Transfer any persistent flags into the asyport structure.
2848 pp->pflag = (portp->pflag & 0xffff);
2849 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2850 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2851 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2854 /*****************************************************************************/
2857 * Construct a slave signals structure for setting the DTR and RTS
2858 * signals as specified.
2861 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2863 memset(sp, 0, sizeof(asysigs_t));
2864 if (dtr >= 0) {
2865 sp->signal |= SG_DTR;
2866 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2868 if (rts >= 0) {
2869 sp->signal |= SG_RTS;
2870 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2874 /*****************************************************************************/
2877 * Convert the signals returned from the slave into a local TIOCM type
2878 * signals value. We keep them locally in TIOCM format.
2881 static long stli_mktiocm(unsigned long sigvalue)
2883 long tiocm = 0;
2884 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2885 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2886 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2887 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2888 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2889 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2890 return(tiocm);
2893 /*****************************************************************************/
2896 * All panels and ports actually attached have been worked out. All
2897 * we need to do here is set up the appropriate per port data structures.
2900 static int stli_initports(stlibrd_t *brdp)
2902 stliport_t *portp;
2903 int i, panelnr, panelport;
2905 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2906 portp = kzalloc(sizeof(stliport_t), GFP_KERNEL);
2907 if (!portp) {
2908 printk("STALLION: failed to allocate port structure\n");
2909 continue;
2912 portp->magic = STLI_PORTMAGIC;
2913 portp->portnr = i;
2914 portp->brdnr = brdp->brdnr;
2915 portp->panelnr = panelnr;
2916 portp->baud_base = STL_BAUDBASE;
2917 portp->close_delay = STL_CLOSEDELAY;
2918 portp->closing_wait = 30 * HZ;
2919 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
2920 init_waitqueue_head(&portp->open_wait);
2921 init_waitqueue_head(&portp->close_wait);
2922 init_waitqueue_head(&portp->raw_wait);
2923 panelport++;
2924 if (panelport >= brdp->panels[panelnr]) {
2925 panelport = 0;
2926 panelnr++;
2928 brdp->ports[i] = portp;
2931 return 0;
2934 /*****************************************************************************/
2937 * All the following routines are board specific hardware operations.
2940 static void stli_ecpinit(stlibrd_t *brdp)
2942 unsigned long memconf;
2944 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2945 udelay(10);
2946 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2947 udelay(100);
2949 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2950 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2953 /*****************************************************************************/
2955 static void stli_ecpenable(stlibrd_t *brdp)
2957 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2960 /*****************************************************************************/
2962 static void stli_ecpdisable(stlibrd_t *brdp)
2964 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2967 /*****************************************************************************/
2969 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
2971 void *ptr;
2972 unsigned char val;
2974 if (offset > brdp->memsize) {
2975 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2976 "range at line=%d(%d), brd=%d\n",
2977 (int) offset, line, __LINE__, brdp->brdnr);
2978 ptr = NULL;
2979 val = 0;
2980 } else {
2981 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2982 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2984 outb(val, (brdp->iobase + ECP_ATMEMPR));
2985 return(ptr);
2988 /*****************************************************************************/
2990 static void stli_ecpreset(stlibrd_t *brdp)
2992 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2993 udelay(10);
2994 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2995 udelay(500);
2998 /*****************************************************************************/
3000 static void stli_ecpintr(stlibrd_t *brdp)
3002 outb(0x1, brdp->iobase);
3005 /*****************************************************************************/
3008 * The following set of functions act on ECP EISA boards.
3011 static void stli_ecpeiinit(stlibrd_t *brdp)
3013 unsigned long memconf;
3015 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3016 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3017 udelay(10);
3018 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3019 udelay(500);
3021 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3022 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3023 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3024 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3027 /*****************************************************************************/
3029 static void stli_ecpeienable(stlibrd_t *brdp)
3031 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3034 /*****************************************************************************/
3036 static void stli_ecpeidisable(stlibrd_t *brdp)
3038 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3041 /*****************************************************************************/
3043 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3045 void *ptr;
3046 unsigned char val;
3048 if (offset > brdp->memsize) {
3049 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3050 "range at line=%d(%d), brd=%d\n",
3051 (int) offset, line, __LINE__, brdp->brdnr);
3052 ptr = NULL;
3053 val = 0;
3054 } else {
3055 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3056 if (offset < ECP_EIPAGESIZE)
3057 val = ECP_EIENABLE;
3058 else
3059 val = ECP_EIENABLE | 0x40;
3061 outb(val, (brdp->iobase + ECP_EICONFR));
3062 return(ptr);
3065 /*****************************************************************************/
3067 static void stli_ecpeireset(stlibrd_t *brdp)
3069 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3070 udelay(10);
3071 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3072 udelay(500);
3075 /*****************************************************************************/
3078 * The following set of functions act on ECP MCA boards.
3081 static void stli_ecpmcenable(stlibrd_t *brdp)
3083 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3086 /*****************************************************************************/
3088 static void stli_ecpmcdisable(stlibrd_t *brdp)
3090 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3093 /*****************************************************************************/
3095 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3097 void *ptr;
3098 unsigned char val;
3100 if (offset > brdp->memsize) {
3101 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3102 "range at line=%d(%d), brd=%d\n",
3103 (int) offset, line, __LINE__, brdp->brdnr);
3104 ptr = NULL;
3105 val = 0;
3106 } else {
3107 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3108 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3110 outb(val, (brdp->iobase + ECP_MCCONFR));
3111 return(ptr);
3114 /*****************************************************************************/
3116 static void stli_ecpmcreset(stlibrd_t *brdp)
3118 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3119 udelay(10);
3120 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3121 udelay(500);
3124 /*****************************************************************************/
3127 * The following set of functions act on ECP PCI boards.
3130 static void stli_ecppciinit(stlibrd_t *brdp)
3132 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3133 udelay(10);
3134 outb(0, (brdp->iobase + ECP_PCICONFR));
3135 udelay(500);
3138 /*****************************************************************************/
3140 static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3142 void *ptr;
3143 unsigned char val;
3145 if (offset > brdp->memsize) {
3146 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3147 "range at line=%d(%d), board=%d\n",
3148 (int) offset, line, __LINE__, brdp->brdnr);
3149 ptr = NULL;
3150 val = 0;
3151 } else {
3152 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3153 val = (offset / ECP_PCIPAGESIZE) << 1;
3155 outb(val, (brdp->iobase + ECP_PCICONFR));
3156 return(ptr);
3159 /*****************************************************************************/
3161 static void stli_ecppcireset(stlibrd_t *brdp)
3163 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3164 udelay(10);
3165 outb(0, (brdp->iobase + ECP_PCICONFR));
3166 udelay(500);
3169 /*****************************************************************************/
3172 * The following routines act on ONboards.
3175 static void stli_onbinit(stlibrd_t *brdp)
3177 unsigned long memconf;
3179 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3180 udelay(10);
3181 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3182 mdelay(1000);
3184 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3185 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3186 outb(0x1, brdp->iobase);
3187 mdelay(1);
3190 /*****************************************************************************/
3192 static void stli_onbenable(stlibrd_t *brdp)
3194 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3197 /*****************************************************************************/
3199 static void stli_onbdisable(stlibrd_t *brdp)
3201 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3204 /*****************************************************************************/
3206 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3208 void *ptr;
3210 if (offset > brdp->memsize) {
3211 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3212 "range at line=%d(%d), brd=%d\n",
3213 (int) offset, line, __LINE__, brdp->brdnr);
3214 ptr = NULL;
3215 } else {
3216 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3218 return(ptr);
3221 /*****************************************************************************/
3223 static void stli_onbreset(stlibrd_t *brdp)
3225 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3226 udelay(10);
3227 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3228 mdelay(1000);
3231 /*****************************************************************************/
3234 * The following routines act on ONboard EISA.
3237 static void stli_onbeinit(stlibrd_t *brdp)
3239 unsigned long memconf;
3241 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3242 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3243 udelay(10);
3244 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3245 mdelay(1000);
3247 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3248 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3249 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3250 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3251 outb(0x1, brdp->iobase);
3252 mdelay(1);
3255 /*****************************************************************************/
3257 static void stli_onbeenable(stlibrd_t *brdp)
3259 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3262 /*****************************************************************************/
3264 static void stli_onbedisable(stlibrd_t *brdp)
3266 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3269 /*****************************************************************************/
3271 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3273 void *ptr;
3274 unsigned char val;
3276 if (offset > brdp->memsize) {
3277 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3278 "range at line=%d(%d), brd=%d\n",
3279 (int) offset, line, __LINE__, brdp->brdnr);
3280 ptr = NULL;
3281 val = 0;
3282 } else {
3283 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3284 if (offset < ONB_EIPAGESIZE)
3285 val = ONB_EIENABLE;
3286 else
3287 val = ONB_EIENABLE | 0x40;
3289 outb(val, (brdp->iobase + ONB_EICONFR));
3290 return(ptr);
3293 /*****************************************************************************/
3295 static void stli_onbereset(stlibrd_t *brdp)
3297 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3298 udelay(10);
3299 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3300 mdelay(1000);
3303 /*****************************************************************************/
3306 * The following routines act on Brumby boards.
3309 static void stli_bbyinit(stlibrd_t *brdp)
3311 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3312 udelay(10);
3313 outb(0, (brdp->iobase + BBY_ATCONFR));
3314 mdelay(1000);
3315 outb(0x1, brdp->iobase);
3316 mdelay(1);
3319 /*****************************************************************************/
3321 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3323 void *ptr;
3324 unsigned char val;
3326 BUG_ON(offset > brdp->memsize);
3328 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3329 val = (unsigned char) (offset / BBY_PAGESIZE);
3330 outb(val, (brdp->iobase + BBY_ATCONFR));
3331 return(ptr);
3334 /*****************************************************************************/
3336 static void stli_bbyreset(stlibrd_t *brdp)
3338 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3339 udelay(10);
3340 outb(0, (brdp->iobase + BBY_ATCONFR));
3341 mdelay(1000);
3344 /*****************************************************************************/
3347 * The following routines act on original old Stallion boards.
3350 static void stli_stalinit(stlibrd_t *brdp)
3352 outb(0x1, brdp->iobase);
3353 mdelay(1000);
3356 /*****************************************************************************/
3358 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3360 BUG_ON(offset > brdp->memsize);
3361 return brdp->membase + (offset % STAL_PAGESIZE);
3364 /*****************************************************************************/
3366 static void stli_stalreset(stlibrd_t *brdp)
3368 u32 __iomem *vecp;
3370 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3371 writel(0xffff0000, vecp);
3372 outb(0, brdp->iobase);
3373 mdelay(1000);
3376 /*****************************************************************************/
3379 * Try to find an ECP board and initialize it. This handles only ECP
3380 * board types.
3383 static int stli_initecp(stlibrd_t *brdp)
3385 cdkecpsig_t sig;
3386 cdkecpsig_t __iomem *sigsp;
3387 unsigned int status, nxtid;
3388 char *name;
3389 int panelnr, nrports;
3391 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3392 return -EIO;
3394 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3396 release_region(brdp->iobase, brdp->iosize);
3397 return -ENODEV;
3400 brdp->iosize = ECP_IOSIZE;
3403 * Based on the specific board type setup the common vars to access
3404 * and enable shared memory. Set all board specific information now
3405 * as well.
3407 switch (brdp->brdtype) {
3408 case BRD_ECP:
3409 brdp->membase = (void *) brdp->memaddr;
3410 brdp->memsize = ECP_MEMSIZE;
3411 brdp->pagesize = ECP_ATPAGESIZE;
3412 brdp->init = stli_ecpinit;
3413 brdp->enable = stli_ecpenable;
3414 brdp->reenable = stli_ecpenable;
3415 brdp->disable = stli_ecpdisable;
3416 brdp->getmemptr = stli_ecpgetmemptr;
3417 brdp->intr = stli_ecpintr;
3418 brdp->reset = stli_ecpreset;
3419 name = "serial(EC8/64)";
3420 break;
3422 case BRD_ECPE:
3423 brdp->membase = (void *) brdp->memaddr;
3424 brdp->memsize = ECP_MEMSIZE;
3425 brdp->pagesize = ECP_EIPAGESIZE;
3426 brdp->init = stli_ecpeiinit;
3427 brdp->enable = stli_ecpeienable;
3428 brdp->reenable = stli_ecpeienable;
3429 brdp->disable = stli_ecpeidisable;
3430 brdp->getmemptr = stli_ecpeigetmemptr;
3431 brdp->intr = stli_ecpintr;
3432 brdp->reset = stli_ecpeireset;
3433 name = "serial(EC8/64-EI)";
3434 break;
3436 case BRD_ECPMC:
3437 brdp->membase = (void *) brdp->memaddr;
3438 brdp->memsize = ECP_MEMSIZE;
3439 brdp->pagesize = ECP_MCPAGESIZE;
3440 brdp->init = NULL;
3441 brdp->enable = stli_ecpmcenable;
3442 brdp->reenable = stli_ecpmcenable;
3443 brdp->disable = stli_ecpmcdisable;
3444 brdp->getmemptr = stli_ecpmcgetmemptr;
3445 brdp->intr = stli_ecpintr;
3446 brdp->reset = stli_ecpmcreset;
3447 name = "serial(EC8/64-MCA)";
3448 break;
3450 case BRD_ECPPCI:
3451 brdp->membase = (void *) brdp->memaddr;
3452 brdp->memsize = ECP_PCIMEMSIZE;
3453 brdp->pagesize = ECP_PCIPAGESIZE;
3454 brdp->init = stli_ecppciinit;
3455 brdp->enable = NULL;
3456 brdp->reenable = NULL;
3457 brdp->disable = NULL;
3458 brdp->getmemptr = stli_ecppcigetmemptr;
3459 brdp->intr = stli_ecpintr;
3460 brdp->reset = stli_ecppcireset;
3461 name = "serial(EC/RA-PCI)";
3462 break;
3464 default:
3465 release_region(brdp->iobase, brdp->iosize);
3466 return -EINVAL;
3470 * The per-board operations structure is all set up, so now let's go
3471 * and get the board operational. Firstly initialize board configuration
3472 * registers. Set the memory mapping info so we can get at the boards
3473 * shared memory.
3475 EBRDINIT(brdp);
3477 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3478 if (brdp->membase == NULL)
3480 release_region(brdp->iobase, brdp->iosize);
3481 return -ENOMEM;
3485 * Now that all specific code is set up, enable the shared memory and
3486 * look for the a signature area that will tell us exactly what board
3487 * this is, and what it is connected to it.
3489 EBRDENABLE(brdp);
3490 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3491 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3492 EBRDDISABLE(brdp);
3494 if (sig.magic != cpu_to_le32(ECP_MAGIC))
3496 release_region(brdp->iobase, brdp->iosize);
3497 return -ENODEV;
3501 * Scan through the signature looking at the panels connected to the
3502 * board. Calculate the total number of ports as we go.
3504 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3505 status = sig.panelid[nxtid];
3506 if ((status & ECH_PNLIDMASK) != nxtid)
3507 break;
3509 brdp->panelids[panelnr] = status;
3510 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3511 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3512 nxtid++;
3513 brdp->panels[panelnr] = nrports;
3514 brdp->nrports += nrports;
3515 nxtid++;
3516 brdp->nrpanels++;
3520 brdp->state |= BST_FOUND;
3521 return 0;
3524 /*****************************************************************************/
3527 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3528 * This handles only these board types.
3531 static int stli_initonb(stlibrd_t *brdp)
3533 cdkonbsig_t sig;
3534 cdkonbsig_t __iomem *sigsp;
3535 char *name;
3536 int i;
3539 * Do a basic sanity check on the IO and memory addresses.
3541 if (brdp->iobase == 0 || brdp->memaddr == 0)
3542 return -ENODEV;
3544 brdp->iosize = ONB_IOSIZE;
3546 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3547 return -EIO;
3550 * Based on the specific board type setup the common vars to access
3551 * and enable shared memory. Set all board specific information now
3552 * as well.
3554 switch (brdp->brdtype) {
3555 case BRD_ONBOARD:
3556 case BRD_ONBOARD32:
3557 case BRD_ONBOARD2:
3558 case BRD_ONBOARD2_32:
3559 case BRD_ONBOARDRS:
3560 brdp->memsize = ONB_MEMSIZE;
3561 brdp->pagesize = ONB_ATPAGESIZE;
3562 brdp->init = stli_onbinit;
3563 brdp->enable = stli_onbenable;
3564 brdp->reenable = stli_onbenable;
3565 brdp->disable = stli_onbdisable;
3566 brdp->getmemptr = stli_onbgetmemptr;
3567 brdp->intr = stli_ecpintr;
3568 brdp->reset = stli_onbreset;
3569 if (brdp->memaddr > 0x100000)
3570 brdp->enabval = ONB_MEMENABHI;
3571 else
3572 brdp->enabval = ONB_MEMENABLO;
3573 name = "serial(ONBoard)";
3574 break;
3576 case BRD_ONBOARDE:
3577 brdp->memsize = ONB_EIMEMSIZE;
3578 brdp->pagesize = ONB_EIPAGESIZE;
3579 brdp->init = stli_onbeinit;
3580 brdp->enable = stli_onbeenable;
3581 brdp->reenable = stli_onbeenable;
3582 brdp->disable = stli_onbedisable;
3583 brdp->getmemptr = stli_onbegetmemptr;
3584 brdp->intr = stli_ecpintr;
3585 brdp->reset = stli_onbereset;
3586 name = "serial(ONBoard/E)";
3587 break;
3589 case BRD_BRUMBY4:
3590 case BRD_BRUMBY8:
3591 case BRD_BRUMBY16:
3592 brdp->memsize = BBY_MEMSIZE;
3593 brdp->pagesize = BBY_PAGESIZE;
3594 brdp->init = stli_bbyinit;
3595 brdp->enable = NULL;
3596 brdp->reenable = NULL;
3597 brdp->disable = NULL;
3598 brdp->getmemptr = stli_bbygetmemptr;
3599 brdp->intr = stli_ecpintr;
3600 brdp->reset = stli_bbyreset;
3601 name = "serial(Brumby)";
3602 break;
3604 case BRD_STALLION:
3605 brdp->memsize = STAL_MEMSIZE;
3606 brdp->pagesize = STAL_PAGESIZE;
3607 brdp->init = stli_stalinit;
3608 brdp->enable = NULL;
3609 brdp->reenable = NULL;
3610 brdp->disable = NULL;
3611 brdp->getmemptr = stli_stalgetmemptr;
3612 brdp->intr = stli_ecpintr;
3613 brdp->reset = stli_stalreset;
3614 name = "serial(Stallion)";
3615 break;
3617 default:
3618 release_region(brdp->iobase, brdp->iosize);
3619 return -EINVAL;
3623 * The per-board operations structure is all set up, so now let's go
3624 * and get the board operational. Firstly initialize board configuration
3625 * registers. Set the memory mapping info so we can get at the boards
3626 * shared memory.
3628 EBRDINIT(brdp);
3630 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3631 if (brdp->membase == NULL)
3633 release_region(brdp->iobase, brdp->iosize);
3634 return -ENOMEM;
3638 * Now that all specific code is set up, enable the shared memory and
3639 * look for the a signature area that will tell us exactly what board
3640 * this is, and how many ports.
3642 EBRDENABLE(brdp);
3643 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3644 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3645 EBRDDISABLE(brdp);
3647 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3648 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3649 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3650 sig.magic3 != cpu_to_le16(ONB_MAGIC3))
3652 release_region(brdp->iobase, brdp->iosize);
3653 return -ENODEV;
3657 * Scan through the signature alive mask and calculate how many ports
3658 * there are on this board.
3660 brdp->nrpanels = 1;
3661 if (sig.amask1) {
3662 brdp->nrports = 32;
3663 } else {
3664 for (i = 0; (i < 16); i++) {
3665 if (((sig.amask0 << i) & 0x8000) == 0)
3666 break;
3668 brdp->nrports = i;
3670 brdp->panels[0] = brdp->nrports;
3673 brdp->state |= BST_FOUND;
3674 return 0;
3677 /*****************************************************************************/
3680 * Start up a running board. This routine is only called after the
3681 * code has been down loaded to the board and is operational. It will
3682 * read in the memory map, and get the show on the road...
3685 static int stli_startbrd(stlibrd_t *brdp)
3687 cdkhdr_t __iomem *hdrp;
3688 cdkmem_t __iomem *memp;
3689 cdkasy_t __iomem *ap;
3690 unsigned long flags;
3691 stliport_t *portp;
3692 int portnr, nrdevs, i, rc = 0;
3693 u32 memoff;
3695 spin_lock_irqsave(&brd_lock, flags);
3696 EBRDENABLE(brdp);
3697 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3698 nrdevs = hdrp->nrdevs;
3700 #if 0
3701 printk("%s(%d): CDK version %d.%d.%d --> "
3702 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3703 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3704 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3705 readl(&hdrp->slavep));
3706 #endif
3708 if (nrdevs < (brdp->nrports + 1)) {
3709 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3710 "all devices, devices=%d\n", nrdevs);
3711 brdp->nrports = nrdevs - 1;
3713 brdp->nrdevs = nrdevs;
3714 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3715 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3716 brdp->bitsize = (nrdevs + 7) / 8;
3717 memoff = readl(&hdrp->memp);
3718 if (memoff > brdp->memsize) {
3719 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3720 rc = -EIO;
3721 goto stli_donestartup;
3723 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3724 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3725 printk(KERN_ERR "STALLION: no slave control device found\n");
3726 goto stli_donestartup;
3728 memp++;
3731 * Cycle through memory allocation of each port. We are guaranteed to
3732 * have all ports inside the first page of slave window, so no need to
3733 * change pages while reading memory map.
3735 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3736 if (readw(&memp->dtype) != TYP_ASYNC)
3737 break;
3738 portp = brdp->ports[portnr];
3739 if (portp == NULL)
3740 break;
3741 portp->devnr = i;
3742 portp->addr = readl(&memp->offset);
3743 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3744 portp->portidx = (unsigned char) (i / 8);
3745 portp->portbit = (unsigned char) (0x1 << (i % 8));
3748 writeb(0xff, &hdrp->slavereq);
3751 * For each port setup a local copy of the RX and TX buffer offsets
3752 * and sizes. We do this separate from the above, because we need to
3753 * move the shared memory page...
3755 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3756 portp = brdp->ports[portnr];
3757 if (portp == NULL)
3758 break;
3759 if (portp->addr == 0)
3760 break;
3761 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3762 if (ap != NULL) {
3763 portp->rxsize = readw(&ap->rxq.size);
3764 portp->txsize = readw(&ap->txq.size);
3765 portp->rxoffset = readl(&ap->rxq.offset);
3766 portp->txoffset = readl(&ap->txq.offset);
3770 stli_donestartup:
3771 EBRDDISABLE(brdp);
3772 spin_unlock_irqrestore(&brd_lock, flags);
3774 if (rc == 0)
3775 brdp->state |= BST_STARTED;
3777 if (! stli_timeron) {
3778 stli_timeron++;
3779 stli_timerlist.expires = STLI_TIMEOUT;
3780 add_timer(&stli_timerlist);
3783 return rc;
3786 /*****************************************************************************/
3789 * Probe and initialize the specified board.
3792 static int __init stli_brdinit(stlibrd_t *brdp)
3794 stli_brds[brdp->brdnr] = brdp;
3796 switch (brdp->brdtype) {
3797 case BRD_ECP:
3798 case BRD_ECPE:
3799 case BRD_ECPMC:
3800 case BRD_ECPPCI:
3801 stli_initecp(brdp);
3802 break;
3803 case BRD_ONBOARD:
3804 case BRD_ONBOARDE:
3805 case BRD_ONBOARD2:
3806 case BRD_ONBOARD32:
3807 case BRD_ONBOARD2_32:
3808 case BRD_ONBOARDRS:
3809 case BRD_BRUMBY4:
3810 case BRD_BRUMBY8:
3811 case BRD_BRUMBY16:
3812 case BRD_STALLION:
3813 stli_initonb(brdp);
3814 break;
3815 case BRD_EASYIO:
3816 case BRD_ECH:
3817 case BRD_ECHMC:
3818 case BRD_ECHPCI:
3819 printk(KERN_ERR "STALLION: %s board type not supported in "
3820 "this driver\n", stli_brdnames[brdp->brdtype]);
3821 return -ENODEV;
3822 default:
3823 printk(KERN_ERR "STALLION: board=%d is unknown board "
3824 "type=%d\n", brdp->brdnr, brdp->brdtype);
3825 return -ENODEV;
3828 if ((brdp->state & BST_FOUND) == 0) {
3829 printk(KERN_ERR "STALLION: %s board not found, board=%d "
3830 "io=%x mem=%x\n",
3831 stli_brdnames[brdp->brdtype], brdp->brdnr,
3832 brdp->iobase, (int) brdp->memaddr);
3833 return -ENODEV;
3836 stli_initports(brdp);
3837 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3838 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3839 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3840 brdp->nrpanels, brdp->nrports);
3841 return 0;
3844 /*****************************************************************************/
3847 * Probe around trying to find where the EISA boards shared memory
3848 * might be. This is a bit if hack, but it is the best we can do.
3851 static int stli_eisamemprobe(stlibrd_t *brdp)
3853 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3854 cdkonbsig_t onbsig, __iomem *onbsigp;
3855 int i, foundit;
3858 * First up we reset the board, to get it into a known state. There
3859 * is only 2 board types here we need to worry about. Don;t use the
3860 * standard board init routine here, it programs up the shared
3861 * memory address, and we don't know it yet...
3863 if (brdp->brdtype == BRD_ECPE) {
3864 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3865 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3866 udelay(10);
3867 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3868 udelay(500);
3869 stli_ecpeienable(brdp);
3870 } else if (brdp->brdtype == BRD_ONBOARDE) {
3871 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3872 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3873 udelay(10);
3874 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3875 mdelay(100);
3876 outb(0x1, brdp->iobase);
3877 mdelay(1);
3878 stli_onbeenable(brdp);
3879 } else {
3880 return -ENODEV;
3883 foundit = 0;
3884 brdp->memsize = ECP_MEMSIZE;
3887 * Board shared memory is enabled, so now we have a poke around and
3888 * see if we can find it.
3890 for (i = 0; (i < stli_eisamempsize); i++) {
3891 brdp->memaddr = stli_eisamemprobeaddrs[i];
3892 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3893 if (brdp->membase == NULL)
3894 continue;
3896 if (brdp->brdtype == BRD_ECPE) {
3897 ecpsigp = (cdkecpsig_t __iomem *) stli_ecpeigetmemptr(brdp,
3898 CDK_SIGADDR, __LINE__);
3899 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3900 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3901 foundit = 1;
3902 } else {
3903 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3904 CDK_SIGADDR, __LINE__);
3905 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3906 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3907 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3908 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3909 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3910 foundit = 1;
3913 iounmap(brdp->membase);
3914 if (foundit)
3915 break;
3919 * Regardless of whether we found the shared memory or not we must
3920 * disable the region. After that return success or failure.
3922 if (brdp->brdtype == BRD_ECPE)
3923 stli_ecpeidisable(brdp);
3924 else
3925 stli_onbedisable(brdp);
3927 if (! foundit) {
3928 brdp->memaddr = 0;
3929 brdp->membase = NULL;
3930 printk(KERN_ERR "STALLION: failed to probe shared memory "
3931 "region for %s in EISA slot=%d\n",
3932 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3933 return -ENODEV;
3935 return 0;
3938 static int stli_getbrdnr(void)
3940 int i;
3942 for (i = 0; i < STL_MAXBRDS; i++) {
3943 if (!stli_brds[i]) {
3944 if (i >= stli_nrbrds)
3945 stli_nrbrds = i + 1;
3946 return i;
3949 return -1;
3952 /*****************************************************************************/
3955 * Probe around and try to find any EISA boards in system. The biggest
3956 * problem here is finding out what memory address is associated with
3957 * an EISA board after it is found. The registers of the ECPE and
3958 * ONboardE are not readable - so we can't read them from there. We
3959 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3960 * actually have any way to find out the real value. The best we can
3961 * do is go probing around in the usual places hoping we can find it.
3964 static int stli_findeisabrds(void)
3966 stlibrd_t *brdp;
3967 unsigned int iobase, eid;
3968 int i;
3971 * Firstly check if this is an EISA system. If this is not an EISA system then
3972 * don't bother going any further!
3974 if (EISA_bus)
3975 return 0;
3978 * Looks like an EISA system, so go searching for EISA boards.
3980 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3981 outb(0xff, (iobase + 0xc80));
3982 eid = inb(iobase + 0xc80);
3983 eid |= inb(iobase + 0xc81) << 8;
3984 if (eid != STL_EISAID)
3985 continue;
3988 * We have found a board. Need to check if this board was
3989 * statically configured already (just in case!).
3991 for (i = 0; (i < STL_MAXBRDS); i++) {
3992 brdp = stli_brds[i];
3993 if (brdp == NULL)
3994 continue;
3995 if (brdp->iobase == iobase)
3996 break;
3998 if (i < STL_MAXBRDS)
3999 continue;
4002 * We have found a Stallion board and it is not configured already.
4003 * Allocate a board structure and initialize it.
4005 if ((brdp = stli_allocbrd()) == NULL)
4006 return -ENOMEM;
4007 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4008 return -ENOMEM;
4009 eid = inb(iobase + 0xc82);
4010 if (eid == ECP_EISAID)
4011 brdp->brdtype = BRD_ECPE;
4012 else if (eid == ONB_EISAID)
4013 brdp->brdtype = BRD_ONBOARDE;
4014 else
4015 brdp->brdtype = BRD_UNKNOWN;
4016 brdp->iobase = iobase;
4017 outb(0x1, (iobase + 0xc84));
4018 if (stli_eisamemprobe(brdp))
4019 outb(0, (iobase + 0xc84));
4020 stli_brdinit(brdp);
4023 return 0;
4026 /*****************************************************************************/
4029 * Find the next available board number that is free.
4032 /*****************************************************************************/
4034 #ifdef CONFIG_PCI
4037 * We have a Stallion board. Allocate a board structure and
4038 * initialize it. Read its IO and MEMORY resources from PCI
4039 * configuration space.
4042 static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4044 stlibrd_t *brdp;
4046 if (pci_enable_device(devp))
4047 return -EIO;
4048 if ((brdp = stli_allocbrd()) == NULL)
4049 return -ENOMEM;
4050 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4051 printk(KERN_INFO "STALLION: too many boards found, "
4052 "maximum supported %d\n", STL_MAXBRDS);
4053 return 0;
4055 brdp->brdtype = brdtype;
4057 * We have all resources from the board, so lets setup the actual
4058 * board structure now.
4060 brdp->iobase = pci_resource_start(devp, 3);
4061 brdp->memaddr = pci_resource_start(devp, 2);
4062 stli_brdinit(brdp);
4064 return 0;
4067 /*****************************************************************************/
4070 * Find all Stallion PCI boards that might be installed. Initialize each
4071 * one as it is found.
4074 static int stli_findpcibrds(void)
4076 struct pci_dev *dev = NULL;
4078 while ((dev = pci_get_device(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, dev))) {
4079 stli_initpcibrd(BRD_ECPPCI, dev);
4081 return 0;
4084 #endif
4086 /*****************************************************************************/
4089 * Allocate a new board structure. Fill out the basic info in it.
4092 static stlibrd_t *stli_allocbrd(void)
4094 stlibrd_t *brdp;
4096 brdp = kzalloc(sizeof(stlibrd_t), GFP_KERNEL);
4097 if (!brdp) {
4098 printk(KERN_ERR "STALLION: failed to allocate memory "
4099 "(size=%Zd)\n", sizeof(stlibrd_t));
4100 return NULL;
4102 brdp->magic = STLI_BOARDMAGIC;
4103 return brdp;
4106 /*****************************************************************************/
4109 * Scan through all the boards in the configuration and see what we
4110 * can find.
4113 static int stli_initbrds(void)
4115 stlibrd_t *brdp, *nxtbrdp;
4116 stlconf_t *confp;
4117 int i, j;
4119 if (stli_nrbrds > STL_MAXBRDS) {
4120 printk(KERN_INFO "STALLION: too many boards in configuration "
4121 "table, truncating to %d\n", STL_MAXBRDS);
4122 stli_nrbrds = STL_MAXBRDS;
4126 * Firstly scan the list of static boards configured. Allocate
4127 * resources and initialize the boards as found. If this is a
4128 * module then let the module args override static configuration.
4130 for (i = 0; (i < stli_nrbrds); i++) {
4131 confp = &stli_brdconf[i];
4132 stli_parsebrd(confp, stli_brdsp[i]);
4133 if ((brdp = stli_allocbrd()) == NULL)
4134 return -ENOMEM;
4135 brdp->brdnr = i;
4136 brdp->brdtype = confp->brdtype;
4137 brdp->iobase = confp->ioaddr1;
4138 brdp->memaddr = confp->memaddr;
4139 stli_brdinit(brdp);
4143 * Static configuration table done, so now use dynamic methods to
4144 * see if any more boards should be configured.
4146 stli_argbrds();
4147 if (STLI_EISAPROBE)
4148 stli_findeisabrds();
4149 #ifdef CONFIG_PCI
4150 stli_findpcibrds();
4151 #endif
4154 * All found boards are initialized. Now for a little optimization, if
4155 * no boards are sharing the "shared memory" regions then we can just
4156 * leave them all enabled. This is in fact the usual case.
4158 stli_shared = 0;
4159 if (stli_nrbrds > 1) {
4160 for (i = 0; (i < stli_nrbrds); i++) {
4161 brdp = stli_brds[i];
4162 if (brdp == NULL)
4163 continue;
4164 for (j = i + 1; (j < stli_nrbrds); j++) {
4165 nxtbrdp = stli_brds[j];
4166 if (nxtbrdp == NULL)
4167 continue;
4168 if ((brdp->membase >= nxtbrdp->membase) &&
4169 (brdp->membase <= (nxtbrdp->membase +
4170 nxtbrdp->memsize - 1))) {
4171 stli_shared++;
4172 break;
4178 if (stli_shared == 0) {
4179 for (i = 0; (i < stli_nrbrds); i++) {
4180 brdp = stli_brds[i];
4181 if (brdp == NULL)
4182 continue;
4183 if (brdp->state & BST_FOUND) {
4184 EBRDENABLE(brdp);
4185 brdp->enable = NULL;
4186 brdp->disable = NULL;
4191 return 0;
4194 /*****************************************************************************/
4197 * Code to handle an "staliomem" read operation. This device is the
4198 * contents of the board shared memory. It is used for down loading
4199 * the slave image (and debugging :-)
4202 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4204 unsigned long flags;
4205 void *memptr;
4206 stlibrd_t *brdp;
4207 int brdnr, size, n;
4208 void *p;
4209 loff_t off = *offp;
4211 brdnr = iminor(fp->f_dentry->d_inode);
4212 if (brdnr >= stli_nrbrds)
4213 return -ENODEV;
4214 brdp = stli_brds[brdnr];
4215 if (brdp == NULL)
4216 return -ENODEV;
4217 if (brdp->state == 0)
4218 return -ENODEV;
4219 if (off >= brdp->memsize || off + count < off)
4220 return 0;
4222 size = MIN(count, (brdp->memsize - off));
4225 * Copy the data a page at a time
4228 p = (void *)__get_free_page(GFP_KERNEL);
4229 if(p == NULL)
4230 return -ENOMEM;
4232 while (size > 0) {
4233 spin_lock_irqsave(&brd_lock, flags);
4234 EBRDENABLE(brdp);
4235 memptr = (void *) EBRDGETMEMPTR(brdp, off);
4236 n = MIN(size, (brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4237 n = MIN(n, PAGE_SIZE);
4238 memcpy_fromio(p, memptr, n);
4239 EBRDDISABLE(brdp);
4240 spin_unlock_irqrestore(&brd_lock, flags);
4241 if (copy_to_user(buf, p, n)) {
4242 count = -EFAULT;
4243 goto out;
4245 off += n;
4246 buf += n;
4247 size -= n;
4249 out:
4250 *offp = off;
4251 free_page((unsigned long)p);
4252 return count;
4255 /*****************************************************************************/
4258 * Code to handle an "staliomem" write operation. This device is the
4259 * contents of the board shared memory. It is used for down loading
4260 * the slave image (and debugging :-)
4262 * FIXME: copy under lock
4265 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4267 unsigned long flags;
4268 void *memptr;
4269 stlibrd_t *brdp;
4270 char __user *chbuf;
4271 int brdnr, size, n;
4272 void *p;
4273 loff_t off = *offp;
4275 brdnr = iminor(fp->f_dentry->d_inode);
4277 if (brdnr >= stli_nrbrds)
4278 return -ENODEV;
4279 brdp = stli_brds[brdnr];
4280 if (brdp == NULL)
4281 return -ENODEV;
4282 if (brdp->state == 0)
4283 return -ENODEV;
4284 if (off >= brdp->memsize || off + count < off)
4285 return 0;
4287 chbuf = (char __user *) buf;
4288 size = MIN(count, (brdp->memsize - off));
4291 * Copy the data a page at a time
4294 p = (void *)__get_free_page(GFP_KERNEL);
4295 if(p == NULL)
4296 return -ENOMEM;
4298 while (size > 0) {
4299 n = MIN(size, (brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4300 n = MIN(n, PAGE_SIZE);
4301 if (copy_from_user(p, chbuf, n)) {
4302 if (count == 0)
4303 count = -EFAULT;
4304 goto out;
4306 spin_lock_irqsave(&brd_lock, flags);
4307 EBRDENABLE(brdp);
4308 memptr = (void *) EBRDGETMEMPTR(brdp, off);
4309 memcpy_toio(memptr, p, n);
4310 EBRDDISABLE(brdp);
4311 spin_unlock_irqrestore(&brd_lock, flags);
4312 off += n;
4313 chbuf += n;
4314 size -= n;
4316 out:
4317 free_page((unsigned long) p);
4318 *offp = off;
4319 return count;
4322 /*****************************************************************************/
4325 * Return the board stats structure to user app.
4328 static int stli_getbrdstats(combrd_t __user *bp)
4330 stlibrd_t *brdp;
4331 int i;
4333 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4334 return -EFAULT;
4335 if (stli_brdstats.brd >= STL_MAXBRDS)
4336 return -ENODEV;
4337 brdp = stli_brds[stli_brdstats.brd];
4338 if (brdp == NULL)
4339 return -ENODEV;
4341 memset(&stli_brdstats, 0, sizeof(combrd_t));
4342 stli_brdstats.brd = brdp->brdnr;
4343 stli_brdstats.type = brdp->brdtype;
4344 stli_brdstats.hwid = 0;
4345 stli_brdstats.state = brdp->state;
4346 stli_brdstats.ioaddr = brdp->iobase;
4347 stli_brdstats.memaddr = brdp->memaddr;
4348 stli_brdstats.nrpanels = brdp->nrpanels;
4349 stli_brdstats.nrports = brdp->nrports;
4350 for (i = 0; (i < brdp->nrpanels); i++) {
4351 stli_brdstats.panels[i].panel = i;
4352 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4353 stli_brdstats.panels[i].nrports = brdp->panels[i];
4356 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4357 return -EFAULT;
4358 return 0;
4361 /*****************************************************************************/
4364 * Resolve the referenced port number into a port struct pointer.
4367 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4369 stlibrd_t *brdp;
4370 int i;
4372 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
4373 return NULL;
4374 brdp = stli_brds[brdnr];
4375 if (brdp == NULL)
4376 return NULL;
4377 for (i = 0; (i < panelnr); i++)
4378 portnr += brdp->panels[i];
4379 if ((portnr < 0) || (portnr >= brdp->nrports))
4380 return NULL;
4381 return brdp->ports[portnr];
4384 /*****************************************************************************/
4387 * Return the port stats structure to user app. A NULL port struct
4388 * pointer passed in means that we need to find out from the app
4389 * what port to get stats for (used through board control device).
4392 static int stli_portcmdstats(stliport_t *portp)
4394 unsigned long flags;
4395 stlibrd_t *brdp;
4396 int rc;
4398 memset(&stli_comstats, 0, sizeof(comstats_t));
4400 if (portp == NULL)
4401 return -ENODEV;
4402 brdp = stli_brds[portp->brdnr];
4403 if (brdp == NULL)
4404 return -ENODEV;
4406 if (brdp->state & BST_STARTED) {
4407 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4408 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4409 return rc;
4410 } else {
4411 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4414 stli_comstats.brd = portp->brdnr;
4415 stli_comstats.panel = portp->panelnr;
4416 stli_comstats.port = portp->portnr;
4417 stli_comstats.state = portp->state;
4418 stli_comstats.flags = portp->flags;
4420 spin_lock_irqsave(&brd_lock, flags);
4421 if (portp->tty != NULL) {
4422 if (portp->tty->driver_data == portp) {
4423 stli_comstats.ttystate = portp->tty->flags;
4424 stli_comstats.rxbuffered = -1;
4425 if (portp->tty->termios != NULL) {
4426 stli_comstats.cflags = portp->tty->termios->c_cflag;
4427 stli_comstats.iflags = portp->tty->termios->c_iflag;
4428 stli_comstats.oflags = portp->tty->termios->c_oflag;
4429 stli_comstats.lflags = portp->tty->termios->c_lflag;
4433 spin_unlock_irqrestore(&brd_lock, flags);
4435 stli_comstats.txtotal = stli_cdkstats.txchars;
4436 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4437 stli_comstats.txbuffered = stli_cdkstats.txringq;
4438 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4439 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4440 stli_comstats.rxparity = stli_cdkstats.parity;
4441 stli_comstats.rxframing = stli_cdkstats.framing;
4442 stli_comstats.rxlost = stli_cdkstats.ringover;
4443 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4444 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4445 stli_comstats.txxon = stli_cdkstats.txstart;
4446 stli_comstats.txxoff = stli_cdkstats.txstop;
4447 stli_comstats.rxxon = stli_cdkstats.rxstart;
4448 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4449 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4450 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4451 stli_comstats.modem = stli_cdkstats.dcdcnt;
4452 stli_comstats.hwid = stli_cdkstats.hwid;
4453 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4455 return 0;
4458 /*****************************************************************************/
4461 * Return the port stats structure to user app. A NULL port struct
4462 * pointer passed in means that we need to find out from the app
4463 * what port to get stats for (used through board control device).
4466 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4468 stlibrd_t *brdp;
4469 int rc;
4471 if (!portp) {
4472 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4473 return -EFAULT;
4474 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4475 stli_comstats.port);
4476 if (!portp)
4477 return -ENODEV;
4480 brdp = stli_brds[portp->brdnr];
4481 if (!brdp)
4482 return -ENODEV;
4484 if ((rc = stli_portcmdstats(portp)) < 0)
4485 return rc;
4487 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4488 -EFAULT : 0;
4491 /*****************************************************************************/
4494 * Clear the port stats structure. We also return it zeroed out...
4497 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
4499 stlibrd_t *brdp;
4500 int rc;
4502 if (!portp) {
4503 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4504 return -EFAULT;
4505 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4506 stli_comstats.port);
4507 if (!portp)
4508 return -ENODEV;
4511 brdp = stli_brds[portp->brdnr];
4512 if (!brdp)
4513 return -ENODEV;
4515 if (brdp->state & BST_STARTED) {
4516 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4517 return rc;
4520 memset(&stli_comstats, 0, sizeof(comstats_t));
4521 stli_comstats.brd = portp->brdnr;
4522 stli_comstats.panel = portp->panelnr;
4523 stli_comstats.port = portp->portnr;
4525 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4526 return -EFAULT;
4527 return 0;
4530 /*****************************************************************************/
4533 * Return the entire driver ports structure to a user app.
4536 static int stli_getportstruct(stliport_t __user *arg)
4538 stliport_t *portp;
4540 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
4541 return -EFAULT;
4542 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4543 stli_dummyport.portnr);
4544 if (!portp)
4545 return -ENODEV;
4546 if (copy_to_user(arg, portp, sizeof(stliport_t)))
4547 return -EFAULT;
4548 return 0;
4551 /*****************************************************************************/
4554 * Return the entire driver board structure to a user app.
4557 static int stli_getbrdstruct(stlibrd_t __user *arg)
4559 stlibrd_t *brdp;
4561 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
4562 return -EFAULT;
4563 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
4564 return -ENODEV;
4565 brdp = stli_brds[stli_dummybrd.brdnr];
4566 if (!brdp)
4567 return -ENODEV;
4568 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
4569 return -EFAULT;
4570 return 0;
4573 /*****************************************************************************/
4576 * The "staliomem" device is also required to do some special operations on
4577 * the board. We need to be able to send an interrupt to the board,
4578 * reset it, and start/stop it.
4581 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4583 stlibrd_t *brdp;
4584 int brdnr, rc, done;
4585 void __user *argp = (void __user *)arg;
4588 * First up handle the board independent ioctls.
4590 done = 0;
4591 rc = 0;
4593 switch (cmd) {
4594 case COM_GETPORTSTATS:
4595 rc = stli_getportstats(NULL, argp);
4596 done++;
4597 break;
4598 case COM_CLRPORTSTATS:
4599 rc = stli_clrportstats(NULL, argp);
4600 done++;
4601 break;
4602 case COM_GETBRDSTATS:
4603 rc = stli_getbrdstats(argp);
4604 done++;
4605 break;
4606 case COM_READPORT:
4607 rc = stli_getportstruct(argp);
4608 done++;
4609 break;
4610 case COM_READBOARD:
4611 rc = stli_getbrdstruct(argp);
4612 done++;
4613 break;
4616 if (done)
4617 return rc;
4620 * Now handle the board specific ioctls. These all depend on the
4621 * minor number of the device they were called from.
4623 brdnr = iminor(ip);
4624 if (brdnr >= STL_MAXBRDS)
4625 return -ENODEV;
4626 brdp = stli_brds[brdnr];
4627 if (!brdp)
4628 return -ENODEV;
4629 if (brdp->state == 0)
4630 return -ENODEV;
4632 switch (cmd) {
4633 case STL_BINTR:
4634 EBRDINTR(brdp);
4635 break;
4636 case STL_BSTART:
4637 rc = stli_startbrd(brdp);
4638 break;
4639 case STL_BSTOP:
4640 brdp->state &= ~BST_STARTED;
4641 break;
4642 case STL_BRESET:
4643 brdp->state &= ~BST_STARTED;
4644 EBRDRESET(brdp);
4645 if (stli_shared == 0) {
4646 if (brdp->reenable != NULL)
4647 (* brdp->reenable)(brdp);
4649 break;
4650 default:
4651 rc = -ENOIOCTLCMD;
4652 break;
4654 return rc;
4657 static struct tty_operations stli_ops = {
4658 .open = stli_open,
4659 .close = stli_close,
4660 .write = stli_write,
4661 .put_char = stli_putchar,
4662 .flush_chars = stli_flushchars,
4663 .write_room = stli_writeroom,
4664 .chars_in_buffer = stli_charsinbuffer,
4665 .ioctl = stli_ioctl,
4666 .set_termios = stli_settermios,
4667 .throttle = stli_throttle,
4668 .unthrottle = stli_unthrottle,
4669 .stop = stli_stop,
4670 .start = stli_start,
4671 .hangup = stli_hangup,
4672 .flush_buffer = stli_flushbuffer,
4673 .break_ctl = stli_breakctl,
4674 .wait_until_sent = stli_waituntilsent,
4675 .send_xchar = stli_sendxchar,
4676 .read_proc = stli_readproc,
4677 .tiocmget = stli_tiocmget,
4678 .tiocmset = stli_tiocmset,
4681 /*****************************************************************************/
4683 static int __init stli_init(void)
4685 int i;
4686 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4688 spin_lock_init(&stli_lock);
4689 spin_lock_init(&brd_lock);
4691 stli_initbrds();
4693 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4694 if (!stli_serial)
4695 return -ENOMEM;
4698 * Allocate a temporary write buffer.
4700 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4701 if (!stli_txcookbuf)
4702 printk(KERN_ERR "STALLION: failed to allocate memory "
4703 "(size=%d)\n", STLI_TXBUFSIZE);
4706 * Set up a character driver for the shared memory region. We need this
4707 * to down load the slave code image. Also it is a useful debugging tool.
4709 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
4710 printk(KERN_ERR "STALLION: failed to register serial memory "
4711 "device\n");
4713 istallion_class = class_create(THIS_MODULE, "staliomem");
4714 for (i = 0; i < 4; i++)
4715 class_device_create(istallion_class, NULL,
4716 MKDEV(STL_SIOMEMMAJOR, i),
4717 NULL, "staliomem%d", i);
4720 * Set up the tty driver structure and register us as a driver.
4722 stli_serial->owner = THIS_MODULE;
4723 stli_serial->driver_name = stli_drvname;
4724 stli_serial->name = stli_serialname;
4725 stli_serial->major = STL_SERIALMAJOR;
4726 stli_serial->minor_start = 0;
4727 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4728 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4729 stli_serial->init_termios = stli_deftermios;
4730 stli_serial->flags = TTY_DRIVER_REAL_RAW;
4731 tty_set_operations(stli_serial, &stli_ops);
4733 if (tty_register_driver(stli_serial)) {
4734 put_tty_driver(stli_serial);
4735 printk(KERN_ERR "STALLION: failed to register serial driver\n");
4736 return -EBUSY;
4738 return 0;
4741 /*****************************************************************************/