2 * Physical mapping layer for MTD using the Axis partitiontable format
4 * Copyright (c) 2001, 2002, 2003 Axis Communications AB
6 * This file is under the GPL.
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
13 * Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
24 #include <linux/mtd/concat.h>
25 #include <linux/mtd/map.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/mtdram.h>
28 #include <linux/mtd/partitions.h>
30 #include <asm/arch/hwregs/config_defs.h>
31 #include <asm/axisflashmap.h>
34 #define MEM_CSE0_SIZE (0x04000000)
35 #define MEM_CSE1_SIZE (0x04000000)
37 #define FLASH_UNCACHED_ADDR KSEG_E
38 #define FLASH_CACHED_ADDR KSEG_F
40 #if CONFIG_ETRAX_FLASH_BUSWIDTH==1
41 #define flash_data __u8
42 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
43 #define flash_data __u16
44 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
45 #define flash_data __u16
49 extern unsigned long romfs_start
, romfs_length
, romfs_in_flash
;
51 /* The master mtd for the entire flash. */
52 struct mtd_info
* axisflash_mtd
= NULL
;
54 /* Map driver functions. */
56 static map_word
flash_read(struct map_info
*map
, unsigned long ofs
)
59 tmp
.x
[0] = *(flash_data
*)(map
->map_priv_1
+ ofs
);
63 static void flash_copy_from(struct map_info
*map
, void *to
,
64 unsigned long from
, ssize_t len
)
66 memcpy(to
, (void *)(map
->map_priv_1
+ from
), len
);
69 static void flash_write(struct map_info
*map
, map_word d
, unsigned long adr
)
71 *(flash_data
*)(map
->map_priv_1
+ adr
) = (flash_data
)d
.x
[0];
75 * The map for chip select e0.
77 * We run into tricky coherence situations if we mix cached with uncached
78 * accesses to we only use the uncached version here.
80 * The size field is the total size where the flash chips may be mapped on the
81 * chip select. MTD probes should find all devices there and it does not matter
82 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
83 * probes will ignore them.
85 * The start address in map_priv_1 is in virtual memory so we cannot use
86 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
89 static struct map_info map_cse0
= {
91 .size
= MEM_CSE0_SIZE
,
92 .bankwidth
= CONFIG_ETRAX_FLASH_BUSWIDTH
,
94 .copy_from
= flash_copy_from
,
96 .map_priv_1
= FLASH_UNCACHED_ADDR
100 * The map for chip select e1.
102 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
103 * address, but there isn't.
105 static struct map_info map_cse1
= {
107 .size
= MEM_CSE1_SIZE
,
108 .bankwidth
= CONFIG_ETRAX_FLASH_BUSWIDTH
,
110 .copy_from
= flash_copy_from
,
111 .write
= flash_write
,
112 .map_priv_1
= FLASH_UNCACHED_ADDR
+ MEM_CSE0_SIZE
115 /* If no partition-table was found, we use this default-set. */
116 #define MAX_PARTITIONS 7
117 #define NUM_DEFAULT_PARTITIONS 3
120 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
121 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
124 static struct mtd_partition axis_default_partitions
[NUM_DEFAULT_PARTITIONS
] = {
126 .name
= "boot firmware",
127 .size
= CONFIG_ETRAX_PTABLE_SECTOR
,
132 .size
= 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR
),
133 .offset
= CONFIG_ETRAX_PTABLE_SECTOR
136 .name
= "filesystem",
137 .size
= 5 * CONFIG_ETRAX_PTABLE_SECTOR
,
138 .offset
= 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR
)
142 /* Initialize the ones normally used. */
143 static struct mtd_partition axis_partitions
[MAX_PARTITIONS
] = {
146 .size
= CONFIG_ETRAX_PTABLE_SECTOR
,
182 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
183 * chips in that order (because the amd_flash-driver is faster).
185 static struct mtd_info
*probe_cs(struct map_info
*map_cs
)
187 struct mtd_info
*mtd_cs
= NULL
;
190 "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
191 map_cs
->name
, map_cs
->size
, map_cs
->map_priv_1
);
193 #ifdef CONFIG_MTD_AMDSTD
194 mtd_cs
= do_map_probe("amd_flash", map_cs
);
196 #ifdef CONFIG_MTD_CFI
198 mtd_cs
= do_map_probe("cfi_probe", map_cs
);
206 * Probe each chip select individually for flash chips. If there are chips on
207 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
208 * so that MTD partitions can cross chip boundries.
210 * The only known restriction to how you can mount your chips is that each
211 * chip select must hold similar flash chips. But you need external hardware
212 * to do that anyway and you can put totally different chips on cse0 and cse1
213 * so it isn't really much of a restriction.
215 extern struct mtd_info
* __init
crisv32_nand_flash_probe (void);
216 static struct mtd_info
*flash_probe(void)
218 struct mtd_info
*mtd_cse0
;
219 struct mtd_info
*mtd_cse1
;
220 struct mtd_info
*mtd_nand
= NULL
;
221 struct mtd_info
*mtd_total
;
222 struct mtd_info
*mtds
[3];
225 if ((mtd_cse0
= probe_cs(&map_cse0
)) != NULL
)
226 mtds
[count
++] = mtd_cse0
;
227 if ((mtd_cse1
= probe_cs(&map_cse1
)) != NULL
)
228 mtds
[count
++] = mtd_cse1
;
230 #ifdef CONFIG_ETRAX_NANDFLASH
231 if ((mtd_nand
= crisv32_nand_flash_probe()) != NULL
)
232 mtds
[count
++] = mtd_nand
;
235 if (!mtd_cse0
&& !mtd_cse1
&& !mtd_nand
) {
241 #ifdef CONFIG_MTD_CONCAT
242 /* Since the concatenation layer adds a small overhead we
243 * could try to figure out if the chips in cse0 and cse1 are
244 * identical and reprobe the whole cse0+cse1 window. But since
245 * flash chips are slow, the overhead is relatively small.
246 * So we use the MTD concatenation layer instead of further
247 * complicating the probing procedure.
249 mtd_total
= mtd_concat_create(mtds
,
253 printk(KERN_ERR
"%s and %s: Cannot concatenate due to kernel "
254 "(mis)configuration!\n", map_cse0
.name
, map_cse1
.name
);
258 printk(KERN_ERR
"%s and %s: Concatenation failed!\n",
259 map_cse0
.name
, map_cse1
.name
);
261 /* The best we can do now is to only use what we found
264 mtd_total
= mtd_cse0
;
265 map_destroy(mtd_cse1
);
268 mtd_total
= mtd_cse0
? mtd_cse0
: mtd_cse1
? mtd_cse1
: mtd_nand
;
275 extern unsigned long crisv32_nand_boot
;
276 extern unsigned long crisv32_nand_cramfs_offset
;
279 * Probe the flash chip(s) and, if it succeeds, read the partition-table
280 * and register the partitions with MTD.
282 static int __init
init_axis_flash(void)
284 struct mtd_info
*mymtd
;
287 struct partitiontable_head
*ptable_head
= NULL
;
288 struct partitiontable_entry
*ptable
;
289 int use_default_ptable
= 1; /* Until proven otherwise. */
290 const char *pmsg
= KERN_INFO
" /dev/flash%d at 0x%08x, size 0x%08x\n";
291 static char page
[512];
294 #ifndef CONFIG_ETRAXFS_SIM
295 mymtd
= flash_probe();
296 mymtd
->read(mymtd
, CONFIG_ETRAX_PTABLE_SECTOR
, 512, &len
, page
);
297 ptable_head
= (struct partitiontable_head
*)(page
+ PARTITION_TABLE_OFFSET
);
300 /* There's no reason to use this module if no flash chip can
301 * be identified. Make sure that's understood.
303 printk(KERN_INFO
"axisflashmap: Found no flash chip.\n");
305 printk(KERN_INFO
"%s: 0x%08x bytes of flash memory.\n",
306 mymtd
->name
, mymtd
->size
);
307 axisflash_mtd
= mymtd
;
311 mymtd
->owner
= THIS_MODULE
;
313 pidx
++; /* First partition is always set to the default. */
315 if (ptable_head
&& (ptable_head
->magic
== PARTITION_TABLE_MAGIC
)
316 && (ptable_head
->size
<
317 (MAX_PARTITIONS
* sizeof(struct partitiontable_entry
) +
318 PARTITIONTABLE_END_MARKER_SIZE
))
319 && (*(unsigned long*)((void*)ptable_head
+ sizeof(*ptable_head
) +
321 PARTITIONTABLE_END_MARKER_SIZE
)
322 == PARTITIONTABLE_END_MARKER
)) {
323 /* Looks like a start, sane length and end of a
324 * partition table, lets check csum etc.
327 struct partitiontable_entry
*max_addr
=
328 (struct partitiontable_entry
*)
329 ((unsigned long)ptable_head
+ sizeof(*ptable_head
) +
331 unsigned long offset
= CONFIG_ETRAX_PTABLE_SECTOR
;
333 unsigned long csum
= 0;
335 ptable
= (struct partitiontable_entry
*)
336 ((unsigned long)ptable_head
+ sizeof(*ptable_head
));
338 /* Lets be PARANOID, and check the checksum. */
339 p
= (unsigned char*) ptable
;
341 while (p
<= (unsigned char*)max_addr
) {
347 ptable_ok
= (csum
== ptable_head
->checksum
);
349 /* Read the entries and use/show the info. */
350 printk(KERN_INFO
" Found a%s partition table at 0x%p-0x%p.\n",
351 (ptable_ok
? " valid" : "n invalid"), ptable_head
,
354 /* We have found a working bootblock. Now read the
355 * partition table. Scan the table. It ends when
356 * there is 0xffffffff, that is, empty flash.
359 && ptable
->offset
!= 0xffffffff
361 && pidx
< MAX_PARTITIONS
) {
363 axis_partitions
[pidx
].offset
= offset
+ ptable
->offset
+ (crisv32_nand_boot
? 16384 : 0);
364 axis_partitions
[pidx
].size
= ptable
->size
;
366 printk(pmsg
, pidx
, axis_partitions
[pidx
].offset
,
367 axis_partitions
[pidx
].size
);
371 use_default_ptable
= !ptable_ok
;
374 if (romfs_in_flash
) {
375 /* Add an overlapping device for the root partition (romfs). */
377 axis_partitions
[pidx
].name
= "romfs";
378 if (crisv32_nand_boot
) {
379 char* data
= kmalloc(1024, GFP_KERNEL
);
381 int offset
= crisv32_nand_cramfs_offset
& ~(1024-1);
384 mymtd
->read(mymtd
, offset
, 1024, &len
, data
);
385 tmp
= &data
[crisv32_nand_cramfs_offset
% 512];
386 axis_partitions
[pidx
].size
= *(unsigned*)(tmp
+ 4);
387 axis_partitions
[pidx
].offset
= crisv32_nand_cramfs_offset
;
390 axis_partitions
[pidx
].size
= romfs_length
;
391 axis_partitions
[pidx
].offset
= romfs_start
- FLASH_CACHED_ADDR
;
394 axis_partitions
[pidx
].mask_flags
|= MTD_WRITEABLE
;
397 " Adding readonly flash partition for romfs image:\n");
398 printk(pmsg
, pidx
, axis_partitions
[pidx
].offset
,
399 axis_partitions
[pidx
].size
);
404 if (use_default_ptable
) {
405 printk(KERN_INFO
" Using default partition table.\n");
406 err
= add_mtd_partitions(mymtd
, axis_default_partitions
,
407 NUM_DEFAULT_PARTITIONS
);
409 err
= add_mtd_partitions(mymtd
, axis_partitions
, pidx
);
413 panic("axisflashmap could not add MTD partitions!\n");
416 /* CONFIG_EXTRAXFS_SIM */
419 if (!romfs_in_flash
) {
420 /* Create an RAM device for the root partition (romfs). */
422 #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
423 /* No use trying to boot this kernel from RAM. Panic! */
424 printk(KERN_EMERG
"axisflashmap: Cannot create an MTD RAM "
425 "device due to kernel (mis)configuration!\n");
426 panic("This kernel cannot boot from RAM!\n");
428 struct mtd_info
*mtd_ram
;
430 mtd_ram
= (struct mtd_info
*)kmalloc(sizeof(struct mtd_info
),
433 panic("axisflashmap couldn't allocate memory for "
437 printk(KERN_INFO
" Adding RAM partition for romfs image:\n");
438 printk(pmsg
, pidx
, romfs_start
, romfs_length
);
440 err
= mtdram_init_device(mtd_ram
, (void*)romfs_start
,
441 romfs_length
, "romfs");
443 panic("axisflashmap could not initialize MTD RAM "
452 /* This adds the above to the kernels init-call chain. */
453 module_init(init_axis_flash
);
455 EXPORT_SYMBOL(axisflash_mtd
);