sync hh.org
[hh.org.git] / arch / i386 / kernel / cpu / intel_cacheinfo.c
blob5c43be47587f5d4b9875e4c45070027cdb829d95
1 /*
2 * Routines to indentify caches on Intel CPU.
4 * Changes:
5 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
6 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
7 * Andi Kleen : CPUID4 emulation on AMD.
8 */
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/sched.h>
17 #include <asm/processor.h>
18 #include <asm/smp.h>
20 #define LVL_1_INST 1
21 #define LVL_1_DATA 2
22 #define LVL_2 3
23 #define LVL_3 4
24 #define LVL_TRACE 5
26 struct _cache_table
28 unsigned char descriptor;
29 char cache_type;
30 short size;
33 /* all the cache descriptor types we care about (no TLB or trace cache entries) */
34 static struct _cache_table cache_table[] __cpuinitdata =
36 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
37 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
38 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
39 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
40 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
41 { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
42 { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
43 { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
44 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
45 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
46 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
47 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
48 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
49 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
50 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
51 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
52 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
53 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
54 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
55 { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
56 { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
57 { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
58 { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
59 { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
60 { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
61 { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
62 { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
63 { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
64 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
65 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
66 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
67 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
68 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
69 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
70 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
71 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
72 { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
73 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
74 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
75 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
76 { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
77 { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
78 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
79 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
80 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
81 { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
82 { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
83 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
84 { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
85 { 0x00, 0, 0}
89 enum _cache_type
91 CACHE_TYPE_NULL = 0,
92 CACHE_TYPE_DATA = 1,
93 CACHE_TYPE_INST = 2,
94 CACHE_TYPE_UNIFIED = 3
97 union _cpuid4_leaf_eax {
98 struct {
99 enum _cache_type type:5;
100 unsigned int level:3;
101 unsigned int is_self_initializing:1;
102 unsigned int is_fully_associative:1;
103 unsigned int reserved:4;
104 unsigned int num_threads_sharing:12;
105 unsigned int num_cores_on_die:6;
106 } split;
107 u32 full;
110 union _cpuid4_leaf_ebx {
111 struct {
112 unsigned int coherency_line_size:12;
113 unsigned int physical_line_partition:10;
114 unsigned int ways_of_associativity:10;
115 } split;
116 u32 full;
119 union _cpuid4_leaf_ecx {
120 struct {
121 unsigned int number_of_sets:32;
122 } split;
123 u32 full;
126 struct _cpuid4_info {
127 union _cpuid4_leaf_eax eax;
128 union _cpuid4_leaf_ebx ebx;
129 union _cpuid4_leaf_ecx ecx;
130 unsigned long size;
131 cpumask_t shared_cpu_map;
134 unsigned short num_cache_leaves;
136 /* AMD doesn't have CPUID4. Emulate it here to report the same
137 information to the user. This makes some assumptions about the machine:
138 No L3, L2 not shared, no SMT etc. that is currently true on AMD CPUs.
140 In theory the TLBs could be reported as fake type (they are in "dummy").
141 Maybe later */
142 union l1_cache {
143 struct {
144 unsigned line_size : 8;
145 unsigned lines_per_tag : 8;
146 unsigned assoc : 8;
147 unsigned size_in_kb : 8;
149 unsigned val;
152 union l2_cache {
153 struct {
154 unsigned line_size : 8;
155 unsigned lines_per_tag : 4;
156 unsigned assoc : 4;
157 unsigned size_in_kb : 16;
159 unsigned val;
162 static const unsigned short assocs[] = {
163 [1] = 1, [2] = 2, [4] = 4, [6] = 8,
164 [8] = 16,
165 [0xf] = 0xffff // ??
167 static const unsigned char levels[] = { 1, 1, 2 };
168 static const unsigned char types[] = { 1, 2, 3 };
170 static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
171 union _cpuid4_leaf_ebx *ebx,
172 union _cpuid4_leaf_ecx *ecx)
174 unsigned dummy;
175 unsigned line_size, lines_per_tag, assoc, size_in_kb;
176 union l1_cache l1i, l1d;
177 union l2_cache l2;
179 eax->full = 0;
180 ebx->full = 0;
181 ecx->full = 0;
183 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
184 cpuid(0x80000006, &dummy, &dummy, &l2.val, &dummy);
186 if (leaf > 2 || !l1d.val || !l1i.val || !l2.val)
187 return;
189 eax->split.is_self_initializing = 1;
190 eax->split.type = types[leaf];
191 eax->split.level = levels[leaf];
192 eax->split.num_threads_sharing = 0;
193 eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
195 if (leaf <= 1) {
196 union l1_cache *l1 = leaf == 0 ? &l1d : &l1i;
197 assoc = l1->assoc;
198 line_size = l1->line_size;
199 lines_per_tag = l1->lines_per_tag;
200 size_in_kb = l1->size_in_kb;
201 } else {
202 assoc = l2.assoc;
203 line_size = l2.line_size;
204 lines_per_tag = l2.lines_per_tag;
205 /* cpu_data has errata corrections for K7 applied */
206 size_in_kb = current_cpu_data.x86_cache_size;
209 if (assoc == 0xf)
210 eax->split.is_fully_associative = 1;
211 ebx->split.coherency_line_size = line_size - 1;
212 ebx->split.ways_of_associativity = assocs[assoc] - 1;
213 ebx->split.physical_line_partition = lines_per_tag - 1;
214 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
215 (ebx->split.ways_of_associativity + 1) - 1;
218 static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
220 union _cpuid4_leaf_eax eax;
221 union _cpuid4_leaf_ebx ebx;
222 union _cpuid4_leaf_ecx ecx;
223 unsigned edx;
225 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
226 amd_cpuid4(index, &eax, &ebx, &ecx);
227 else
228 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
229 if (eax.split.type == CACHE_TYPE_NULL)
230 return -EIO; /* better error ? */
232 this_leaf->eax = eax;
233 this_leaf->ebx = ebx;
234 this_leaf->ecx = ecx;
235 this_leaf->size = (ecx.split.number_of_sets + 1) *
236 (ebx.split.coherency_line_size + 1) *
237 (ebx.split.physical_line_partition + 1) *
238 (ebx.split.ways_of_associativity + 1);
239 return 0;
242 /* will only be called once; __init is safe here */
243 static int __init find_num_cache_leaves(void)
245 unsigned int eax, ebx, ecx, edx;
246 union _cpuid4_leaf_eax cache_eax;
247 int i = -1;
249 do {
250 ++i;
251 /* Do cpuid(4) loop to find out num_cache_leaves */
252 cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
253 cache_eax.full = eax;
254 } while (cache_eax.split.type != CACHE_TYPE_NULL);
255 return i;
258 unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
260 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
261 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
262 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
263 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
264 #ifdef CONFIG_X86_HT
265 unsigned int cpu = (c == &boot_cpu_data) ? 0 : (c - cpu_data);
266 #endif
268 if (c->cpuid_level > 3) {
269 static int is_initialized;
271 if (is_initialized == 0) {
272 /* Init num_cache_leaves from boot CPU */
273 num_cache_leaves = find_num_cache_leaves();
274 is_initialized++;
278 * Whenever possible use cpuid(4), deterministic cache
279 * parameters cpuid leaf to find the cache details
281 for (i = 0; i < num_cache_leaves; i++) {
282 struct _cpuid4_info this_leaf;
284 int retval;
286 retval = cpuid4_cache_lookup(i, &this_leaf);
287 if (retval >= 0) {
288 switch(this_leaf.eax.split.level) {
289 case 1:
290 if (this_leaf.eax.split.type ==
291 CACHE_TYPE_DATA)
292 new_l1d = this_leaf.size/1024;
293 else if (this_leaf.eax.split.type ==
294 CACHE_TYPE_INST)
295 new_l1i = this_leaf.size/1024;
296 break;
297 case 2:
298 new_l2 = this_leaf.size/1024;
299 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
300 index_msb = get_count_order(num_threads_sharing);
301 l2_id = c->apicid >> index_msb;
302 break;
303 case 3:
304 new_l3 = this_leaf.size/1024;
305 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
306 index_msb = get_count_order(num_threads_sharing);
307 l3_id = c->apicid >> index_msb;
308 break;
309 default:
310 break;
316 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
317 * trace cache
319 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
320 /* supports eax=2 call */
321 int i, j, n;
322 int regs[4];
323 unsigned char *dp = (unsigned char *)regs;
324 int only_trace = 0;
326 if (num_cache_leaves != 0 && c->x86 == 15)
327 only_trace = 1;
329 /* Number of times to iterate */
330 n = cpuid_eax(2) & 0xFF;
332 for ( i = 0 ; i < n ; i++ ) {
333 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
335 /* If bit 31 is set, this is an unknown format */
336 for ( j = 0 ; j < 3 ; j++ ) {
337 if ( regs[j] < 0 ) regs[j] = 0;
340 /* Byte 0 is level count, not a descriptor */
341 for ( j = 1 ; j < 16 ; j++ ) {
342 unsigned char des = dp[j];
343 unsigned char k = 0;
345 /* look up this descriptor in the table */
346 while (cache_table[k].descriptor != 0)
348 if (cache_table[k].descriptor == des) {
349 if (only_trace && cache_table[k].cache_type != LVL_TRACE)
350 break;
351 switch (cache_table[k].cache_type) {
352 case LVL_1_INST:
353 l1i += cache_table[k].size;
354 break;
355 case LVL_1_DATA:
356 l1d += cache_table[k].size;
357 break;
358 case LVL_2:
359 l2 += cache_table[k].size;
360 break;
361 case LVL_3:
362 l3 += cache_table[k].size;
363 break;
364 case LVL_TRACE:
365 trace += cache_table[k].size;
366 break;
369 break;
372 k++;
378 if (new_l1d)
379 l1d = new_l1d;
381 if (new_l1i)
382 l1i = new_l1i;
384 if (new_l2) {
385 l2 = new_l2;
386 #ifdef CONFIG_X86_HT
387 cpu_llc_id[cpu] = l2_id;
388 #endif
391 if (new_l3) {
392 l3 = new_l3;
393 #ifdef CONFIG_X86_HT
394 cpu_llc_id[cpu] = l3_id;
395 #endif
398 if (trace)
399 printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
400 else if ( l1i )
401 printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
403 if (l1d)
404 printk(", L1 D cache: %dK\n", l1d);
405 else
406 printk("\n");
408 if (l2)
409 printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
411 if (l3)
412 printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
414 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
416 return l2;
419 /* pointer to _cpuid4_info array (for each cache leaf) */
420 static struct _cpuid4_info *cpuid4_info[NR_CPUS];
421 #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
423 #ifdef CONFIG_SMP
424 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
426 struct _cpuid4_info *this_leaf, *sibling_leaf;
427 unsigned long num_threads_sharing;
428 int index_msb, i;
429 struct cpuinfo_x86 *c = cpu_data;
431 this_leaf = CPUID4_INFO_IDX(cpu, index);
432 num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
434 if (num_threads_sharing == 1)
435 cpu_set(cpu, this_leaf->shared_cpu_map);
436 else {
437 index_msb = get_count_order(num_threads_sharing);
439 for_each_online_cpu(i) {
440 if (c[i].apicid >> index_msb ==
441 c[cpu].apicid >> index_msb) {
442 cpu_set(i, this_leaf->shared_cpu_map);
443 if (i != cpu && cpuid4_info[i]) {
444 sibling_leaf = CPUID4_INFO_IDX(i, index);
445 cpu_set(cpu, sibling_leaf->shared_cpu_map);
451 static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
453 struct _cpuid4_info *this_leaf, *sibling_leaf;
454 int sibling;
456 this_leaf = CPUID4_INFO_IDX(cpu, index);
457 for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
458 sibling_leaf = CPUID4_INFO_IDX(sibling, index);
459 cpu_clear(cpu, sibling_leaf->shared_cpu_map);
462 #else
463 static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
464 static void __init cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
465 #endif
467 static void free_cache_attributes(unsigned int cpu)
469 kfree(cpuid4_info[cpu]);
470 cpuid4_info[cpu] = NULL;
473 static int __cpuinit detect_cache_attributes(unsigned int cpu)
475 struct _cpuid4_info *this_leaf;
476 unsigned long j;
477 int retval;
478 cpumask_t oldmask;
480 if (num_cache_leaves == 0)
481 return -ENOENT;
483 cpuid4_info[cpu] = kmalloc(
484 sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
485 if (unlikely(cpuid4_info[cpu] == NULL))
486 return -ENOMEM;
487 memset(cpuid4_info[cpu], 0,
488 sizeof(struct _cpuid4_info) * num_cache_leaves);
490 oldmask = current->cpus_allowed;
491 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
492 if (retval)
493 goto out;
495 /* Do cpuid and store the results */
496 retval = 0;
497 for (j = 0; j < num_cache_leaves; j++) {
498 this_leaf = CPUID4_INFO_IDX(cpu, j);
499 retval = cpuid4_cache_lookup(j, this_leaf);
500 if (unlikely(retval < 0))
501 break;
502 cache_shared_cpu_map_setup(cpu, j);
504 set_cpus_allowed(current, oldmask);
506 out:
507 if (retval)
508 free_cache_attributes(cpu);
509 return retval;
512 #ifdef CONFIG_SYSFS
514 #include <linux/kobject.h>
515 #include <linux/sysfs.h>
517 extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
519 /* pointer to kobject for cpuX/cache */
520 static struct kobject * cache_kobject[NR_CPUS];
522 struct _index_kobject {
523 struct kobject kobj;
524 unsigned int cpu;
525 unsigned short index;
528 /* pointer to array of kobjects for cpuX/cache/indexY */
529 static struct _index_kobject *index_kobject[NR_CPUS];
530 #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
532 #define show_one_plus(file_name, object, val) \
533 static ssize_t show_##file_name \
534 (struct _cpuid4_info *this_leaf, char *buf) \
536 return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
539 show_one_plus(level, eax.split.level, 0);
540 show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
541 show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
542 show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
543 show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
545 static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
547 return sprintf (buf, "%luK\n", this_leaf->size / 1024);
550 static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
552 char mask_str[NR_CPUS];
553 cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
554 return sprintf(buf, "%s\n", mask_str);
557 static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
558 switch(this_leaf->eax.split.type) {
559 case CACHE_TYPE_DATA:
560 return sprintf(buf, "Data\n");
561 break;
562 case CACHE_TYPE_INST:
563 return sprintf(buf, "Instruction\n");
564 break;
565 case CACHE_TYPE_UNIFIED:
566 return sprintf(buf, "Unified\n");
567 break;
568 default:
569 return sprintf(buf, "Unknown\n");
570 break;
574 struct _cache_attr {
575 struct attribute attr;
576 ssize_t (*show)(struct _cpuid4_info *, char *);
577 ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
580 #define define_one_ro(_name) \
581 static struct _cache_attr _name = \
582 __ATTR(_name, 0444, show_##_name, NULL)
584 define_one_ro(level);
585 define_one_ro(type);
586 define_one_ro(coherency_line_size);
587 define_one_ro(physical_line_partition);
588 define_one_ro(ways_of_associativity);
589 define_one_ro(number_of_sets);
590 define_one_ro(size);
591 define_one_ro(shared_cpu_map);
593 static struct attribute * default_attrs[] = {
594 &type.attr,
595 &level.attr,
596 &coherency_line_size.attr,
597 &physical_line_partition.attr,
598 &ways_of_associativity.attr,
599 &number_of_sets.attr,
600 &size.attr,
601 &shared_cpu_map.attr,
602 NULL
605 #define to_object(k) container_of(k, struct _index_kobject, kobj)
606 #define to_attr(a) container_of(a, struct _cache_attr, attr)
608 static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
610 struct _cache_attr *fattr = to_attr(attr);
611 struct _index_kobject *this_leaf = to_object(kobj);
612 ssize_t ret;
614 ret = fattr->show ?
615 fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
616 buf) :
618 return ret;
621 static ssize_t store(struct kobject * kobj, struct attribute * attr,
622 const char * buf, size_t count)
624 return 0;
627 static struct sysfs_ops sysfs_ops = {
628 .show = show,
629 .store = store,
632 static struct kobj_type ktype_cache = {
633 .sysfs_ops = &sysfs_ops,
634 .default_attrs = default_attrs,
637 static struct kobj_type ktype_percpu_entry = {
638 .sysfs_ops = &sysfs_ops,
641 static void cpuid4_cache_sysfs_exit(unsigned int cpu)
643 kfree(cache_kobject[cpu]);
644 kfree(index_kobject[cpu]);
645 cache_kobject[cpu] = NULL;
646 index_kobject[cpu] = NULL;
647 free_cache_attributes(cpu);
650 static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
653 if (num_cache_leaves == 0)
654 return -ENOENT;
656 detect_cache_attributes(cpu);
657 if (cpuid4_info[cpu] == NULL)
658 return -ENOENT;
660 /* Allocate all required memory */
661 cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL);
662 if (unlikely(cache_kobject[cpu] == NULL))
663 goto err_out;
664 memset(cache_kobject[cpu], 0, sizeof(struct kobject));
666 index_kobject[cpu] = kmalloc(
667 sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
668 if (unlikely(index_kobject[cpu] == NULL))
669 goto err_out;
670 memset(index_kobject[cpu], 0,
671 sizeof(struct _index_kobject) * num_cache_leaves);
673 return 0;
675 err_out:
676 cpuid4_cache_sysfs_exit(cpu);
677 return -ENOMEM;
680 /* Add/Remove cache interface for CPU device */
681 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
683 unsigned int cpu = sys_dev->id;
684 unsigned long i, j;
685 struct _index_kobject *this_object;
686 int retval = 0;
688 retval = cpuid4_cache_sysfs_init(cpu);
689 if (unlikely(retval < 0))
690 return retval;
692 cache_kobject[cpu]->parent = &sys_dev->kobj;
693 kobject_set_name(cache_kobject[cpu], "%s", "cache");
694 cache_kobject[cpu]->ktype = &ktype_percpu_entry;
695 retval = kobject_register(cache_kobject[cpu]);
697 for (i = 0; i < num_cache_leaves; i++) {
698 this_object = INDEX_KOBJECT_PTR(cpu,i);
699 this_object->cpu = cpu;
700 this_object->index = i;
701 this_object->kobj.parent = cache_kobject[cpu];
702 kobject_set_name(&(this_object->kobj), "index%1lu", i);
703 this_object->kobj.ktype = &ktype_cache;
704 retval = kobject_register(&(this_object->kobj));
705 if (unlikely(retval)) {
706 for (j = 0; j < i; j++) {
707 kobject_unregister(
708 &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
710 kobject_unregister(cache_kobject[cpu]);
711 cpuid4_cache_sysfs_exit(cpu);
712 break;
715 return retval;
718 static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
720 unsigned int cpu = sys_dev->id;
721 unsigned long i;
723 for (i = 0; i < num_cache_leaves; i++) {
724 cache_remove_shared_cpu_map(cpu, i);
725 kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
727 kobject_unregister(cache_kobject[cpu]);
728 cpuid4_cache_sysfs_exit(cpu);
729 return;
732 static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
733 unsigned long action, void *hcpu)
735 unsigned int cpu = (unsigned long)hcpu;
736 struct sys_device *sys_dev;
738 sys_dev = get_cpu_sysdev(cpu);
739 switch (action) {
740 case CPU_ONLINE:
741 cache_add_dev(sys_dev);
742 break;
743 case CPU_DEAD:
744 cache_remove_dev(sys_dev);
745 break;
747 return NOTIFY_OK;
750 static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
752 .notifier_call = cacheinfo_cpu_callback,
755 static int __cpuinit cache_sysfs_init(void)
757 int i;
759 if (num_cache_leaves == 0)
760 return 0;
762 register_hotcpu_notifier(&cacheinfo_cpu_notifier);
764 for_each_online_cpu(i) {
765 cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
766 (void *)(long)i);
769 return 0;
772 device_initcall(cache_sysfs_init);
774 #endif