sync hh.org
[hh.org.git] / arch / i386 / kernel / smpboot.c
blob4bb8b77cd65b257b4b54a730f5c5e3cf46595f4a
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
14 * This code is released under the GNU General Public License version 2 or
15 * later.
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
36 #include <linux/module.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/sched.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/smp_lock.h>
44 #include <linux/bootmem.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/percpu.h>
49 #include <linux/delay.h>
50 #include <linux/mc146818rtc.h>
51 #include <asm/tlbflush.h>
52 #include <asm/desc.h>
53 #include <asm/arch_hooks.h>
54 #include <asm/nmi.h>
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
69 /* Last level cache ID of each logical CPU */
70 int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
72 /* representing HT siblings of each logical CPU */
73 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
74 EXPORT_SYMBOL(cpu_sibling_map);
76 /* representing HT and core siblings of each logical CPU */
77 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_core_map);
80 /* bitmap of online cpus */
81 cpumask_t cpu_online_map __read_mostly;
82 EXPORT_SYMBOL(cpu_online_map);
84 cpumask_t cpu_callin_map;
85 cpumask_t cpu_callout_map;
86 EXPORT_SYMBOL(cpu_callout_map);
87 cpumask_t cpu_possible_map;
88 EXPORT_SYMBOL(cpu_possible_map);
89 static cpumask_t smp_commenced_mask;
91 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
92 * is no way to resync one AP against BP. TBD: for prescott and above, we
93 * should use IA64's algorithm
95 static int __devinitdata tsc_sync_disabled;
97 /* Per CPU bogomips and other parameters */
98 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
99 EXPORT_SYMBOL(cpu_data);
101 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
102 { [0 ... NR_CPUS-1] = 0xff };
103 EXPORT_SYMBOL(x86_cpu_to_apicid);
105 u8 apicid_2_node[MAX_APICID];
108 * Trampoline 80x86 program as an array.
111 extern unsigned char trampoline_data [];
112 extern unsigned char trampoline_end [];
113 static unsigned char *trampoline_base;
114 static int trampoline_exec;
116 static void map_cpu_to_logical_apicid(void);
118 /* State of each CPU. */
119 DEFINE_PER_CPU(int, cpu_state) = { 0 };
122 * Currently trivial. Write the real->protected mode
123 * bootstrap into the page concerned. The caller
124 * has made sure it's suitably aligned.
127 static unsigned long __devinit setup_trampoline(void)
129 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
130 return virt_to_phys(trampoline_base);
134 * We are called very early to get the low memory for the
135 * SMP bootup trampoline page.
137 void __init smp_alloc_memory(void)
139 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
141 * Has to be in very low memory so we can execute
142 * real-mode AP code.
144 if (__pa(trampoline_base) >= 0x9F000)
145 BUG();
147 * Make the SMP trampoline executable:
149 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
153 * The bootstrap kernel entry code has set these up. Save them for
154 * a given CPU
157 static void __devinit smp_store_cpu_info(int id)
159 struct cpuinfo_x86 *c = cpu_data + id;
161 *c = boot_cpu_data;
162 if (id!=0)
163 identify_cpu(c);
165 * Mask B, Pentium, but not Pentium MMX
167 if (c->x86_vendor == X86_VENDOR_INTEL &&
168 c->x86 == 5 &&
169 c->x86_mask >= 1 && c->x86_mask <= 4 &&
170 c->x86_model <= 3)
172 * Remember we have B step Pentia with bugs
174 smp_b_stepping = 1;
177 * Certain Athlons might work (for various values of 'work') in SMP
178 * but they are not certified as MP capable.
180 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
182 if (num_possible_cpus() == 1)
183 goto valid_k7;
185 /* Athlon 660/661 is valid. */
186 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
187 goto valid_k7;
189 /* Duron 670 is valid */
190 if ((c->x86_model==7) && (c->x86_mask==0))
191 goto valid_k7;
194 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
195 * It's worth noting that the A5 stepping (662) of some Athlon XP's
196 * have the MP bit set.
197 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
199 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
200 ((c->x86_model==7) && (c->x86_mask>=1)) ||
201 (c->x86_model> 7))
202 if (cpu_has_mp)
203 goto valid_k7;
205 /* If we get here, it's not a certified SMP capable AMD system. */
206 add_taint(TAINT_UNSAFE_SMP);
209 valid_k7:
214 * TSC synchronization.
216 * We first check whether all CPUs have their TSC's synchronized,
217 * then we print a warning if not, and always resync.
220 static struct {
221 atomic_t start_flag;
222 atomic_t count_start;
223 atomic_t count_stop;
224 unsigned long long values[NR_CPUS];
225 } tsc __initdata = {
226 .start_flag = ATOMIC_INIT(0),
227 .count_start = ATOMIC_INIT(0),
228 .count_stop = ATOMIC_INIT(0),
231 #define NR_LOOPS 5
233 static void __init synchronize_tsc_bp(void)
235 int i;
236 unsigned long long t0;
237 unsigned long long sum, avg;
238 long long delta;
239 unsigned int one_usec;
240 int buggy = 0;
242 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
244 /* convert from kcyc/sec to cyc/usec */
245 one_usec = cpu_khz / 1000;
247 atomic_set(&tsc.start_flag, 1);
248 wmb();
251 * We loop a few times to get a primed instruction cache,
252 * then the last pass is more or less synchronized and
253 * the BP and APs set their cycle counters to zero all at
254 * once. This reduces the chance of having random offsets
255 * between the processors, and guarantees that the maximum
256 * delay between the cycle counters is never bigger than
257 * the latency of information-passing (cachelines) between
258 * two CPUs.
260 for (i = 0; i < NR_LOOPS; i++) {
262 * all APs synchronize but they loop on '== num_cpus'
264 while (atomic_read(&tsc.count_start) != num_booting_cpus()-1)
265 cpu_relax();
266 atomic_set(&tsc.count_stop, 0);
267 wmb();
269 * this lets the APs save their current TSC:
271 atomic_inc(&tsc.count_start);
273 rdtscll(tsc.values[smp_processor_id()]);
275 * We clear the TSC in the last loop:
277 if (i == NR_LOOPS-1)
278 write_tsc(0, 0);
281 * Wait for all APs to leave the synchronization point:
283 while (atomic_read(&tsc.count_stop) != num_booting_cpus()-1)
284 cpu_relax();
285 atomic_set(&tsc.count_start, 0);
286 wmb();
287 atomic_inc(&tsc.count_stop);
290 sum = 0;
291 for (i = 0; i < NR_CPUS; i++) {
292 if (cpu_isset(i, cpu_callout_map)) {
293 t0 = tsc.values[i];
294 sum += t0;
297 avg = sum;
298 do_div(avg, num_booting_cpus());
300 for (i = 0; i < NR_CPUS; i++) {
301 if (!cpu_isset(i, cpu_callout_map))
302 continue;
303 delta = tsc.values[i] - avg;
304 if (delta < 0)
305 delta = -delta;
307 * We report bigger than 2 microseconds clock differences.
309 if (delta > 2*one_usec) {
310 long long realdelta;
312 if (!buggy) {
313 buggy = 1;
314 printk("\n");
316 realdelta = delta;
317 do_div(realdelta, one_usec);
318 if (tsc.values[i] < avg)
319 realdelta = -realdelta;
321 if (realdelta)
322 printk(KERN_INFO "CPU#%d had %Ld usecs TSC "
323 "skew, fixed it up.\n", i, realdelta);
326 if (!buggy)
327 printk("passed.\n");
330 static void __init synchronize_tsc_ap(void)
332 int i;
335 * Not every cpu is online at the time
336 * this gets called, so we first wait for the BP to
337 * finish SMP initialization:
339 while (!atomic_read(&tsc.start_flag))
340 cpu_relax();
342 for (i = 0; i < NR_LOOPS; i++) {
343 atomic_inc(&tsc.count_start);
344 while (atomic_read(&tsc.count_start) != num_booting_cpus())
345 cpu_relax();
347 rdtscll(tsc.values[smp_processor_id()]);
348 if (i == NR_LOOPS-1)
349 write_tsc(0, 0);
351 atomic_inc(&tsc.count_stop);
352 while (atomic_read(&tsc.count_stop) != num_booting_cpus())
353 cpu_relax();
356 #undef NR_LOOPS
358 extern void calibrate_delay(void);
360 static atomic_t init_deasserted;
362 static void __devinit smp_callin(void)
364 int cpuid, phys_id;
365 unsigned long timeout;
368 * If waken up by an INIT in an 82489DX configuration
369 * we may get here before an INIT-deassert IPI reaches
370 * our local APIC. We have to wait for the IPI or we'll
371 * lock up on an APIC access.
373 wait_for_init_deassert(&init_deasserted);
376 * (This works even if the APIC is not enabled.)
378 phys_id = GET_APIC_ID(apic_read(APIC_ID));
379 cpuid = smp_processor_id();
380 if (cpu_isset(cpuid, cpu_callin_map)) {
381 printk("huh, phys CPU#%d, CPU#%d already present??\n",
382 phys_id, cpuid);
383 BUG();
385 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
388 * STARTUP IPIs are fragile beasts as they might sometimes
389 * trigger some glue motherboard logic. Complete APIC bus
390 * silence for 1 second, this overestimates the time the
391 * boot CPU is spending to send the up to 2 STARTUP IPIs
392 * by a factor of two. This should be enough.
396 * Waiting 2s total for startup (udelay is not yet working)
398 timeout = jiffies + 2*HZ;
399 while (time_before(jiffies, timeout)) {
401 * Has the boot CPU finished it's STARTUP sequence?
403 if (cpu_isset(cpuid, cpu_callout_map))
404 break;
405 rep_nop();
408 if (!time_before(jiffies, timeout)) {
409 printk("BUG: CPU%d started up but did not get a callout!\n",
410 cpuid);
411 BUG();
415 * the boot CPU has finished the init stage and is spinning
416 * on callin_map until we finish. We are free to set up this
417 * CPU, first the APIC. (this is probably redundant on most
418 * boards)
421 Dprintk("CALLIN, before setup_local_APIC().\n");
422 smp_callin_clear_local_apic();
423 setup_local_APIC();
424 map_cpu_to_logical_apicid();
427 * Get our bogomips.
429 calibrate_delay();
430 Dprintk("Stack at about %p\n",&cpuid);
433 * Save our processor parameters
435 smp_store_cpu_info(cpuid);
437 disable_APIC_timer();
440 * Allow the master to continue.
442 cpu_set(cpuid, cpu_callin_map);
445 * Synchronize the TSC with the BP
447 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
448 synchronize_tsc_ap();
451 static int cpucount;
453 /* maps the cpu to the sched domain representing multi-core */
454 cpumask_t cpu_coregroup_map(int cpu)
456 struct cpuinfo_x86 *c = cpu_data + cpu;
458 * For perf, we return last level cache shared map.
459 * And for power savings, we return cpu_core_map
461 if (sched_mc_power_savings || sched_smt_power_savings)
462 return cpu_core_map[cpu];
463 else
464 return c->llc_shared_map;
467 /* representing cpus for which sibling maps can be computed */
468 static cpumask_t cpu_sibling_setup_map;
470 static inline void
471 set_cpu_sibling_map(int cpu)
473 int i;
474 struct cpuinfo_x86 *c = cpu_data;
476 cpu_set(cpu, cpu_sibling_setup_map);
478 if (smp_num_siblings > 1) {
479 for_each_cpu_mask(i, cpu_sibling_setup_map) {
480 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
481 c[cpu].cpu_core_id == c[i].cpu_core_id) {
482 cpu_set(i, cpu_sibling_map[cpu]);
483 cpu_set(cpu, cpu_sibling_map[i]);
484 cpu_set(i, cpu_core_map[cpu]);
485 cpu_set(cpu, cpu_core_map[i]);
486 cpu_set(i, c[cpu].llc_shared_map);
487 cpu_set(cpu, c[i].llc_shared_map);
490 } else {
491 cpu_set(cpu, cpu_sibling_map[cpu]);
494 cpu_set(cpu, c[cpu].llc_shared_map);
496 if (current_cpu_data.x86_max_cores == 1) {
497 cpu_core_map[cpu] = cpu_sibling_map[cpu];
498 c[cpu].booted_cores = 1;
499 return;
502 for_each_cpu_mask(i, cpu_sibling_setup_map) {
503 if (cpu_llc_id[cpu] != BAD_APICID &&
504 cpu_llc_id[cpu] == cpu_llc_id[i]) {
505 cpu_set(i, c[cpu].llc_shared_map);
506 cpu_set(cpu, c[i].llc_shared_map);
508 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
509 cpu_set(i, cpu_core_map[cpu]);
510 cpu_set(cpu, cpu_core_map[i]);
512 * Does this new cpu bringup a new core?
514 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
516 * for each core in package, increment
517 * the booted_cores for this new cpu
519 if (first_cpu(cpu_sibling_map[i]) == i)
520 c[cpu].booted_cores++;
522 * increment the core count for all
523 * the other cpus in this package
525 if (i != cpu)
526 c[i].booted_cores++;
527 } else if (i != cpu && !c[cpu].booted_cores)
528 c[cpu].booted_cores = c[i].booted_cores;
534 * Activate a secondary processor.
536 static void __devinit start_secondary(void *unused)
539 * Dont put anything before smp_callin(), SMP
540 * booting is too fragile that we want to limit the
541 * things done here to the most necessary things.
543 cpu_init();
544 preempt_disable();
545 smp_callin();
546 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
547 rep_nop();
548 setup_secondary_APIC_clock();
549 if (nmi_watchdog == NMI_IO_APIC) {
550 disable_8259A_irq(0);
551 enable_NMI_through_LVT0(NULL);
552 enable_8259A_irq(0);
554 enable_APIC_timer();
556 * low-memory mappings have been cleared, flush them from
557 * the local TLBs too.
559 local_flush_tlb();
561 /* This must be done before setting cpu_online_map */
562 set_cpu_sibling_map(raw_smp_processor_id());
563 wmb();
566 * We need to hold call_lock, so there is no inconsistency
567 * between the time smp_call_function() determines number of
568 * IPI receipients, and the time when the determination is made
569 * for which cpus receive the IPI. Holding this
570 * lock helps us to not include this cpu in a currently in progress
571 * smp_call_function().
573 lock_ipi_call_lock();
574 cpu_set(smp_processor_id(), cpu_online_map);
575 unlock_ipi_call_lock();
576 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
578 /* We can take interrupts now: we're officially "up". */
579 local_irq_enable();
581 wmb();
582 cpu_idle();
586 * Everything has been set up for the secondary
587 * CPUs - they just need to reload everything
588 * from the task structure
589 * This function must not return.
591 void __devinit initialize_secondary(void)
594 * We don't actually need to load the full TSS,
595 * basically just the stack pointer and the eip.
598 asm volatile(
599 "movl %0,%%esp\n\t"
600 "jmp *%1"
602 :"r" (current->thread.esp),"r" (current->thread.eip));
605 extern struct {
606 void * esp;
607 unsigned short ss;
608 } stack_start;
610 #ifdef CONFIG_NUMA
612 /* which logical CPUs are on which nodes */
613 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
614 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
615 EXPORT_SYMBOL(node_2_cpu_mask);
616 /* which node each logical CPU is on */
617 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
618 EXPORT_SYMBOL(cpu_2_node);
620 /* set up a mapping between cpu and node. */
621 static inline void map_cpu_to_node(int cpu, int node)
623 printk("Mapping cpu %d to node %d\n", cpu, node);
624 cpu_set(cpu, node_2_cpu_mask[node]);
625 cpu_2_node[cpu] = node;
628 /* undo a mapping between cpu and node. */
629 static inline void unmap_cpu_to_node(int cpu)
631 int node;
633 printk("Unmapping cpu %d from all nodes\n", cpu);
634 for (node = 0; node < MAX_NUMNODES; node ++)
635 cpu_clear(cpu, node_2_cpu_mask[node]);
636 cpu_2_node[cpu] = 0;
638 #else /* !CONFIG_NUMA */
640 #define map_cpu_to_node(cpu, node) ({})
641 #define unmap_cpu_to_node(cpu) ({})
643 #endif /* CONFIG_NUMA */
645 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
647 static void map_cpu_to_logical_apicid(void)
649 int cpu = smp_processor_id();
650 int apicid = logical_smp_processor_id();
651 int node = apicid_to_node(apicid);
653 if (!node_online(node))
654 node = first_online_node;
656 cpu_2_logical_apicid[cpu] = apicid;
657 map_cpu_to_node(cpu, node);
660 static void unmap_cpu_to_logical_apicid(int cpu)
662 cpu_2_logical_apicid[cpu] = BAD_APICID;
663 unmap_cpu_to_node(cpu);
666 #if APIC_DEBUG
667 static inline void __inquire_remote_apic(int apicid)
669 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
670 char *names[] = { "ID", "VERSION", "SPIV" };
671 int timeout, status;
673 printk("Inquiring remote APIC #%d...\n", apicid);
675 for (i = 0; i < ARRAY_SIZE(regs); i++) {
676 printk("... APIC #%d %s: ", apicid, names[i]);
679 * Wait for idle.
681 apic_wait_icr_idle();
683 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
684 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
686 timeout = 0;
687 do {
688 udelay(100);
689 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
690 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
692 switch (status) {
693 case APIC_ICR_RR_VALID:
694 status = apic_read(APIC_RRR);
695 printk("%08x\n", status);
696 break;
697 default:
698 printk("failed\n");
702 #endif
704 #ifdef WAKE_SECONDARY_VIA_NMI
706 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
707 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
708 * won't ... remember to clear down the APIC, etc later.
710 static int __devinit
711 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
713 unsigned long send_status = 0, accept_status = 0;
714 int timeout, maxlvt;
716 /* Target chip */
717 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
719 /* Boot on the stack */
720 /* Kick the second */
721 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
723 Dprintk("Waiting for send to finish...\n");
724 timeout = 0;
725 do {
726 Dprintk("+");
727 udelay(100);
728 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
729 } while (send_status && (timeout++ < 1000));
732 * Give the other CPU some time to accept the IPI.
734 udelay(200);
736 * Due to the Pentium erratum 3AP.
738 maxlvt = get_maxlvt();
739 if (maxlvt > 3) {
740 apic_read_around(APIC_SPIV);
741 apic_write(APIC_ESR, 0);
743 accept_status = (apic_read(APIC_ESR) & 0xEF);
744 Dprintk("NMI sent.\n");
746 if (send_status)
747 printk("APIC never delivered???\n");
748 if (accept_status)
749 printk("APIC delivery error (%lx).\n", accept_status);
751 return (send_status | accept_status);
753 #endif /* WAKE_SECONDARY_VIA_NMI */
755 #ifdef WAKE_SECONDARY_VIA_INIT
756 static int __devinit
757 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
759 unsigned long send_status = 0, accept_status = 0;
760 int maxlvt, timeout, num_starts, j;
763 * Be paranoid about clearing APIC errors.
765 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
766 apic_read_around(APIC_SPIV);
767 apic_write(APIC_ESR, 0);
768 apic_read(APIC_ESR);
771 Dprintk("Asserting INIT.\n");
774 * Turn INIT on target chip
776 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
779 * Send IPI
781 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
782 | APIC_DM_INIT);
784 Dprintk("Waiting for send to finish...\n");
785 timeout = 0;
786 do {
787 Dprintk("+");
788 udelay(100);
789 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
790 } while (send_status && (timeout++ < 1000));
792 mdelay(10);
794 Dprintk("Deasserting INIT.\n");
796 /* Target chip */
797 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
799 /* Send IPI */
800 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
802 Dprintk("Waiting for send to finish...\n");
803 timeout = 0;
804 do {
805 Dprintk("+");
806 udelay(100);
807 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
808 } while (send_status && (timeout++ < 1000));
810 atomic_set(&init_deasserted, 1);
813 * Should we send STARTUP IPIs ?
815 * Determine this based on the APIC version.
816 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
818 if (APIC_INTEGRATED(apic_version[phys_apicid]))
819 num_starts = 2;
820 else
821 num_starts = 0;
824 * Run STARTUP IPI loop.
826 Dprintk("#startup loops: %d.\n", num_starts);
828 maxlvt = get_maxlvt();
830 for (j = 1; j <= num_starts; j++) {
831 Dprintk("Sending STARTUP #%d.\n",j);
832 apic_read_around(APIC_SPIV);
833 apic_write(APIC_ESR, 0);
834 apic_read(APIC_ESR);
835 Dprintk("After apic_write.\n");
838 * STARTUP IPI
841 /* Target chip */
842 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
844 /* Boot on the stack */
845 /* Kick the second */
846 apic_write_around(APIC_ICR, APIC_DM_STARTUP
847 | (start_eip >> 12));
850 * Give the other CPU some time to accept the IPI.
852 udelay(300);
854 Dprintk("Startup point 1.\n");
856 Dprintk("Waiting for send to finish...\n");
857 timeout = 0;
858 do {
859 Dprintk("+");
860 udelay(100);
861 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
862 } while (send_status && (timeout++ < 1000));
865 * Give the other CPU some time to accept the IPI.
867 udelay(200);
869 * Due to the Pentium erratum 3AP.
871 if (maxlvt > 3) {
872 apic_read_around(APIC_SPIV);
873 apic_write(APIC_ESR, 0);
875 accept_status = (apic_read(APIC_ESR) & 0xEF);
876 if (send_status || accept_status)
877 break;
879 Dprintk("After Startup.\n");
881 if (send_status)
882 printk("APIC never delivered???\n");
883 if (accept_status)
884 printk("APIC delivery error (%lx).\n", accept_status);
886 return (send_status | accept_status);
888 #endif /* WAKE_SECONDARY_VIA_INIT */
890 extern cpumask_t cpu_initialized;
891 static inline int alloc_cpu_id(void)
893 cpumask_t tmp_map;
894 int cpu;
895 cpus_complement(tmp_map, cpu_present_map);
896 cpu = first_cpu(tmp_map);
897 if (cpu >= NR_CPUS)
898 return -ENODEV;
899 return cpu;
902 #ifdef CONFIG_HOTPLUG_CPU
903 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
904 static inline struct task_struct * alloc_idle_task(int cpu)
906 struct task_struct *idle;
908 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
909 /* initialize thread_struct. we really want to avoid destroy
910 * idle tread
912 idle->thread.esp = (unsigned long)task_pt_regs(idle);
913 init_idle(idle, cpu);
914 return idle;
916 idle = fork_idle(cpu);
918 if (!IS_ERR(idle))
919 cpu_idle_tasks[cpu] = idle;
920 return idle;
922 #else
923 #define alloc_idle_task(cpu) fork_idle(cpu)
924 #endif
926 static int __devinit do_boot_cpu(int apicid, int cpu)
928 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
929 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
930 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
933 struct task_struct *idle;
934 unsigned long boot_error;
935 int timeout;
936 unsigned long start_eip;
937 unsigned short nmi_high = 0, nmi_low = 0;
939 ++cpucount;
940 alternatives_smp_switch(1);
943 * We can't use kernel_thread since we must avoid to
944 * reschedule the child.
946 idle = alloc_idle_task(cpu);
947 if (IS_ERR(idle))
948 panic("failed fork for CPU %d", cpu);
949 idle->thread.eip = (unsigned long) start_secondary;
950 /* start_eip had better be page-aligned! */
951 start_eip = setup_trampoline();
953 /* So we see what's up */
954 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
955 /* Stack for startup_32 can be just as for start_secondary onwards */
956 stack_start.esp = (void *) idle->thread.esp;
958 irq_ctx_init(cpu);
960 x86_cpu_to_apicid[cpu] = apicid;
962 * This grunge runs the startup process for
963 * the targeted processor.
966 atomic_set(&init_deasserted, 0);
968 Dprintk("Setting warm reset code and vector.\n");
970 store_NMI_vector(&nmi_high, &nmi_low);
972 smpboot_setup_warm_reset_vector(start_eip);
975 * Starting actual IPI sequence...
977 boot_error = wakeup_secondary_cpu(apicid, start_eip);
979 if (!boot_error) {
981 * allow APs to start initializing.
983 Dprintk("Before Callout %d.\n", cpu);
984 cpu_set(cpu, cpu_callout_map);
985 Dprintk("After Callout %d.\n", cpu);
988 * Wait 5s total for a response
990 for (timeout = 0; timeout < 50000; timeout++) {
991 if (cpu_isset(cpu, cpu_callin_map))
992 break; /* It has booted */
993 udelay(100);
996 if (cpu_isset(cpu, cpu_callin_map)) {
997 /* number CPUs logically, starting from 1 (BSP is 0) */
998 Dprintk("OK.\n");
999 printk("CPU%d: ", cpu);
1000 print_cpu_info(&cpu_data[cpu]);
1001 Dprintk("CPU has booted.\n");
1002 } else {
1003 boot_error= 1;
1004 if (*((volatile unsigned char *)trampoline_base)
1005 == 0xA5)
1006 /* trampoline started but...? */
1007 printk("Stuck ??\n");
1008 else
1009 /* trampoline code not run */
1010 printk("Not responding.\n");
1011 inquire_remote_apic(apicid);
1015 if (boot_error) {
1016 /* Try to put things back the way they were before ... */
1017 unmap_cpu_to_logical_apicid(cpu);
1018 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1019 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1020 cpucount--;
1021 } else {
1022 x86_cpu_to_apicid[cpu] = apicid;
1023 cpu_set(cpu, cpu_present_map);
1026 /* mark "stuck" area as not stuck */
1027 *((volatile unsigned long *)trampoline_base) = 0;
1029 return boot_error;
1032 #ifdef CONFIG_HOTPLUG_CPU
1033 void cpu_exit_clear(void)
1035 int cpu = raw_smp_processor_id();
1037 idle_task_exit();
1039 cpucount --;
1040 cpu_uninit();
1041 irq_ctx_exit(cpu);
1043 cpu_clear(cpu, cpu_callout_map);
1044 cpu_clear(cpu, cpu_callin_map);
1046 cpu_clear(cpu, smp_commenced_mask);
1047 unmap_cpu_to_logical_apicid(cpu);
1050 struct warm_boot_cpu_info {
1051 struct completion *complete;
1052 int apicid;
1053 int cpu;
1056 static void __cpuinit do_warm_boot_cpu(void *p)
1058 struct warm_boot_cpu_info *info = p;
1059 do_boot_cpu(info->apicid, info->cpu);
1060 complete(info->complete);
1063 static int __cpuinit __smp_prepare_cpu(int cpu)
1065 DECLARE_COMPLETION_ONSTACK(done);
1066 struct warm_boot_cpu_info info;
1067 struct work_struct task;
1068 int apicid, ret;
1069 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
1071 apicid = x86_cpu_to_apicid[cpu];
1072 if (apicid == BAD_APICID) {
1073 ret = -ENODEV;
1074 goto exit;
1078 * the CPU isn't initialized at boot time, allocate gdt table here.
1079 * cpu_init will initialize it
1081 if (!cpu_gdt_descr->address) {
1082 cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL);
1083 if (!cpu_gdt_descr->address)
1084 printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
1085 ret = -ENOMEM;
1086 goto exit;
1089 info.complete = &done;
1090 info.apicid = apicid;
1091 info.cpu = cpu;
1092 INIT_WORK(&task, do_warm_boot_cpu, &info);
1094 tsc_sync_disabled = 1;
1096 /* init low mem mapping */
1097 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1098 KERNEL_PGD_PTRS);
1099 flush_tlb_all();
1100 schedule_work(&task);
1101 wait_for_completion(&done);
1103 tsc_sync_disabled = 0;
1104 zap_low_mappings();
1105 ret = 0;
1106 exit:
1107 return ret;
1109 #endif
1111 static void smp_tune_scheduling (void)
1113 unsigned long cachesize; /* kB */
1114 unsigned long bandwidth = 350; /* MB/s */
1116 * Rough estimation for SMP scheduling, this is the number of
1117 * cycles it takes for a fully memory-limited process to flush
1118 * the SMP-local cache.
1120 * (For a P5 this pretty much means we will choose another idle
1121 * CPU almost always at wakeup time (this is due to the small
1122 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1123 * the cache size)
1126 if (!cpu_khz) {
1128 * this basically disables processor-affinity
1129 * scheduling on SMP without a TSC.
1131 return;
1132 } else {
1133 cachesize = boot_cpu_data.x86_cache_size;
1134 if (cachesize == -1) {
1135 cachesize = 16; /* Pentiums, 2x8kB cache */
1136 bandwidth = 100;
1138 max_cache_size = cachesize * 1024;
1143 * Cycle through the processors sending APIC IPIs to boot each.
1146 static int boot_cpu_logical_apicid;
1147 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1148 void *xquad_portio;
1149 #ifdef CONFIG_X86_NUMAQ
1150 EXPORT_SYMBOL(xquad_portio);
1151 #endif
1153 static void __init smp_boot_cpus(unsigned int max_cpus)
1155 int apicid, cpu, bit, kicked;
1156 unsigned long bogosum = 0;
1159 * Setup boot CPU information
1161 smp_store_cpu_info(0); /* Final full version of the data */
1162 printk("CPU%d: ", 0);
1163 print_cpu_info(&cpu_data[0]);
1165 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1166 boot_cpu_logical_apicid = logical_smp_processor_id();
1167 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1169 current_thread_info()->cpu = 0;
1170 smp_tune_scheduling();
1172 set_cpu_sibling_map(0);
1175 * If we couldn't find an SMP configuration at boot time,
1176 * get out of here now!
1178 if (!smp_found_config && !acpi_lapic) {
1179 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1180 smpboot_clear_io_apic_irqs();
1181 phys_cpu_present_map = physid_mask_of_physid(0);
1182 if (APIC_init_uniprocessor())
1183 printk(KERN_NOTICE "Local APIC not detected."
1184 " Using dummy APIC emulation.\n");
1185 map_cpu_to_logical_apicid();
1186 cpu_set(0, cpu_sibling_map[0]);
1187 cpu_set(0, cpu_core_map[0]);
1188 return;
1192 * Should not be necessary because the MP table should list the boot
1193 * CPU too, but we do it for the sake of robustness anyway.
1194 * Makes no sense to do this check in clustered apic mode, so skip it
1196 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1197 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1198 boot_cpu_physical_apicid);
1199 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1203 * If we couldn't find a local APIC, then get out of here now!
1205 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1206 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1207 boot_cpu_physical_apicid);
1208 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1209 smpboot_clear_io_apic_irqs();
1210 phys_cpu_present_map = physid_mask_of_physid(0);
1211 cpu_set(0, cpu_sibling_map[0]);
1212 cpu_set(0, cpu_core_map[0]);
1213 return;
1216 verify_local_APIC();
1219 * If SMP should be disabled, then really disable it!
1221 if (!max_cpus) {
1222 smp_found_config = 0;
1223 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1224 smpboot_clear_io_apic_irqs();
1225 phys_cpu_present_map = physid_mask_of_physid(0);
1226 cpu_set(0, cpu_sibling_map[0]);
1227 cpu_set(0, cpu_core_map[0]);
1228 return;
1231 connect_bsp_APIC();
1232 setup_local_APIC();
1233 map_cpu_to_logical_apicid();
1236 setup_portio_remap();
1239 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1241 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1242 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1243 * clustered apic ID.
1245 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1247 kicked = 1;
1248 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1249 apicid = cpu_present_to_apicid(bit);
1251 * Don't even attempt to start the boot CPU!
1253 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1254 continue;
1256 if (!check_apicid_present(bit))
1257 continue;
1258 if (max_cpus <= cpucount+1)
1259 continue;
1261 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1262 printk("CPU #%d not responding - cannot use it.\n",
1263 apicid);
1264 else
1265 ++kicked;
1269 * Cleanup possible dangling ends...
1271 smpboot_restore_warm_reset_vector();
1274 * Allow the user to impress friends.
1276 Dprintk("Before bogomips.\n");
1277 for (cpu = 0; cpu < NR_CPUS; cpu++)
1278 if (cpu_isset(cpu, cpu_callout_map))
1279 bogosum += cpu_data[cpu].loops_per_jiffy;
1280 printk(KERN_INFO
1281 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1282 cpucount+1,
1283 bogosum/(500000/HZ),
1284 (bogosum/(5000/HZ))%100);
1286 Dprintk("Before bogocount - setting activated=1.\n");
1288 if (smp_b_stepping)
1289 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1292 * Don't taint if we are running SMP kernel on a single non-MP
1293 * approved Athlon
1295 if (tainted & TAINT_UNSAFE_SMP) {
1296 if (cpucount)
1297 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1298 else
1299 tainted &= ~TAINT_UNSAFE_SMP;
1302 Dprintk("Boot done.\n");
1305 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1306 * efficiently.
1308 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1309 cpus_clear(cpu_sibling_map[cpu]);
1310 cpus_clear(cpu_core_map[cpu]);
1313 cpu_set(0, cpu_sibling_map[0]);
1314 cpu_set(0, cpu_core_map[0]);
1316 smpboot_setup_io_apic();
1318 setup_boot_APIC_clock();
1321 * Synchronize the TSC with the AP
1323 if (cpu_has_tsc && cpucount && cpu_khz)
1324 synchronize_tsc_bp();
1327 /* These are wrappers to interface to the new boot process. Someone
1328 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1329 void __init smp_prepare_cpus(unsigned int max_cpus)
1331 smp_commenced_mask = cpumask_of_cpu(0);
1332 cpu_callin_map = cpumask_of_cpu(0);
1333 mb();
1334 smp_boot_cpus(max_cpus);
1337 void __devinit smp_prepare_boot_cpu(void)
1339 cpu_set(smp_processor_id(), cpu_online_map);
1340 cpu_set(smp_processor_id(), cpu_callout_map);
1341 cpu_set(smp_processor_id(), cpu_present_map);
1342 cpu_set(smp_processor_id(), cpu_possible_map);
1343 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1346 #ifdef CONFIG_HOTPLUG_CPU
1347 static void
1348 remove_siblinginfo(int cpu)
1350 int sibling;
1351 struct cpuinfo_x86 *c = cpu_data;
1353 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1354 cpu_clear(cpu, cpu_core_map[sibling]);
1356 * last thread sibling in this cpu core going down
1358 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1359 c[sibling].booted_cores--;
1362 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1363 cpu_clear(cpu, cpu_sibling_map[sibling]);
1364 cpus_clear(cpu_sibling_map[cpu]);
1365 cpus_clear(cpu_core_map[cpu]);
1366 c[cpu].phys_proc_id = 0;
1367 c[cpu].cpu_core_id = 0;
1368 cpu_clear(cpu, cpu_sibling_setup_map);
1371 int __cpu_disable(void)
1373 cpumask_t map = cpu_online_map;
1374 int cpu = smp_processor_id();
1377 * Perhaps use cpufreq to drop frequency, but that could go
1378 * into generic code.
1380 * We won't take down the boot processor on i386 due to some
1381 * interrupts only being able to be serviced by the BSP.
1382 * Especially so if we're not using an IOAPIC -zwane
1384 if (cpu == 0)
1385 return -EBUSY;
1386 if (nmi_watchdog == NMI_LOCAL_APIC)
1387 stop_apic_nmi_watchdog(NULL);
1388 clear_local_APIC();
1389 /* Allow any queued timer interrupts to get serviced */
1390 local_irq_enable();
1391 mdelay(1);
1392 local_irq_disable();
1394 remove_siblinginfo(cpu);
1396 cpu_clear(cpu, map);
1397 fixup_irqs(map);
1398 /* It's now safe to remove this processor from the online map */
1399 cpu_clear(cpu, cpu_online_map);
1400 return 0;
1403 void __cpu_die(unsigned int cpu)
1405 /* We don't do anything here: idle task is faking death itself. */
1406 unsigned int i;
1408 for (i = 0; i < 10; i++) {
1409 /* They ack this in play_dead by setting CPU_DEAD */
1410 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1411 printk ("CPU %d is now offline\n", cpu);
1412 if (1 == num_online_cpus())
1413 alternatives_smp_switch(0);
1414 return;
1416 msleep(100);
1418 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1420 #else /* ... !CONFIG_HOTPLUG_CPU */
1421 int __cpu_disable(void)
1423 return -ENOSYS;
1426 void __cpu_die(unsigned int cpu)
1428 /* We said "no" in __cpu_disable */
1429 BUG();
1431 #endif /* CONFIG_HOTPLUG_CPU */
1433 int __devinit __cpu_up(unsigned int cpu)
1435 #ifdef CONFIG_HOTPLUG_CPU
1436 int ret=0;
1439 * We do warm boot only on cpus that had booted earlier
1440 * Otherwise cold boot is all handled from smp_boot_cpus().
1441 * cpu_callin_map is set during AP kickstart process. Its reset
1442 * when a cpu is taken offline from cpu_exit_clear().
1444 if (!cpu_isset(cpu, cpu_callin_map))
1445 ret = __smp_prepare_cpu(cpu);
1447 if (ret)
1448 return -EIO;
1449 #endif
1451 /* In case one didn't come up */
1452 if (!cpu_isset(cpu, cpu_callin_map)) {
1453 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1454 local_irq_enable();
1455 return -EIO;
1458 local_irq_enable();
1459 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1460 /* Unleash the CPU! */
1461 cpu_set(cpu, smp_commenced_mask);
1462 while (!cpu_isset(cpu, cpu_online_map))
1463 cpu_relax();
1464 return 0;
1467 void __init smp_cpus_done(unsigned int max_cpus)
1469 #ifdef CONFIG_X86_IO_APIC
1470 setup_ioapic_dest();
1471 #endif
1472 zap_low_mappings();
1473 #ifndef CONFIG_HOTPLUG_CPU
1475 * Disable executability of the SMP trampoline:
1477 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1478 #endif
1481 void __init smp_intr_init(void)
1484 * IRQ0 must be given a fixed assignment and initialized,
1485 * because it's used before the IO-APIC is set up.
1487 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1490 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1491 * IPI, driven by wakeup.
1493 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1495 /* IPI for invalidation */
1496 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1498 /* IPI for generic function call */
1499 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1503 * If the BIOS enumerates physical processors before logical,
1504 * maxcpus=N at enumeration-time can be used to disable HT.
1506 static int __init parse_maxcpus(char *arg)
1508 extern unsigned int maxcpus;
1510 maxcpus = simple_strtoul(arg, NULL, 0);
1511 return 0;
1513 early_param("maxcpus", parse_maxcpus);