2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
44 #include <asm/stacktrace.h>
46 extern asmlinkage
void handle_int(void);
47 extern asmlinkage
void handle_tlbm(void);
48 extern asmlinkage
void handle_tlbl(void);
49 extern asmlinkage
void handle_tlbs(void);
50 extern asmlinkage
void handle_adel(void);
51 extern asmlinkage
void handle_ades(void);
52 extern asmlinkage
void handle_ibe(void);
53 extern asmlinkage
void handle_dbe(void);
54 extern asmlinkage
void handle_sys(void);
55 extern asmlinkage
void handle_bp(void);
56 extern asmlinkage
void handle_ri(void);
57 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
58 extern asmlinkage
void handle_ri_rdhwr(void);
59 extern asmlinkage
void handle_cpu(void);
60 extern asmlinkage
void handle_ov(void);
61 extern asmlinkage
void handle_tr(void);
62 extern asmlinkage
void handle_fpe(void);
63 extern asmlinkage
void handle_mdmx(void);
64 extern asmlinkage
void handle_watch(void);
65 extern asmlinkage
void handle_mt(void);
66 extern asmlinkage
void handle_dsp(void);
67 extern asmlinkage
void handle_mcheck(void);
68 extern asmlinkage
void handle_reserved(void);
70 extern int fpu_emulator_cop1Handler(struct pt_regs
*xcp
,
71 struct mips_fpu_struct
*ctx
, int has_fpu
);
73 void (*board_be_init
)(void);
74 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
75 void (*board_nmi_handler_setup
)(void);
76 void (*board_ejtag_handler_setup
)(void);
77 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
80 static void show_raw_backtrace(unsigned long reg29
)
82 unsigned long *sp
= (unsigned long *)reg29
;
85 printk("Call Trace:");
86 #ifdef CONFIG_KALLSYMS
89 while (!kstack_end(sp
)) {
91 if (__kernel_text_address(addr
))
97 #ifdef CONFIG_KALLSYMS
99 static int __init
set_raw_show_trace(char *str
)
104 __setup("raw_show_trace", set_raw_show_trace
);
107 static void show_backtrace(struct task_struct
*task
, struct pt_regs
*regs
)
109 unsigned long sp
= regs
->regs
[29];
110 unsigned long ra
= regs
->regs
[31];
111 unsigned long pc
= regs
->cp0_epc
;
113 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
114 show_raw_backtrace(sp
);
117 printk("Call Trace:\n");
120 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
126 * This routine abuses get_user()/put_user() to reference pointers
127 * with at least a bit of error checking ...
129 static void show_stacktrace(struct task_struct
*task
, struct pt_regs
*regs
)
131 const int field
= 2 * sizeof(unsigned long);
134 unsigned long *sp
= (unsigned long *)regs
->regs
[29];
138 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
139 if (i
&& ((i
% (64 / field
)) == 0))
146 if (__get_user(stackdata
, sp
++)) {
147 printk(" (Bad stack address)");
151 printk(" %0*lx", field
, stackdata
);
155 show_backtrace(task
, regs
);
158 void show_stack(struct task_struct
*task
, unsigned long *sp
)
162 regs
.regs
[29] = (unsigned long)sp
;
166 if (task
&& task
!= current
) {
167 regs
.regs
[29] = task
->thread
.reg29
;
169 regs
.cp0_epc
= task
->thread
.reg31
;
171 prepare_frametrace(®s
);
174 show_stacktrace(task
, ®s
);
178 * The architecture-independent dump_stack generator
180 void dump_stack(void)
184 prepare_frametrace(®s
);
185 show_backtrace(current
, ®s
);
188 EXPORT_SYMBOL(dump_stack
);
190 void show_code(unsigned int *pc
)
196 for(i
= -3 ; i
< 6 ; i
++) {
198 if (__get_user(insn
, pc
+ i
)) {
199 printk(" (Bad address in epc)\n");
202 printk("%c%08x%c", (i
?' ':'<'), insn
, (i
?' ':'>'));
206 void show_regs(struct pt_regs
*regs
)
208 const int field
= 2 * sizeof(unsigned long);
209 unsigned int cause
= regs
->cp0_cause
;
212 printk("Cpu %d\n", smp_processor_id());
215 * Saved main processor registers
217 for (i
= 0; i
< 32; ) {
221 printk(" %0*lx", field
, 0UL);
222 else if (i
== 26 || i
== 27)
223 printk(" %*s", field
, "");
225 printk(" %0*lx", field
, regs
->regs
[i
]);
232 printk("Hi : %0*lx\n", field
, regs
->hi
);
233 printk("Lo : %0*lx\n", field
, regs
->lo
);
236 * Saved cp0 registers
238 printk("epc : %0*lx ", field
, regs
->cp0_epc
);
239 print_symbol("%s ", regs
->cp0_epc
);
240 printk(" %s\n", print_tainted());
241 printk("ra : %0*lx ", field
, regs
->regs
[31]);
242 print_symbol("%s\n", regs
->regs
[31]);
244 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
246 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) {
247 if (regs
->cp0_status
& ST0_KUO
)
249 if (regs
->cp0_status
& ST0_IEO
)
251 if (regs
->cp0_status
& ST0_KUP
)
253 if (regs
->cp0_status
& ST0_IEP
)
255 if (regs
->cp0_status
& ST0_KUC
)
257 if (regs
->cp0_status
& ST0_IEC
)
260 if (regs
->cp0_status
& ST0_KX
)
262 if (regs
->cp0_status
& ST0_SX
)
264 if (regs
->cp0_status
& ST0_UX
)
266 switch (regs
->cp0_status
& ST0_KSU
) {
271 printk("SUPERVISOR ");
280 if (regs
->cp0_status
& ST0_ERL
)
282 if (regs
->cp0_status
& ST0_EXL
)
284 if (regs
->cp0_status
& ST0_IE
)
289 printk("Cause : %08x\n", cause
);
291 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
292 if (1 <= cause
&& cause
<= 5)
293 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
295 printk("PrId : %08x\n", read_c0_prid());
298 void show_registers(struct pt_regs
*regs
)
302 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
303 current
->comm
, current
->pid
, current_thread_info(), current
);
304 show_stacktrace(current
, regs
);
305 show_code((unsigned int *) regs
->cp0_epc
);
309 static DEFINE_SPINLOCK(die_lock
);
311 NORET_TYPE
void ATTRIB_NORET
die(const char * str
, struct pt_regs
* regs
)
313 static int die_counter
;
314 #ifdef CONFIG_MIPS_MT_SMTC
315 unsigned long dvpret
= dvpe();
316 #endif /* CONFIG_MIPS_MT_SMTC */
319 spin_lock_irq(&die_lock
);
321 #ifdef CONFIG_MIPS_MT_SMTC
322 mips_mt_regdump(dvpret
);
323 #endif /* CONFIG_MIPS_MT_SMTC */
324 printk("%s[#%d]:\n", str
, ++die_counter
);
325 show_registers(regs
);
326 spin_unlock_irq(&die_lock
);
329 panic("Fatal exception in interrupt");
332 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds\n");
334 panic("Fatal exception");
340 extern const struct exception_table_entry __start___dbe_table
[];
341 extern const struct exception_table_entry __stop___dbe_table
[];
343 void __declare_dbe_table(void)
345 __asm__
__volatile__(
346 ".section\t__dbe_table,\"a\"\n\t"
351 /* Given an address, look for it in the exception tables. */
352 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
354 const struct exception_table_entry
*e
;
356 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
358 e
= search_module_dbetables(addr
);
362 asmlinkage
void do_be(struct pt_regs
*regs
)
364 const int field
= 2 * sizeof(unsigned long);
365 const struct exception_table_entry
*fixup
= NULL
;
366 int data
= regs
->cp0_cause
& 4;
367 int action
= MIPS_BE_FATAL
;
369 /* XXX For now. Fixme, this searches the wrong table ... */
370 if (data
&& !user_mode(regs
))
371 fixup
= search_dbe_tables(exception_epc(regs
));
374 action
= MIPS_BE_FIXUP
;
376 if (board_be_handler
)
377 action
= board_be_handler(regs
, fixup
!= 0);
380 case MIPS_BE_DISCARD
:
384 regs
->cp0_epc
= fixup
->nextinsn
;
393 * Assume it would be too dangerous to continue ...
395 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
396 data
? "Data" : "Instruction",
397 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
398 die_if_kernel("Oops", regs
);
399 force_sig(SIGBUS
, current
);
406 #define OPCODE 0xfc000000
407 #define BASE 0x03e00000
408 #define RT 0x001f0000
409 #define OFFSET 0x0000ffff
410 #define LL 0xc0000000
411 #define SC 0xe0000000
412 #define SPEC3 0x7c000000
413 #define RD 0x0000f800
414 #define FUNC 0x0000003f
415 #define RDHWR 0x0000003b
418 * The ll_bit is cleared by r*_switch.S
421 unsigned long ll_bit
;
423 static struct task_struct
*ll_task
= NULL
;
425 static inline void simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
427 unsigned long value
, __user
*vaddr
;
432 * analyse the ll instruction that just caused a ri exception
433 * and put the referenced address to addr.
436 /* sign extend offset */
437 offset
= opcode
& OFFSET
;
441 vaddr
= (unsigned long __user
*)
442 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
444 if ((unsigned long)vaddr
& 3) {
448 if (get_user(value
, vaddr
)) {
455 if (ll_task
== NULL
|| ll_task
== current
) {
464 compute_return_epc(regs
);
466 regs
->regs
[(opcode
& RT
) >> 16] = value
;
471 force_sig(signal
, current
);
474 static inline void simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
476 unsigned long __user
*vaddr
;
482 * analyse the sc instruction that just caused a ri exception
483 * and put the referenced address to addr.
486 /* sign extend offset */
487 offset
= opcode
& OFFSET
;
491 vaddr
= (unsigned long __user
*)
492 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
493 reg
= (opcode
& RT
) >> 16;
495 if ((unsigned long)vaddr
& 3) {
502 if (ll_bit
== 0 || ll_task
!= current
) {
503 compute_return_epc(regs
);
511 if (put_user(regs
->regs
[reg
], vaddr
)) {
516 compute_return_epc(regs
);
522 force_sig(signal
, current
);
526 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
527 * opcodes are supposed to result in coprocessor unusable exceptions if
528 * executed on ll/sc-less processors. That's the theory. In practice a
529 * few processors such as NEC's VR4100 throw reserved instruction exceptions
530 * instead, so we're doing the emulation thing in both exception handlers.
532 static inline int simulate_llsc(struct pt_regs
*regs
)
536 if (get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
539 if ((opcode
& OPCODE
) == LL
) {
540 simulate_ll(regs
, opcode
);
543 if ((opcode
& OPCODE
) == SC
) {
544 simulate_sc(regs
, opcode
);
548 return -EFAULT
; /* Strange things going on ... */
551 force_sig(SIGSEGV
, current
);
556 * Simulate trapping 'rdhwr' instructions to provide user accessible
557 * registers not implemented in hardware. The only current use of this
558 * is the thread area pointer.
560 static inline int simulate_rdhwr(struct pt_regs
*regs
)
562 struct thread_info
*ti
= task_thread_info(current
);
565 if (get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
568 if (unlikely(compute_return_epc(regs
)))
571 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
572 int rd
= (opcode
& RD
) >> 11;
573 int rt
= (opcode
& RT
) >> 16;
576 regs
->regs
[rt
] = ti
->tp_value
;
587 force_sig(SIGSEGV
, current
);
591 asmlinkage
void do_ov(struct pt_regs
*regs
)
595 die_if_kernel("Integer overflow", regs
);
597 info
.si_code
= FPE_INTOVF
;
598 info
.si_signo
= SIGFPE
;
600 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
601 force_sig_info(SIGFPE
, &info
, current
);
605 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
607 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
609 die_if_kernel("FP exception in kernel code", regs
);
611 if (fcr31
& FPU_CSR_UNI_X
) {
616 #ifdef CONFIG_PREEMPT
617 if (!is_fpu_owner()) {
618 /* We might lose fpu before disabling preempt... */
620 BUG_ON(!used_math());
625 * Unimplemented operation exception. If we've got the full
626 * software emulator on-board, let's use it...
628 * Force FPU to dump state into task/thread context. We're
629 * moving a lot of data here for what is probably a single
630 * instruction, but the alternative is to pre-decode the FP
631 * register operands before invoking the emulator, which seems
632 * a bit extreme for what should be an infrequent event.
635 /* Ensure 'resume' not overwrite saved fp context again. */
640 /* Run the emulator */
641 sig
= fpu_emulator_cop1Handler (regs
, ¤t
->thread
.fpu
, 1);
645 own_fpu(); /* Using the FPU again. */
647 * We can't allow the emulated instruction to leave any of
648 * the cause bit set in $fcr31.
650 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
652 /* Restore the hardware register state */
657 /* If something went wrong, signal */
659 force_sig(sig
, current
);
664 force_sig(SIGFPE
, current
);
667 asmlinkage
void do_bp(struct pt_regs
*regs
)
669 unsigned int opcode
, bcode
;
672 if (get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
676 * There is the ancient bug in the MIPS assemblers that the break
677 * code starts left to bit 16 instead to bit 6 in the opcode.
678 * Gas is bug-compatible, but not always, grrr...
679 * We handle both cases with a simple heuristics. --macro
681 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
682 if (bcode
< (1 << 10))
686 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
687 * insns, even for break codes that indicate arithmetic failures.
689 * But should we continue the brokenness??? --macro
692 case BRK_OVERFLOW
<< 10:
693 case BRK_DIVZERO
<< 10:
694 die_if_kernel("Break instruction in kernel code", regs
);
695 if (bcode
== (BRK_DIVZERO
<< 10))
696 info
.si_code
= FPE_INTDIV
;
698 info
.si_code
= FPE_INTOVF
;
699 info
.si_signo
= SIGFPE
;
701 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
702 force_sig_info(SIGFPE
, &info
, current
);
705 die("Kernel bug detected", regs
);
708 die_if_kernel("Break instruction in kernel code", regs
);
709 force_sig(SIGTRAP
, current
);
713 force_sig(SIGSEGV
, current
);
716 asmlinkage
void do_tr(struct pt_regs
*regs
)
718 unsigned int opcode
, tcode
= 0;
721 if (get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
724 /* Immediate versions don't provide a code. */
725 if (!(opcode
& OPCODE
))
726 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
729 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
730 * insns, even for trap codes that indicate arithmetic failures.
732 * But should we continue the brokenness??? --macro
737 die_if_kernel("Trap instruction in kernel code", regs
);
738 if (tcode
== BRK_DIVZERO
)
739 info
.si_code
= FPE_INTDIV
;
741 info
.si_code
= FPE_INTOVF
;
742 info
.si_signo
= SIGFPE
;
744 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
745 force_sig_info(SIGFPE
, &info
, current
);
748 die("Kernel bug detected", regs
);
751 die_if_kernel("Trap instruction in kernel code", regs
);
752 force_sig(SIGTRAP
, current
);
756 force_sig(SIGSEGV
, current
);
759 asmlinkage
void do_ri(struct pt_regs
*regs
)
761 die_if_kernel("Reserved instruction in kernel code", regs
);
764 if (!simulate_llsc(regs
))
767 if (!simulate_rdhwr(regs
))
770 force_sig(SIGILL
, current
);
773 asmlinkage
void do_cpu(struct pt_regs
*regs
)
777 die_if_kernel("do_cpu invoked from kernel context!", regs
);
779 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
784 if (!simulate_llsc(regs
))
787 if (!simulate_rdhwr(regs
))
796 if (used_math()) { /* Using the FPU again. */
798 } else { /* First time FPU user. */
808 sig
= fpu_emulator_cop1Handler(regs
,
809 ¤t
->thread
.fpu
, 0);
811 force_sig(sig
, current
);
812 #ifdef CONFIG_MIPS_MT_FPAFF
815 * MIPS MT processors may have fewer FPU contexts
816 * than CPU threads. If we've emulated more than
817 * some threshold number of instructions, force
818 * migration to a "CPU" that has FP support.
820 if(mt_fpemul_threshold
> 0
821 && ((current
->thread
.emulated_fp
++
822 > mt_fpemul_threshold
))) {
824 * If there's no FPU present, or if the
825 * application has already restricted
826 * the allowed set to exclude any CPUs
827 * with FPUs, we'll skip the procedure.
829 if (cpus_intersects(current
->cpus_allowed
,
834 current
->thread
.user_cpus_allowed
,
836 set_cpus_allowed(current
, tmask
);
837 current
->thread
.mflags
|= MF_FPUBOUND
;
841 #endif /* CONFIG_MIPS_MT_FPAFF */
848 die_if_kernel("do_cpu invoked from kernel context!", regs
);
852 force_sig(SIGILL
, current
);
855 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
857 force_sig(SIGILL
, current
);
860 asmlinkage
void do_watch(struct pt_regs
*regs
)
863 * We use the watch exception where available to detect stack
868 panic("Caught WATCH exception - probably caused by stack overflow.");
871 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
873 const int field
= 2 * sizeof(unsigned long);
874 int multi_match
= regs
->cp0_status
& ST0_TS
;
879 printk("Index : %0x\n", read_c0_index());
880 printk("Pagemask: %0x\n", read_c0_pagemask());
881 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
882 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
883 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
888 show_code((unsigned int *) regs
->cp0_epc
);
891 * Some chips may have other causes of machine check (e.g. SB1
894 panic("Caught Machine Check exception - %scaused by multiple "
895 "matching entries in the TLB.",
896 (multi_match
) ? "" : "not ");
899 asmlinkage
void do_mt(struct pt_regs
*regs
)
903 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
904 >> VPECONTROL_EXCPT_SHIFT
;
907 printk(KERN_DEBUG
"Thread Underflow\n");
910 printk(KERN_DEBUG
"Thread Overflow\n");
913 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
916 printk(KERN_DEBUG
"Gating Storage Exception\n");
919 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
922 printk(KERN_DEBUG
"Gating Storage Schedulier Exception\n");
925 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
929 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
931 force_sig(SIGILL
, current
);
935 asmlinkage
void do_dsp(struct pt_regs
*regs
)
938 panic("Unexpected DSP exception\n");
940 force_sig(SIGILL
, current
);
943 asmlinkage
void do_reserved(struct pt_regs
*regs
)
946 * Game over - no way to handle this if it ever occurs. Most probably
947 * caused by a new unknown cpu type or after another deadly
948 * hard/software error.
951 panic("Caught reserved exception %ld - should not happen.",
952 (regs
->cp0_cause
& 0x7f) >> 2);
955 asmlinkage
void do_default_vi(struct pt_regs
*regs
)
958 panic("Caught unexpected vectored interrupt.");
962 * Some MIPS CPUs can enable/disable for cache parity detection, but do
965 static inline void parity_protection_init(void)
967 switch (current_cpu_data
.cputype
) {
971 write_c0_ecc(0x80000000);
972 back_to_back_c0_hazard();
973 /* Set the PE bit (bit 31) in the c0_errctl register. */
974 printk(KERN_INFO
"Cache parity protection %sabled\n",
975 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
979 /* Clear the DE bit (bit 16) in the c0_status register. */
980 printk(KERN_INFO
"Enable cache parity protection for "
981 "MIPS 20KC/25KF CPUs.\n");
982 clear_c0_status(ST0_DE
);
989 asmlinkage
void cache_parity_error(void)
991 const int field
= 2 * sizeof(unsigned long);
992 unsigned int reg_val
;
994 /* For the moment, report the problem and hang. */
995 printk("Cache error exception:\n");
996 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
997 reg_val
= read_c0_cacheerr();
998 printk("c0_cacheerr == %08x\n", reg_val
);
1000 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1001 reg_val
& (1<<30) ? "secondary" : "primary",
1002 reg_val
& (1<<31) ? "data" : "insn");
1003 printk("Error bits: %s%s%s%s%s%s%s\n",
1004 reg_val
& (1<<29) ? "ED " : "",
1005 reg_val
& (1<<28) ? "ET " : "",
1006 reg_val
& (1<<26) ? "EE " : "",
1007 reg_val
& (1<<25) ? "EB " : "",
1008 reg_val
& (1<<24) ? "EI " : "",
1009 reg_val
& (1<<23) ? "E1 " : "",
1010 reg_val
& (1<<22) ? "E0 " : "");
1011 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1013 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1014 if (reg_val
& (1<<22))
1015 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1017 if (reg_val
& (1<<23))
1018 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1021 panic("Can't handle the cache error!");
1025 * SDBBP EJTAG debug exception handler.
1026 * We skip the instruction and return to the next instruction.
1028 void ejtag_exception_handler(struct pt_regs
*regs
)
1030 const int field
= 2 * sizeof(unsigned long);
1031 unsigned long depc
, old_epc
;
1034 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1035 depc
= read_c0_depc();
1036 debug
= read_c0_debug();
1037 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1038 if (debug
& 0x80000000) {
1040 * In branch delay slot.
1041 * We cheat a little bit here and use EPC to calculate the
1042 * debug return address (DEPC). EPC is restored after the
1045 old_epc
= regs
->cp0_epc
;
1046 regs
->cp0_epc
= depc
;
1047 __compute_return_epc(regs
);
1048 depc
= regs
->cp0_epc
;
1049 regs
->cp0_epc
= old_epc
;
1052 write_c0_depc(depc
);
1055 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1056 write_c0_debug(debug
| 0x100);
1061 * NMI exception handler.
1063 void nmi_exception_handler(struct pt_regs
*regs
)
1065 #ifdef CONFIG_MIPS_MT_SMTC
1066 unsigned long dvpret
= dvpe();
1068 printk("NMI taken!!!!\n");
1069 mips_mt_regdump(dvpret
);
1072 printk("NMI taken!!!!\n");
1073 #endif /* CONFIG_MIPS_MT_SMTC */
1078 #define VECTORSPACING 0x100 /* for EI/VI mode */
1080 unsigned long ebase
;
1081 unsigned long exception_handlers
[32];
1082 unsigned long vi_handlers
[64];
1085 * As a side effect of the way this is implemented we're limited
1086 * to interrupt handlers in the address range from
1087 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1089 void *set_except_vector(int n
, void *addr
)
1091 unsigned long handler
= (unsigned long) addr
;
1092 unsigned long old_handler
= exception_handlers
[n
];
1094 exception_handlers
[n
] = handler
;
1095 if (n
== 0 && cpu_has_divec
) {
1096 *(volatile u32
*)(ebase
+ 0x200) = 0x08000000 |
1097 (0x03ffffff & (handler
>> 2));
1098 flush_icache_range(ebase
+ 0x200, ebase
+ 0x204);
1100 return (void *)old_handler
;
1103 #ifdef CONFIG_CPU_MIPSR2_SRS
1105 * MIPSR2 shadow register set allocation
1109 static struct shadow_registers
{
1111 * Number of shadow register sets supported
1113 unsigned long sr_supported
;
1115 * Bitmap of allocated shadow registers
1117 unsigned long sr_allocated
;
1120 static void mips_srs_init(void)
1122 shadow_registers
.sr_supported
= ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1123 printk(KERN_INFO
"%ld MIPSR2 register sets available\n",
1124 shadow_registers
.sr_supported
);
1125 shadow_registers
.sr_allocated
= 1; /* Set 0 used by kernel */
1128 int mips_srs_max(void)
1130 return shadow_registers
.sr_supported
;
1133 int mips_srs_alloc(void)
1135 struct shadow_registers
*sr
= &shadow_registers
;
1139 set
= find_first_zero_bit(&sr
->sr_allocated
, sr
->sr_supported
);
1140 if (set
>= sr
->sr_supported
)
1143 if (test_and_set_bit(set
, &sr
->sr_allocated
))
1149 void mips_srs_free(int set
)
1151 struct shadow_registers
*sr
= &shadow_registers
;
1153 clear_bit(set
, &sr
->sr_allocated
);
1156 static void *set_vi_srs_handler(int n
, void *addr
, int srs
)
1158 unsigned long handler
;
1159 unsigned long old_handler
= vi_handlers
[n
];
1163 if (!cpu_has_veic
&& !cpu_has_vint
)
1167 handler
= (unsigned long) do_default_vi
;
1170 handler
= (unsigned long) addr
;
1171 vi_handlers
[n
] = (unsigned long) addr
;
1173 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1175 if (srs
>= mips_srs_max())
1176 panic("Shadow register set %d not supported", srs
);
1179 if (board_bind_eic_interrupt
)
1180 board_bind_eic_interrupt (n
, srs
);
1181 } else if (cpu_has_vint
) {
1182 /* SRSMap is only defined if shadow sets are implemented */
1183 if (mips_srs_max() > 1)
1184 change_c0_srsmap (0xf << n
*4, srs
<< n
*4);
1189 * If no shadow set is selected then use the default handler
1190 * that does normal register saving and a standard interrupt exit
1193 extern char except_vec_vi
, except_vec_vi_lui
;
1194 extern char except_vec_vi_ori
, except_vec_vi_end
;
1195 #ifdef CONFIG_MIPS_MT_SMTC
1197 * We need to provide the SMTC vectored interrupt handler
1198 * not only with the address of the handler, but with the
1199 * Status.IM bit to be masked before going there.
1201 extern char except_vec_vi_mori
;
1202 const int mori_offset
= &except_vec_vi_mori
- &except_vec_vi
;
1203 #endif /* CONFIG_MIPS_MT_SMTC */
1204 const int handler_len
= &except_vec_vi_end
- &except_vec_vi
;
1205 const int lui_offset
= &except_vec_vi_lui
- &except_vec_vi
;
1206 const int ori_offset
= &except_vec_vi_ori
- &except_vec_vi
;
1208 if (handler_len
> VECTORSPACING
) {
1210 * Sigh... panicing won't help as the console
1211 * is probably not configured :(
1213 panic ("VECTORSPACING too small");
1216 memcpy (b
, &except_vec_vi
, handler_len
);
1217 #ifdef CONFIG_MIPS_MT_SMTC
1219 printk("Vector index %d exceeds SMTC maximum\n", n
);
1220 w
= (u32
*)(b
+ mori_offset
);
1221 *w
= (*w
& 0xffff0000) | (0x100 << n
);
1222 #endif /* CONFIG_MIPS_MT_SMTC */
1223 w
= (u32
*)(b
+ lui_offset
);
1224 *w
= (*w
& 0xffff0000) | (((u32
)handler
>> 16) & 0xffff);
1225 w
= (u32
*)(b
+ ori_offset
);
1226 *w
= (*w
& 0xffff0000) | ((u32
)handler
& 0xffff);
1227 flush_icache_range((unsigned long)b
, (unsigned long)(b
+handler_len
));
1231 * In other cases jump directly to the interrupt handler
1233 * It is the handlers responsibility to save registers if required
1234 * (eg hi/lo) and return from the exception using "eret"
1237 *w
++ = 0x08000000 | (((u32
)handler
>> 2) & 0x03fffff); /* j handler */
1239 flush_icache_range((unsigned long)b
, (unsigned long)(b
+8));
1242 return (void *)old_handler
;
1245 void *set_vi_handler(int n
, void *addr
)
1247 return set_vi_srs_handler(n
, addr
, 0);
1252 static inline void mips_srs_init(void)
1256 #endif /* CONFIG_CPU_MIPSR2_SRS */
1259 * This is used by native signal handling
1261 asmlinkage
int (*save_fp_context
)(struct sigcontext
*sc
);
1262 asmlinkage
int (*restore_fp_context
)(struct sigcontext
*sc
);
1264 extern asmlinkage
int _save_fp_context(struct sigcontext
*sc
);
1265 extern asmlinkage
int _restore_fp_context(struct sigcontext
*sc
);
1267 extern asmlinkage
int fpu_emulator_save_context(struct sigcontext
*sc
);
1268 extern asmlinkage
int fpu_emulator_restore_context(struct sigcontext
*sc
);
1271 static int smp_save_fp_context(struct sigcontext
*sc
)
1274 ? _save_fp_context(sc
)
1275 : fpu_emulator_save_context(sc
);
1278 static int smp_restore_fp_context(struct sigcontext
*sc
)
1281 ? _restore_fp_context(sc
)
1282 : fpu_emulator_restore_context(sc
);
1286 static inline void signal_init(void)
1289 /* For now just do the cpu_has_fpu check when the functions are invoked */
1290 save_fp_context
= smp_save_fp_context
;
1291 restore_fp_context
= smp_restore_fp_context
;
1294 save_fp_context
= _save_fp_context
;
1295 restore_fp_context
= _restore_fp_context
;
1297 save_fp_context
= fpu_emulator_save_context
;
1298 restore_fp_context
= fpu_emulator_restore_context
;
1303 #ifdef CONFIG_MIPS32_COMPAT
1306 * This is used by 32-bit signal stuff on the 64-bit kernel
1308 asmlinkage
int (*save_fp_context32
)(struct sigcontext32
*sc
);
1309 asmlinkage
int (*restore_fp_context32
)(struct sigcontext32
*sc
);
1311 extern asmlinkage
int _save_fp_context32(struct sigcontext32
*sc
);
1312 extern asmlinkage
int _restore_fp_context32(struct sigcontext32
*sc
);
1314 extern asmlinkage
int fpu_emulator_save_context32(struct sigcontext32
*sc
);
1315 extern asmlinkage
int fpu_emulator_restore_context32(struct sigcontext32
*sc
);
1317 static inline void signal32_init(void)
1320 save_fp_context32
= _save_fp_context32
;
1321 restore_fp_context32
= _restore_fp_context32
;
1323 save_fp_context32
= fpu_emulator_save_context32
;
1324 restore_fp_context32
= fpu_emulator_restore_context32
;
1329 extern void cpu_cache_init(void);
1330 extern void tlb_init(void);
1331 extern void flush_tlb_handlers(void);
1333 void __init
per_cpu_trap_init(void)
1335 unsigned int cpu
= smp_processor_id();
1336 unsigned int status_set
= ST0_CU0
;
1337 #ifdef CONFIG_MIPS_MT_SMTC
1338 int secondaryTC
= 0;
1339 int bootTC
= (cpu
== 0);
1342 * Only do per_cpu_trap_init() for first TC of Each VPE.
1343 * Note that this hack assumes that the SMTC init code
1344 * assigns TCs consecutively and in ascending order.
1347 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1348 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1350 #endif /* CONFIG_MIPS_MT_SMTC */
1353 * Disable coprocessors and select 32-bit or 64-bit addressing
1354 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1355 * flag that some firmware may have left set and the TS bit (for
1356 * IP27). Set XX for ISA IV code to work.
1359 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1361 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
1362 status_set
|= ST0_XX
;
1363 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1367 set_c0_status(ST0_MX
);
1369 #ifdef CONFIG_CPU_MIPSR2
1370 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1373 #ifdef CONFIG_MIPS_MT_SMTC
1375 #endif /* CONFIG_MIPS_MT_SMTC */
1378 * Interrupt handling.
1380 if (cpu_has_veic
|| cpu_has_vint
) {
1381 write_c0_ebase (ebase
);
1382 /* Setting vector spacing enables EI/VI mode */
1383 change_c0_intctl (0x3e0, VECTORSPACING
);
1385 if (cpu_has_divec
) {
1386 if (cpu_has_mipsmt
) {
1387 unsigned int vpflags
= dvpe();
1388 set_c0_cause(CAUSEF_IV
);
1391 set_c0_cause(CAUSEF_IV
);
1393 #ifdef CONFIG_MIPS_MT_SMTC
1395 #endif /* CONFIG_MIPS_MT_SMTC */
1397 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1398 TLBMISS_HANDLER_SETUP();
1400 atomic_inc(&init_mm
.mm_count
);
1401 current
->active_mm
= &init_mm
;
1402 BUG_ON(current
->mm
);
1403 enter_lazy_tlb(&init_mm
, current
);
1405 #ifdef CONFIG_MIPS_MT_SMTC
1407 #endif /* CONFIG_MIPS_MT_SMTC */
1410 #ifdef CONFIG_MIPS_MT_SMTC
1412 #endif /* CONFIG_MIPS_MT_SMTC */
1415 /* Install CPU exception handler */
1416 void __init
set_handler (unsigned long offset
, void *addr
, unsigned long size
)
1418 memcpy((void *)(ebase
+ offset
), addr
, size
);
1419 flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1422 /* Install uncached CPU exception handler */
1423 void __init
set_uncached_handler (unsigned long offset
, void *addr
, unsigned long size
)
1426 unsigned long uncached_ebase
= KSEG1ADDR(ebase
);
1429 unsigned long uncached_ebase
= TO_UNCAC(ebase
);
1432 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1435 static int __initdata rdhwr_noopt
;
1436 static int __init
set_rdhwr_noopt(char *str
)
1442 __setup("rdhwr_noopt", set_rdhwr_noopt
);
1444 void __init
trap_init(void)
1446 extern char except_vec3_generic
, except_vec3_r4000
;
1447 extern char except_vec4
;
1450 if (cpu_has_veic
|| cpu_has_vint
)
1451 ebase
= (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING
*64);
1457 per_cpu_trap_init();
1460 * Copy the generic exception handlers to their final destination.
1461 * This will be overriden later as suitable for a particular
1464 set_handler(0x180, &except_vec3_generic
, 0x80);
1467 * Setup default vectors
1469 for (i
= 0; i
<= 31; i
++)
1470 set_except_vector(i
, handle_reserved
);
1473 * Copy the EJTAG debug exception vector handler code to it's final
1476 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1477 board_ejtag_handler_setup ();
1480 * Only some CPUs have the watch exceptions.
1483 set_except_vector(23, handle_watch
);
1486 * Initialise interrupt handlers
1488 if (cpu_has_veic
|| cpu_has_vint
) {
1489 int nvec
= cpu_has_veic
? 64 : 8;
1490 for (i
= 0; i
< nvec
; i
++)
1491 set_vi_handler(i
, NULL
);
1493 else if (cpu_has_divec
)
1494 set_handler(0x200, &except_vec4
, 0x8);
1497 * Some CPUs can enable/disable for cache parity detection, but does
1498 * it different ways.
1500 parity_protection_init();
1503 * The Data Bus Errors / Instruction Bus Errors are signaled
1504 * by external hardware. Therefore these two exceptions
1505 * may have board specific handlers.
1510 set_except_vector(0, handle_int
);
1511 set_except_vector(1, handle_tlbm
);
1512 set_except_vector(2, handle_tlbl
);
1513 set_except_vector(3, handle_tlbs
);
1515 set_except_vector(4, handle_adel
);
1516 set_except_vector(5, handle_ades
);
1518 set_except_vector(6, handle_ibe
);
1519 set_except_vector(7, handle_dbe
);
1521 set_except_vector(8, handle_sys
);
1522 set_except_vector(9, handle_bp
);
1523 set_except_vector(10, rdhwr_noopt
? handle_ri
:
1524 (cpu_has_vtag_icache
?
1525 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
1526 set_except_vector(11, handle_cpu
);
1527 set_except_vector(12, handle_ov
);
1528 set_except_vector(13, handle_tr
);
1530 if (current_cpu_data
.cputype
== CPU_R6000
||
1531 current_cpu_data
.cputype
== CPU_R6000A
) {
1533 * The R6000 is the only R-series CPU that features a machine
1534 * check exception (similar to the R4000 cache error) and
1535 * unaligned ldc1/sdc1 exception. The handlers have not been
1536 * written yet. Well, anyway there is no R6000 machine on the
1537 * current list of targets for Linux/MIPS.
1538 * (Duh, crap, there is someone with a triple R6k machine)
1540 //set_except_vector(14, handle_mc);
1541 //set_except_vector(15, handle_ndc);
1545 if (board_nmi_handler_setup
)
1546 board_nmi_handler_setup();
1548 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1549 set_except_vector(15, handle_fpe
);
1551 set_except_vector(22, handle_mdmx
);
1554 set_except_vector(24, handle_mcheck
);
1557 set_except_vector(25, handle_mt
);
1560 set_except_vector(26, handle_dsp
);
1563 /* Special exception: R4[04]00 uses also the divec space. */
1564 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_r4000
, 0x100);
1565 else if (cpu_has_4kex
)
1566 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_generic
, 0x80);
1568 memcpy((void *)(CAC_BASE
+ 0x080), &except_vec3_generic
, 0x80);
1571 #ifdef CONFIG_MIPS32_COMPAT
1575 flush_icache_range(ebase
, ebase
+ 0x400);
1576 flush_tlb_handlers();