sync hh.org
[hh.org.git] / arch / powerpc / mm / hugetlbpage.c
blob506d89768d455ba8625ed480d4122c7d1c8264c9
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
28 #include <linux/sysctl.h>
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 #ifdef CONFIG_PPC_64K_PAGES
34 #define HUGEPTE_INDEX_SIZE (PMD_SHIFT-HPAGE_SHIFT)
35 #else
36 #define HUGEPTE_INDEX_SIZE (PUD_SHIFT-HPAGE_SHIFT)
37 #endif
38 #define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
39 #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << HUGEPTE_INDEX_SIZE)
41 #define HUGEPD_SHIFT (HPAGE_SHIFT + HUGEPTE_INDEX_SIZE)
42 #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
43 #define HUGEPD_MASK (~(HUGEPD_SIZE-1))
45 #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
47 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
48 * will choke on pointers to hugepte tables, which is handy for
49 * catching screwups early. */
50 #define HUGEPD_OK 0x1
52 typedef struct { unsigned long pd; } hugepd_t;
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 static inline pte_t *hugepd_page(hugepd_t hpd)
58 BUG_ON(!(hpd.pd & HUGEPD_OK));
59 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
62 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
64 unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
65 pte_t *dir = hugepd_page(*hpdp);
67 return dir + idx;
70 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
71 unsigned long address)
73 pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
74 GFP_KERNEL|__GFP_REPEAT);
76 if (! new)
77 return -ENOMEM;
79 spin_lock(&mm->page_table_lock);
80 if (!hugepd_none(*hpdp))
81 kmem_cache_free(huge_pgtable_cache, new);
82 else
83 hpdp->pd = (unsigned long)new | HUGEPD_OK;
84 spin_unlock(&mm->page_table_lock);
85 return 0;
88 /* Modelled after find_linux_pte() */
89 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
91 pgd_t *pg;
92 pud_t *pu;
94 BUG_ON(! in_hugepage_area(mm->context, addr));
96 addr &= HPAGE_MASK;
98 pg = pgd_offset(mm, addr);
99 if (!pgd_none(*pg)) {
100 pu = pud_offset(pg, addr);
101 if (!pud_none(*pu)) {
102 #ifdef CONFIG_PPC_64K_PAGES
103 pmd_t *pm;
104 pm = pmd_offset(pu, addr);
105 if (!pmd_none(*pm))
106 return hugepte_offset((hugepd_t *)pm, addr);
107 #else
108 return hugepte_offset((hugepd_t *)pu, addr);
109 #endif
113 return NULL;
116 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
118 pgd_t *pg;
119 pud_t *pu;
120 hugepd_t *hpdp = NULL;
122 BUG_ON(! in_hugepage_area(mm->context, addr));
124 addr &= HPAGE_MASK;
126 pg = pgd_offset(mm, addr);
127 pu = pud_alloc(mm, pg, addr);
129 if (pu) {
130 #ifdef CONFIG_PPC_64K_PAGES
131 pmd_t *pm;
132 pm = pmd_alloc(mm, pu, addr);
133 if (pm)
134 hpdp = (hugepd_t *)pm;
135 #else
136 hpdp = (hugepd_t *)pu;
137 #endif
140 if (! hpdp)
141 return NULL;
143 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
144 return NULL;
146 return hugepte_offset(hpdp, addr);
149 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
151 pte_t *hugepte = hugepd_page(*hpdp);
153 hpdp->pd = 0;
154 tlb->need_flush = 1;
155 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
156 PGF_CACHENUM_MASK));
159 #ifdef CONFIG_PPC_64K_PAGES
160 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
161 unsigned long addr, unsigned long end,
162 unsigned long floor, unsigned long ceiling)
164 pmd_t *pmd;
165 unsigned long next;
166 unsigned long start;
168 start = addr;
169 pmd = pmd_offset(pud, addr);
170 do {
171 next = pmd_addr_end(addr, end);
172 if (pmd_none(*pmd))
173 continue;
174 free_hugepte_range(tlb, (hugepd_t *)pmd);
175 } while (pmd++, addr = next, addr != end);
177 start &= PUD_MASK;
178 if (start < floor)
179 return;
180 if (ceiling) {
181 ceiling &= PUD_MASK;
182 if (!ceiling)
183 return;
185 if (end - 1 > ceiling - 1)
186 return;
188 pmd = pmd_offset(pud, start);
189 pud_clear(pud);
190 pmd_free_tlb(tlb, pmd);
192 #endif
194 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
198 pud_t *pud;
199 unsigned long next;
200 unsigned long start;
202 start = addr;
203 pud = pud_offset(pgd, addr);
204 do {
205 next = pud_addr_end(addr, end);
206 #ifdef CONFIG_PPC_64K_PAGES
207 if (pud_none_or_clear_bad(pud))
208 continue;
209 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
210 #else
211 if (pud_none(*pud))
212 continue;
213 free_hugepte_range(tlb, (hugepd_t *)pud);
214 #endif
215 } while (pud++, addr = next, addr != end);
217 start &= PGDIR_MASK;
218 if (start < floor)
219 return;
220 if (ceiling) {
221 ceiling &= PGDIR_MASK;
222 if (!ceiling)
223 return;
225 if (end - 1 > ceiling - 1)
226 return;
228 pud = pud_offset(pgd, start);
229 pgd_clear(pgd);
230 pud_free_tlb(tlb, pud);
234 * This function frees user-level page tables of a process.
236 * Must be called with pagetable lock held.
238 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
242 pgd_t *pgd;
243 unsigned long next;
244 unsigned long start;
247 * Comments below take from the normal free_pgd_range(). They
248 * apply here too. The tests against HUGEPD_MASK below are
249 * essential, because we *don't* test for this at the bottom
250 * level. Without them we'll attempt to free a hugepte table
251 * when we unmap just part of it, even if there are other
252 * active mappings using it.
254 * The next few lines have given us lots of grief...
256 * Why are we testing HUGEPD* at this top level? Because
257 * often there will be no work to do at all, and we'd prefer
258 * not to go all the way down to the bottom just to discover
259 * that.
261 * Why all these "- 1"s? Because 0 represents both the bottom
262 * of the address space and the top of it (using -1 for the
263 * top wouldn't help much: the masks would do the wrong thing).
264 * The rule is that addr 0 and floor 0 refer to the bottom of
265 * the address space, but end 0 and ceiling 0 refer to the top
266 * Comparisons need to use "end - 1" and "ceiling - 1" (though
267 * that end 0 case should be mythical).
269 * Wherever addr is brought up or ceiling brought down, we
270 * must be careful to reject "the opposite 0" before it
271 * confuses the subsequent tests. But what about where end is
272 * brought down by HUGEPD_SIZE below? no, end can't go down to
273 * 0 there.
275 * Whereas we round start (addr) and ceiling down, by different
276 * masks at different levels, in order to test whether a table
277 * now has no other vmas using it, so can be freed, we don't
278 * bother to round floor or end up - the tests don't need that.
281 addr &= HUGEPD_MASK;
282 if (addr < floor) {
283 addr += HUGEPD_SIZE;
284 if (!addr)
285 return;
287 if (ceiling) {
288 ceiling &= HUGEPD_MASK;
289 if (!ceiling)
290 return;
292 if (end - 1 > ceiling - 1)
293 end -= HUGEPD_SIZE;
294 if (addr > end - 1)
295 return;
297 start = addr;
298 pgd = pgd_offset((*tlb)->mm, addr);
299 do {
300 BUG_ON(! in_hugepage_area((*tlb)->mm->context, addr));
301 next = pgd_addr_end(addr, end);
302 if (pgd_none_or_clear_bad(pgd))
303 continue;
304 hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
305 } while (pgd++, addr = next, addr != end);
308 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
309 pte_t *ptep, pte_t pte)
311 if (pte_present(*ptep)) {
312 /* We open-code pte_clear because we need to pass the right
313 * argument to hpte_update (huge / !huge)
315 unsigned long old = pte_update(ptep, ~0UL);
316 if (old & _PAGE_HASHPTE)
317 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
318 flush_tlb_pending();
320 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
323 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
324 pte_t *ptep)
326 unsigned long old = pte_update(ptep, ~0UL);
328 if (old & _PAGE_HASHPTE)
329 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
330 *ptep = __pte(0);
332 return __pte(old);
335 struct slb_flush_info {
336 struct mm_struct *mm;
337 u16 newareas;
340 static void flush_low_segments(void *parm)
342 struct slb_flush_info *fi = parm;
343 unsigned long i;
345 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS);
347 if (current->active_mm != fi->mm)
348 return;
350 /* Only need to do anything if this CPU is working in the same
351 * mm as the one which has changed */
353 /* update the paca copy of the context struct */
354 get_paca()->context = current->active_mm->context;
356 asm volatile("isync" : : : "memory");
357 for (i = 0; i < NUM_LOW_AREAS; i++) {
358 if (! (fi->newareas & (1U << i)))
359 continue;
360 asm volatile("slbie %0"
361 : : "r" ((i << SID_SHIFT) | SLBIE_C));
363 asm volatile("isync" : : : "memory");
366 static void flush_high_segments(void *parm)
368 struct slb_flush_info *fi = parm;
369 unsigned long i, j;
372 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS);
374 if (current->active_mm != fi->mm)
375 return;
377 /* Only need to do anything if this CPU is working in the same
378 * mm as the one which has changed */
380 /* update the paca copy of the context struct */
381 get_paca()->context = current->active_mm->context;
383 asm volatile("isync" : : : "memory");
384 for (i = 0; i < NUM_HIGH_AREAS; i++) {
385 if (! (fi->newareas & (1U << i)))
386 continue;
387 for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
388 asm volatile("slbie %0"
389 :: "r" (((i << HTLB_AREA_SHIFT)
390 + (j << SID_SHIFT)) | SLBIE_C));
392 asm volatile("isync" : : : "memory");
395 static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
397 unsigned long start = area << SID_SHIFT;
398 unsigned long end = (area+1) << SID_SHIFT;
399 struct vm_area_struct *vma;
401 BUG_ON(area >= NUM_LOW_AREAS);
403 /* Check no VMAs are in the region */
404 vma = find_vma(mm, start);
405 if (vma && (vma->vm_start < end))
406 return -EBUSY;
408 return 0;
411 static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
413 unsigned long start = area << HTLB_AREA_SHIFT;
414 unsigned long end = (area+1) << HTLB_AREA_SHIFT;
415 struct vm_area_struct *vma;
417 BUG_ON(area >= NUM_HIGH_AREAS);
419 /* Hack, so that each addresses is controlled by exactly one
420 * of the high or low area bitmaps, the first high area starts
421 * at 4GB, not 0 */
422 if (start == 0)
423 start = 0x100000000UL;
425 /* Check no VMAs are in the region */
426 vma = find_vma(mm, start);
427 if (vma && (vma->vm_start < end))
428 return -EBUSY;
430 return 0;
433 static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
435 unsigned long i;
436 struct slb_flush_info fi;
438 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
439 BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
441 newareas &= ~(mm->context.low_htlb_areas);
442 if (! newareas)
443 return 0; /* The segments we want are already open */
445 for (i = 0; i < NUM_LOW_AREAS; i++)
446 if ((1 << i) & newareas)
447 if (prepare_low_area_for_htlb(mm, i) != 0)
448 return -EBUSY;
450 mm->context.low_htlb_areas |= newareas;
452 /* the context change must make it to memory before the flush,
453 * so that further SLB misses do the right thing. */
454 mb();
456 fi.mm = mm;
457 fi.newareas = newareas;
458 on_each_cpu(flush_low_segments, &fi, 0, 1);
460 return 0;
463 static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
465 struct slb_flush_info fi;
466 unsigned long i;
468 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
469 BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
470 != NUM_HIGH_AREAS);
472 newareas &= ~(mm->context.high_htlb_areas);
473 if (! newareas)
474 return 0; /* The areas we want are already open */
476 for (i = 0; i < NUM_HIGH_AREAS; i++)
477 if ((1 << i) & newareas)
478 if (prepare_high_area_for_htlb(mm, i) != 0)
479 return -EBUSY;
481 mm->context.high_htlb_areas |= newareas;
483 /* the context change must make it to memory before the flush,
484 * so that further SLB misses do the right thing. */
485 mb();
487 fi.mm = mm;
488 fi.newareas = newareas;
489 on_each_cpu(flush_high_segments, &fi, 0, 1);
491 return 0;
494 int prepare_hugepage_range(unsigned long addr, unsigned long len, pgoff_t pgoff)
496 int err = 0;
498 if (pgoff & (~HPAGE_MASK >> PAGE_SHIFT))
499 return -EINVAL;
500 if (len & ~HPAGE_MASK)
501 return -EINVAL;
502 if (addr & ~HPAGE_MASK)
503 return -EINVAL;
505 if (addr < 0x100000000UL)
506 err = open_low_hpage_areas(current->mm,
507 LOW_ESID_MASK(addr, len));
508 if ((addr + len) > 0x100000000UL)
509 err = open_high_hpage_areas(current->mm,
510 HTLB_AREA_MASK(addr, len));
511 if (err) {
512 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
513 " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
514 addr, len,
515 LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
516 return err;
519 return 0;
522 struct page *
523 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
525 pte_t *ptep;
526 struct page *page;
528 if (! in_hugepage_area(mm->context, address))
529 return ERR_PTR(-EINVAL);
531 ptep = huge_pte_offset(mm, address);
532 page = pte_page(*ptep);
533 if (page)
534 page += (address % HPAGE_SIZE) / PAGE_SIZE;
536 return page;
539 int pmd_huge(pmd_t pmd)
541 return 0;
544 struct page *
545 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
546 pmd_t *pmd, int write)
548 BUG();
549 return NULL;
552 /* Because we have an exclusive hugepage region which lies within the
553 * normal user address space, we have to take special measures to make
554 * non-huge mmap()s evade the hugepage reserved regions. */
555 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
556 unsigned long len, unsigned long pgoff,
557 unsigned long flags)
559 struct mm_struct *mm = current->mm;
560 struct vm_area_struct *vma;
561 unsigned long start_addr;
563 if (len > TASK_SIZE)
564 return -ENOMEM;
566 if (addr) {
567 addr = PAGE_ALIGN(addr);
568 vma = find_vma(mm, addr);
569 if (((TASK_SIZE - len) >= addr)
570 && (!vma || (addr+len) <= vma->vm_start)
571 && !is_hugepage_only_range(mm, addr,len))
572 return addr;
574 if (len > mm->cached_hole_size) {
575 start_addr = addr = mm->free_area_cache;
576 } else {
577 start_addr = addr = TASK_UNMAPPED_BASE;
578 mm->cached_hole_size = 0;
581 full_search:
582 vma = find_vma(mm, addr);
583 while (TASK_SIZE - len >= addr) {
584 BUG_ON(vma && (addr >= vma->vm_end));
586 if (touches_hugepage_low_range(mm, addr, len)) {
587 addr = ALIGN(addr+1, 1<<SID_SHIFT);
588 vma = find_vma(mm, addr);
589 continue;
591 if (touches_hugepage_high_range(mm, addr, len)) {
592 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
593 vma = find_vma(mm, addr);
594 continue;
596 if (!vma || addr + len <= vma->vm_start) {
598 * Remember the place where we stopped the search:
600 mm->free_area_cache = addr + len;
601 return addr;
603 if (addr + mm->cached_hole_size < vma->vm_start)
604 mm->cached_hole_size = vma->vm_start - addr;
605 addr = vma->vm_end;
606 vma = vma->vm_next;
609 /* Make sure we didn't miss any holes */
610 if (start_addr != TASK_UNMAPPED_BASE) {
611 start_addr = addr = TASK_UNMAPPED_BASE;
612 mm->cached_hole_size = 0;
613 goto full_search;
615 return -ENOMEM;
619 * This mmap-allocator allocates new areas top-down from below the
620 * stack's low limit (the base):
622 * Because we have an exclusive hugepage region which lies within the
623 * normal user address space, we have to take special measures to make
624 * non-huge mmap()s evade the hugepage reserved regions.
626 unsigned long
627 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
628 const unsigned long len, const unsigned long pgoff,
629 const unsigned long flags)
631 struct vm_area_struct *vma, *prev_vma;
632 struct mm_struct *mm = current->mm;
633 unsigned long base = mm->mmap_base, addr = addr0;
634 unsigned long largest_hole = mm->cached_hole_size;
635 int first_time = 1;
637 /* requested length too big for entire address space */
638 if (len > TASK_SIZE)
639 return -ENOMEM;
641 /* dont allow allocations above current base */
642 if (mm->free_area_cache > base)
643 mm->free_area_cache = base;
645 /* requesting a specific address */
646 if (addr) {
647 addr = PAGE_ALIGN(addr);
648 vma = find_vma(mm, addr);
649 if (TASK_SIZE - len >= addr &&
650 (!vma || addr + len <= vma->vm_start)
651 && !is_hugepage_only_range(mm, addr,len))
652 return addr;
655 if (len <= largest_hole) {
656 largest_hole = 0;
657 mm->free_area_cache = base;
659 try_again:
660 /* make sure it can fit in the remaining address space */
661 if (mm->free_area_cache < len)
662 goto fail;
664 /* either no address requested or cant fit in requested address hole */
665 addr = (mm->free_area_cache - len) & PAGE_MASK;
666 do {
667 hugepage_recheck:
668 if (touches_hugepage_low_range(mm, addr, len)) {
669 addr = (addr & ((~0) << SID_SHIFT)) - len;
670 goto hugepage_recheck;
671 } else if (touches_hugepage_high_range(mm, addr, len)) {
672 addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
673 goto hugepage_recheck;
677 * Lookup failure means no vma is above this address,
678 * i.e. return with success:
680 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
681 return addr;
684 * new region fits between prev_vma->vm_end and
685 * vma->vm_start, use it:
687 if (addr+len <= vma->vm_start &&
688 (!prev_vma || (addr >= prev_vma->vm_end))) {
689 /* remember the address as a hint for next time */
690 mm->cached_hole_size = largest_hole;
691 return (mm->free_area_cache = addr);
692 } else {
693 /* pull free_area_cache down to the first hole */
694 if (mm->free_area_cache == vma->vm_end) {
695 mm->free_area_cache = vma->vm_start;
696 mm->cached_hole_size = largest_hole;
700 /* remember the largest hole we saw so far */
701 if (addr + largest_hole < vma->vm_start)
702 largest_hole = vma->vm_start - addr;
704 /* try just below the current vma->vm_start */
705 addr = vma->vm_start-len;
706 } while (len <= vma->vm_start);
708 fail:
710 * if hint left us with no space for the requested
711 * mapping then try again:
713 if (first_time) {
714 mm->free_area_cache = base;
715 largest_hole = 0;
716 first_time = 0;
717 goto try_again;
720 * A failed mmap() very likely causes application failure,
721 * so fall back to the bottom-up function here. This scenario
722 * can happen with large stack limits and large mmap()
723 * allocations.
725 mm->free_area_cache = TASK_UNMAPPED_BASE;
726 mm->cached_hole_size = ~0UL;
727 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
729 * Restore the topdown base:
731 mm->free_area_cache = base;
732 mm->cached_hole_size = ~0UL;
734 return addr;
737 static int htlb_check_hinted_area(unsigned long addr, unsigned long len)
739 struct vm_area_struct *vma;
741 vma = find_vma(current->mm, addr);
742 if (!vma || ((addr + len) <= vma->vm_start))
743 return 0;
745 return -ENOMEM;
748 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
750 unsigned long addr = 0;
751 struct vm_area_struct *vma;
753 vma = find_vma(current->mm, addr);
754 while (addr + len <= 0x100000000UL) {
755 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
757 if (! __within_hugepage_low_range(addr, len, segmask)) {
758 addr = ALIGN(addr+1, 1<<SID_SHIFT);
759 vma = find_vma(current->mm, addr);
760 continue;
763 if (!vma || (addr + len) <= vma->vm_start)
764 return addr;
765 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
766 /* Depending on segmask this might not be a confirmed
767 * hugepage region, so the ALIGN could have skipped
768 * some VMAs */
769 vma = find_vma(current->mm, addr);
772 return -ENOMEM;
775 static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
777 unsigned long addr = 0x100000000UL;
778 struct vm_area_struct *vma;
780 vma = find_vma(current->mm, addr);
781 while (addr + len <= TASK_SIZE_USER64) {
782 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
784 if (! __within_hugepage_high_range(addr, len, areamask)) {
785 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
786 vma = find_vma(current->mm, addr);
787 continue;
790 if (!vma || (addr + len) <= vma->vm_start)
791 return addr;
792 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
793 /* Depending on segmask this might not be a confirmed
794 * hugepage region, so the ALIGN could have skipped
795 * some VMAs */
796 vma = find_vma(current->mm, addr);
799 return -ENOMEM;
802 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
803 unsigned long len, unsigned long pgoff,
804 unsigned long flags)
806 int lastshift;
807 u16 areamask, curareas;
809 if (HPAGE_SHIFT == 0)
810 return -EINVAL;
811 if (len & ~HPAGE_MASK)
812 return -EINVAL;
814 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
815 return -EINVAL;
817 /* Paranoia, caller should have dealt with this */
818 BUG_ON((addr + len) < addr);
820 if (test_thread_flag(TIF_32BIT)) {
821 /* Paranoia, caller should have dealt with this */
822 BUG_ON((addr + len) > 0x100000000UL);
824 curareas = current->mm->context.low_htlb_areas;
826 /* First see if we can use the hint address */
827 if (addr && (htlb_check_hinted_area(addr, len) == 0)) {
828 areamask = LOW_ESID_MASK(addr, len);
829 if (open_low_hpage_areas(current->mm, areamask) == 0)
830 return addr;
833 /* Next see if we can map in the existing low areas */
834 addr = htlb_get_low_area(len, curareas);
835 if (addr != -ENOMEM)
836 return addr;
838 /* Finally go looking for areas to open */
839 lastshift = 0;
840 for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
841 ! lastshift; areamask >>=1) {
842 if (areamask & 1)
843 lastshift = 1;
845 addr = htlb_get_low_area(len, curareas | areamask);
846 if ((addr != -ENOMEM)
847 && open_low_hpage_areas(current->mm, areamask) == 0)
848 return addr;
850 } else {
851 curareas = current->mm->context.high_htlb_areas;
853 /* First see if we can use the hint address */
854 /* We discourage 64-bit processes from doing hugepage
855 * mappings below 4GB (must use MAP_FIXED) */
856 if ((addr >= 0x100000000UL)
857 && (htlb_check_hinted_area(addr, len) == 0)) {
858 areamask = HTLB_AREA_MASK(addr, len);
859 if (open_high_hpage_areas(current->mm, areamask) == 0)
860 return addr;
863 /* Next see if we can map in the existing high areas */
864 addr = htlb_get_high_area(len, curareas);
865 if (addr != -ENOMEM)
866 return addr;
868 /* Finally go looking for areas to open */
869 lastshift = 0;
870 for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
871 ! lastshift; areamask >>=1) {
872 if (areamask & 1)
873 lastshift = 1;
875 addr = htlb_get_high_area(len, curareas | areamask);
876 if ((addr != -ENOMEM)
877 && open_high_hpage_areas(current->mm, areamask) == 0)
878 return addr;
881 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
882 " enough areas\n");
883 return -ENOMEM;
887 * Called by asm hashtable.S for doing lazy icache flush
889 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
890 pte_t pte, int trap)
892 struct page *page;
893 int i;
895 if (!pfn_valid(pte_pfn(pte)))
896 return rflags;
898 page = pte_page(pte);
900 /* page is dirty */
901 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
902 if (trap == 0x400) {
903 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
904 __flush_dcache_icache(page_address(page+i));
905 set_bit(PG_arch_1, &page->flags);
906 } else {
907 rflags |= HPTE_R_N;
910 return rflags;
913 int hash_huge_page(struct mm_struct *mm, unsigned long access,
914 unsigned long ea, unsigned long vsid, int local,
915 unsigned long trap)
917 pte_t *ptep;
918 unsigned long old_pte, new_pte;
919 unsigned long va, rflags, pa;
920 long slot;
921 int err = 1;
923 ptep = huge_pte_offset(mm, ea);
925 /* Search the Linux page table for a match with va */
926 va = (vsid << 28) | (ea & 0x0fffffff);
929 * If no pte found or not present, send the problem up to
930 * do_page_fault
932 if (unlikely(!ptep || pte_none(*ptep)))
933 goto out;
936 * Check the user's access rights to the page. If access should be
937 * prevented then send the problem up to do_page_fault.
939 if (unlikely(access & ~pte_val(*ptep)))
940 goto out;
942 * At this point, we have a pte (old_pte) which can be used to build
943 * or update an HPTE. There are 2 cases:
945 * 1. There is a valid (present) pte with no associated HPTE (this is
946 * the most common case)
947 * 2. There is a valid (present) pte with an associated HPTE. The
948 * current values of the pp bits in the HPTE prevent access
949 * because we are doing software DIRTY bit management and the
950 * page is currently not DIRTY.
954 do {
955 old_pte = pte_val(*ptep);
956 if (old_pte & _PAGE_BUSY)
957 goto out;
958 new_pte = old_pte | _PAGE_BUSY |
959 _PAGE_ACCESSED | _PAGE_HASHPTE;
960 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
961 old_pte, new_pte));
963 rflags = 0x2 | (!(new_pte & _PAGE_RW));
964 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
965 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
966 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
967 /* No CPU has hugepages but lacks no execute, so we
968 * don't need to worry about that case */
969 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
970 trap);
972 /* Check if pte already has an hpte (case 2) */
973 if (unlikely(old_pte & _PAGE_HASHPTE)) {
974 /* There MIGHT be an HPTE for this pte */
975 unsigned long hash, slot;
977 hash = hpt_hash(va, HPAGE_SHIFT);
978 if (old_pte & _PAGE_F_SECOND)
979 hash = ~hash;
980 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
981 slot += (old_pte & _PAGE_F_GIX) >> 12;
983 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
984 local) == -1)
985 old_pte &= ~_PAGE_HPTEFLAGS;
988 if (likely(!(old_pte & _PAGE_HASHPTE))) {
989 unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
990 unsigned long hpte_group;
992 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
994 repeat:
995 hpte_group = ((hash & htab_hash_mask) *
996 HPTES_PER_GROUP) & ~0x7UL;
998 /* clear HPTE slot informations in new PTE */
999 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
1001 /* Add in WIMG bits */
1002 /* XXX We should store these in the pte */
1003 /* --BenH: I think they are ... */
1004 rflags |= _PAGE_COHERENT;
1006 /* Insert into the hash table, primary slot */
1007 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
1008 mmu_huge_psize);
1010 /* Primary is full, try the secondary */
1011 if (unlikely(slot == -1)) {
1012 new_pte |= _PAGE_F_SECOND;
1013 hpte_group = ((~hash & htab_hash_mask) *
1014 HPTES_PER_GROUP) & ~0x7UL;
1015 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
1016 HPTE_V_SECONDARY,
1017 mmu_huge_psize);
1018 if (slot == -1) {
1019 if (mftb() & 0x1)
1020 hpte_group = ((hash & htab_hash_mask) *
1021 HPTES_PER_GROUP)&~0x7UL;
1023 ppc_md.hpte_remove(hpte_group);
1024 goto repeat;
1028 if (unlikely(slot == -2))
1029 panic("hash_huge_page: pte_insert failed\n");
1031 new_pte |= (slot << 12) & _PAGE_F_GIX;
1035 * No need to use ldarx/stdcx here
1037 *ptep = __pte(new_pte & ~_PAGE_BUSY);
1039 err = 0;
1041 out:
1042 return err;
1045 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
1047 memset(addr, 0, kmem_cache_size(cache));
1050 static int __init hugetlbpage_init(void)
1052 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
1053 return -ENODEV;
1055 huge_pgtable_cache = kmem_cache_create("hugepte_cache",
1056 HUGEPTE_TABLE_SIZE,
1057 HUGEPTE_TABLE_SIZE,
1058 SLAB_HWCACHE_ALIGN |
1059 SLAB_MUST_HWCACHE_ALIGN,
1060 zero_ctor, NULL);
1061 if (! huge_pgtable_cache)
1062 panic("hugetlbpage_init(): could not create hugepte cache\n");
1064 return 0;
1067 module_init(hugetlbpage_init);