2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/initrd.h>
25 #include <linux/seq_file.h>
26 #include <linux/kdev_t.h>
27 #include <linux/major.h>
28 #include <linux/root_dev.h>
29 #include <linux/kernel.h>
31 #include <asm/processor.h>
32 #include <asm/machdep.h>
35 #include <asm/pgtable.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cputable.h>
38 #include <asm/sections.h>
39 #include <asm/iommu.h>
40 #include <asm/firmware.h>
41 #include <asm/system.h>
44 #include <asm/cache.h>
45 #include <asm/sections.h>
46 #include <asm/abs_addr.h>
47 #include <asm/iseries/hv_lp_config.h>
48 #include <asm/iseries/hv_call_event.h>
49 #include <asm/iseries/hv_call_xm.h>
50 #include <asm/iseries/it_lp_queue.h>
51 #include <asm/iseries/mf.h>
52 #include <asm/iseries/hv_lp_event.h>
53 #include <asm/iseries/lpar_map.h>
60 #include "vpd_areas.h"
61 #include "processor_vpd.h"
62 #include "it_lp_naca.h"
63 #include "main_store.h"
68 #define DBG(fmt...) udbg_printf(fmt)
73 /* Function Prototypes */
74 static unsigned long build_iSeries_Memory_Map(void);
75 static void iseries_shared_idle(void);
76 static void iseries_dedicated_idle(void);
78 extern void iSeries_pci_final_fixup(void);
80 static void iSeries_pci_final_fixup(void) { }
83 extern int rd_size
; /* Defined in drivers/block/rd.c */
85 extern unsigned long iSeries_recal_tb
;
86 extern unsigned long iSeries_recal_titan
;
89 unsigned long absStart
;
91 unsigned long logicalStart
;
92 unsigned long logicalEnd
;
96 * Process the main store vpd to determine where the holes in memory are
97 * and return the number of physical blocks and fill in the array of
100 static unsigned long iSeries_process_Condor_mainstore_vpd(
101 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
103 unsigned long holeFirstChunk
, holeSizeChunks
;
104 unsigned long numMemoryBlocks
= 1;
105 struct IoHriMainStoreSegment4
*msVpd
=
106 (struct IoHriMainStoreSegment4
*)xMsVpd
;
107 unsigned long holeStart
= msVpd
->nonInterleavedBlocksStartAdr
;
108 unsigned long holeEnd
= msVpd
->nonInterleavedBlocksEndAdr
;
109 unsigned long holeSize
= holeEnd
- holeStart
;
111 printk("Mainstore_VPD: Condor\n");
113 * Determine if absolute memory has any
114 * holes so that we can interpret the
115 * access map we get back from the hypervisor
118 mb_array
[0].logicalStart
= 0;
119 mb_array
[0].logicalEnd
= 0x100000000;
120 mb_array
[0].absStart
= 0;
121 mb_array
[0].absEnd
= 0x100000000;
125 holeStart
= holeStart
& 0x000fffffffffffff;
126 holeStart
= addr_to_chunk(holeStart
);
127 holeFirstChunk
= holeStart
;
128 holeSize
= addr_to_chunk(holeSize
);
129 holeSizeChunks
= holeSize
;
130 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
131 holeFirstChunk
, holeSizeChunks
);
132 mb_array
[0].logicalEnd
= holeFirstChunk
;
133 mb_array
[0].absEnd
= holeFirstChunk
;
134 mb_array
[1].logicalStart
= holeFirstChunk
;
135 mb_array
[1].logicalEnd
= 0x100000000 - holeSizeChunks
;
136 mb_array
[1].absStart
= holeFirstChunk
+ holeSizeChunks
;
137 mb_array
[1].absEnd
= 0x100000000;
139 return numMemoryBlocks
;
142 #define MaxSegmentAreas 32
143 #define MaxSegmentAdrRangeBlocks 128
144 #define MaxAreaRangeBlocks 4
146 static unsigned long iSeries_process_Regatta_mainstore_vpd(
147 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
149 struct IoHriMainStoreSegment5
*msVpdP
=
150 (struct IoHriMainStoreSegment5
*)xMsVpd
;
151 unsigned long numSegmentBlocks
= 0;
152 u32 existsBits
= msVpdP
->msAreaExists
;
153 unsigned long area_num
;
155 printk("Mainstore_VPD: Regatta\n");
157 for (area_num
= 0; area_num
< MaxSegmentAreas
; ++area_num
) {
158 unsigned long numAreaBlocks
;
159 struct IoHriMainStoreArea4
*currentArea
;
161 if (existsBits
& 0x80000000) {
162 unsigned long block_num
;
164 currentArea
= &msVpdP
->msAreaArray
[area_num
];
165 numAreaBlocks
= currentArea
->numAdrRangeBlocks
;
166 printk("ms_vpd: processing area %2ld blocks=%ld",
167 area_num
, numAreaBlocks
);
168 for (block_num
= 0; block_num
< numAreaBlocks
;
170 /* Process an address range block */
171 struct MemoryBlock tempBlock
;
175 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockStart
;
177 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockEnd
;
178 tempBlock
.logicalStart
= 0;
179 tempBlock
.logicalEnd
= 0;
180 printk("\n block %ld absStart=%016lx absEnd=%016lx",
181 block_num
, tempBlock
.absStart
,
184 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
185 if (mb_array
[i
].absStart
==
189 if (i
== numSegmentBlocks
) {
190 if (numSegmentBlocks
== max_entries
)
191 panic("iSeries_process_mainstore_vpd: too many memory blocks");
192 mb_array
[numSegmentBlocks
] = tempBlock
;
195 printk(" (duplicate)");
201 /* Now sort the blocks found into ascending sequence */
202 if (numSegmentBlocks
> 1) {
205 for (m
= 0; m
< numSegmentBlocks
- 1; ++m
) {
206 for (n
= numSegmentBlocks
- 1; m
< n
; --n
) {
207 if (mb_array
[n
].absStart
<
208 mb_array
[n
-1].absStart
) {
209 struct MemoryBlock tempBlock
;
211 tempBlock
= mb_array
[n
];
212 mb_array
[n
] = mb_array
[n
-1];
213 mb_array
[n
-1] = tempBlock
;
219 * Assign "logical" addresses to each block. These
220 * addresses correspond to the hypervisor "bitmap" space.
221 * Convert all addresses into units of 256K chunks.
224 unsigned long i
, nextBitmapAddress
;
226 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks
);
227 nextBitmapAddress
= 0;
228 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
229 unsigned long length
= mb_array
[i
].absEnd
-
230 mb_array
[i
].absStart
;
232 mb_array
[i
].logicalStart
= nextBitmapAddress
;
233 mb_array
[i
].logicalEnd
= nextBitmapAddress
+ length
;
234 nextBitmapAddress
+= length
;
235 printk(" Bitmap range: %016lx - %016lx\n"
236 " Absolute range: %016lx - %016lx\n",
237 mb_array
[i
].logicalStart
,
238 mb_array
[i
].logicalEnd
,
239 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
240 mb_array
[i
].absStart
= addr_to_chunk(mb_array
[i
].absStart
&
242 mb_array
[i
].absEnd
= addr_to_chunk(mb_array
[i
].absEnd
&
244 mb_array
[i
].logicalStart
=
245 addr_to_chunk(mb_array
[i
].logicalStart
);
246 mb_array
[i
].logicalEnd
= addr_to_chunk(mb_array
[i
].logicalEnd
);
250 return numSegmentBlocks
;
253 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock
*mb_array
,
254 unsigned long max_entries
)
257 unsigned long mem_blocks
= 0;
259 if (cpu_has_feature(CPU_FTR_SLB
))
260 mem_blocks
= iSeries_process_Regatta_mainstore_vpd(mb_array
,
263 mem_blocks
= iSeries_process_Condor_mainstore_vpd(mb_array
,
266 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks
);
267 for (i
= 0; i
< mem_blocks
; ++i
) {
268 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
269 " abs chunks %016lx - %016lx\n",
270 i
, mb_array
[i
].logicalStart
, mb_array
[i
].logicalEnd
,
271 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
276 static void __init
iSeries_get_cmdline(void)
280 /* copy the command line parameter from the primary VSP */
281 HvCallEvent_dmaToSp(cmd_line
, 2 * 64* 1024, 256,
282 HvLpDma_Direction_RemoteToLocal
);
287 if (!*p
|| *p
== '\n')
294 static void __init
iSeries_init_early(void)
296 DBG(" -> iSeries_init_early()\n");
298 #if defined(CONFIG_BLK_DEV_INITRD)
300 * If the init RAM disk has been configured and there is
301 * a non-zero starting address for it, set it up
304 initrd_start
= (unsigned long)__va(naca
.xRamDisk
);
305 initrd_end
= initrd_start
+ naca
.xRamDiskSize
* HW_PAGE_SIZE
;
306 initrd_below_start_ok
= 1; // ramdisk in kernel space
307 ROOT_DEV
= Root_RAM0
;
308 if (((rd_size
* 1024) / HW_PAGE_SIZE
) < naca
.xRamDiskSize
)
309 rd_size
= (naca
.xRamDiskSize
* HW_PAGE_SIZE
) / 1024;
311 #endif /* CONFIG_BLK_DEV_INITRD */
313 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
316 iSeries_recal_tb
= get_tb();
317 iSeries_recal_titan
= HvCallXm_loadTod();
320 * Initialize the DMA/TCE management
322 iommu_init_early_iSeries();
324 /* Initialize machine-dependency vectors */
329 /* Associate Lp Event Queue 0 with processor 0 */
330 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
334 /* If we were passed an initrd, set the ROOT_DEV properly if the values
335 * look sensible. If not, clear initrd reference.
337 #ifdef CONFIG_BLK_DEV_INITRD
338 if (initrd_start
>= KERNELBASE
&& initrd_end
>= KERNELBASE
&&
339 initrd_end
> initrd_start
)
340 ROOT_DEV
= Root_RAM0
;
342 initrd_start
= initrd_end
= 0;
343 #endif /* CONFIG_BLK_DEV_INITRD */
345 DBG(" <- iSeries_init_early()\n");
348 struct mschunks_map mschunks_map
= {
349 /* XXX We don't use these, but Piranha might need them. */
350 .chunk_size
= MSCHUNKS_CHUNK_SIZE
,
351 .chunk_shift
= MSCHUNKS_CHUNK_SHIFT
,
352 .chunk_mask
= MSCHUNKS_OFFSET_MASK
,
354 EXPORT_SYMBOL(mschunks_map
);
356 void mschunks_alloc(unsigned long num_chunks
)
358 klimit
= _ALIGN(klimit
, sizeof(u32
));
359 mschunks_map
.mapping
= (u32
*)klimit
;
360 klimit
+= num_chunks
* sizeof(u32
);
361 mschunks_map
.num_chunks
= num_chunks
;
365 * The iSeries may have very large memories ( > 128 GB ) and a partition
366 * may get memory in "chunks" that may be anywhere in the 2**52 real
367 * address space. The chunks are 256K in size. To map this to the
368 * memory model Linux expects, the AS/400 specific code builds a
369 * translation table to translate what Linux thinks are "physical"
370 * addresses to the actual real addresses. This allows us to make
371 * it appear to Linux that we have contiguous memory starting at
372 * physical address zero while in fact this could be far from the truth.
373 * To avoid confusion, I'll let the words physical and/or real address
374 * apply to the Linux addresses while I'll use "absolute address" to
375 * refer to the actual hardware real address.
377 * build_iSeries_Memory_Map gets information from the Hypervisor and
378 * looks at the Main Store VPD to determine the absolute addresses
379 * of the memory that has been assigned to our partition and builds
380 * a table used to translate Linux's physical addresses to these
381 * absolute addresses. Absolute addresses are needed when
382 * communicating with the hypervisor (e.g. to build HPT entries)
384 * Returns the physical memory size
387 static unsigned long __init
build_iSeries_Memory_Map(void)
389 u32 loadAreaFirstChunk
, loadAreaLastChunk
, loadAreaSize
;
391 u32 hptFirstChunk
, hptLastChunk
, hptSizeChunks
, hptSizePages
;
392 u32 totalChunks
,moreChunks
;
393 u32 currChunk
, thisChunk
, absChunk
;
397 struct MemoryBlock mb
[32];
398 unsigned long numMemoryBlocks
, curBlock
;
400 /* Chunk size on iSeries is 256K bytes */
401 totalChunks
= (u32
)HvLpConfig_getMsChunks();
402 mschunks_alloc(totalChunks
);
405 * Get absolute address of our load area
406 * and map it to physical address 0
407 * This guarantees that the loadarea ends up at physical 0
408 * otherwise, it might not be returned by PLIC as the first
412 loadAreaFirstChunk
= (u32
)addr_to_chunk(itLpNaca
.xLoadAreaAddr
);
413 loadAreaSize
= itLpNaca
.xLoadAreaChunks
;
416 * Only add the pages already mapped here.
417 * Otherwise we might add the hpt pages
418 * The rest of the pages of the load area
419 * aren't in the HPT yet and can still
420 * be assigned an arbitrary physical address
422 if ((loadAreaSize
* 64) > HvPagesToMap
)
423 loadAreaSize
= HvPagesToMap
/ 64;
425 loadAreaLastChunk
= loadAreaFirstChunk
+ loadAreaSize
- 1;
428 * TODO Do we need to do something if the HPT is in the 64MB load area?
429 * This would be required if the itLpNaca.xLoadAreaChunks includes
433 printk("Mapping load area - physical addr = 0000000000000000\n"
434 " absolute addr = %016lx\n",
435 chunk_to_addr(loadAreaFirstChunk
));
436 printk("Load area size %dK\n", loadAreaSize
* 256);
438 for (nextPhysChunk
= 0; nextPhysChunk
< loadAreaSize
; ++nextPhysChunk
)
439 mschunks_map
.mapping
[nextPhysChunk
] =
440 loadAreaFirstChunk
+ nextPhysChunk
;
443 * Get absolute address of our HPT and remember it so
444 * we won't map it to any physical address
446 hptFirstChunk
= (u32
)addr_to_chunk(HvCallHpt_getHptAddress());
447 hptSizePages
= (u32
)HvCallHpt_getHptPages();
448 hptSizeChunks
= hptSizePages
>>
449 (MSCHUNKS_CHUNK_SHIFT
- HW_PAGE_SHIFT
);
450 hptLastChunk
= hptFirstChunk
+ hptSizeChunks
- 1;
452 printk("HPT absolute addr = %016lx, size = %dK\n",
453 chunk_to_addr(hptFirstChunk
), hptSizeChunks
* 256);
456 * Determine if absolute memory has any
457 * holes so that we can interpret the
458 * access map we get back from the hypervisor
461 numMemoryBlocks
= iSeries_process_mainstore_vpd(mb
, 32);
464 * Process the main store access map from the hypervisor
465 * to build up our physical -> absolute translation table
470 moreChunks
= totalChunks
;
473 map
= HvCallSm_get64BitsOfAccessMap(itLpNaca
.xLpIndex
,
475 thisChunk
= currChunk
;
477 chunkBit
= map
>> 63;
481 while (thisChunk
>= mb
[curBlock
].logicalEnd
) {
483 if (curBlock
>= numMemoryBlocks
)
484 panic("out of memory blocks");
486 if (thisChunk
< mb
[curBlock
].logicalStart
)
487 panic("memory block error");
489 absChunk
= mb
[curBlock
].absStart
+
490 (thisChunk
- mb
[curBlock
].logicalStart
);
491 if (((absChunk
< hptFirstChunk
) ||
492 (absChunk
> hptLastChunk
)) &&
493 ((absChunk
< loadAreaFirstChunk
) ||
494 (absChunk
> loadAreaLastChunk
))) {
495 mschunks_map
.mapping
[nextPhysChunk
] =
507 * main store size (in chunks) is
508 * totalChunks - hptSizeChunks
509 * which should be equal to
512 return chunk_to_addr(nextPhysChunk
);
518 static void __init
iSeries_setup_arch(void)
520 if (get_lppaca()->shared_proc
) {
521 ppc_md
.idle_loop
= iseries_shared_idle
;
522 printk(KERN_DEBUG
"Using shared processor idle loop\n");
524 ppc_md
.idle_loop
= iseries_dedicated_idle
;
525 printk(KERN_DEBUG
"Using dedicated idle loop\n");
528 /* Setup the Lp Event Queue */
529 setup_hvlpevent_queue();
531 printk("Max logical processors = %d\n",
532 itVpdAreas
.xSlicMaxLogicalProcs
);
533 printk("Max physical processors = %d\n",
534 itVpdAreas
.xSlicMaxPhysicalProcs
);
537 static void iSeries_show_cpuinfo(struct seq_file
*m
)
539 seq_printf(m
, "machine\t\t: 64-bit iSeries Logical Partition\n");
542 static void __init
iSeries_progress(char * st
, unsigned short code
)
544 printk("Progress: [%04x] - %s\n", (unsigned)code
, st
);
545 mf_display_progress(code
);
548 static void __init
iSeries_fixup_klimit(void)
551 * Change klimit to take into account any ram disk
552 * that may be included
555 klimit
= KERNELBASE
+ (u64
)naca
.xRamDisk
+
556 (naca
.xRamDiskSize
* HW_PAGE_SIZE
);
559 static int __init
iSeries_src_init(void)
561 /* clear the progress line */
562 ppc_md
.progress(" ", 0xffff);
566 late_initcall(iSeries_src_init
);
568 static inline void process_iSeries_events(void)
570 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
573 static void yield_shared_processor(void)
577 HvCall_setEnabledInterrupts(HvCall_MaskIPI
|
583 /* Compute future tb value when yield should expire */
584 HvCall_yieldProcessor(HvCall_YieldTimed
, tb
+tb_ticks_per_jiffy
);
587 * The decrementer stops during the yield. Force a fake decrementer
588 * here and let the timer_interrupt code sort out the actual time.
590 get_lppaca()->int_dword
.fields
.decr_int
= 1;
592 process_iSeries_events();
595 static void iseries_shared_idle(void)
598 while (!need_resched() && !hvlpevent_is_pending()) {
600 ppc64_runlatch_off();
602 /* Recheck with irqs off */
603 if (!need_resched() && !hvlpevent_is_pending())
604 yield_shared_processor();
612 if (hvlpevent_is_pending())
613 process_iSeries_events();
615 preempt_enable_no_resched();
621 static void iseries_dedicated_idle(void)
623 set_thread_flag(TIF_POLLING_NRFLAG
);
626 if (!need_resched()) {
627 while (!need_resched()) {
628 ppc64_runlatch_off();
631 if (hvlpevent_is_pending()) {
634 process_iSeries_events();
642 preempt_enable_no_resched();
649 void __init
iSeries_init_IRQ(void) { }
653 * iSeries has no legacy IO, anything calling this function has to
654 * fail or bad things will happen
656 static int iseries_check_legacy_ioport(unsigned int baseport
)
661 static int __init
iseries_probe(void)
663 unsigned long root
= of_get_flat_dt_root();
664 if (!of_flat_dt_is_compatible(root
, "IBM,iSeries"))
672 define_machine(iseries
) {
674 .setup_arch
= iSeries_setup_arch
,
675 .show_cpuinfo
= iSeries_show_cpuinfo
,
676 .init_IRQ
= iSeries_init_IRQ
,
677 .get_irq
= iSeries_get_irq
,
678 .init_early
= iSeries_init_early
,
679 .pcibios_fixup
= iSeries_pci_final_fixup
,
680 .restart
= mf_reboot
,
681 .power_off
= mf_power_off
,
682 .halt
= mf_power_off
,
683 .get_boot_time
= iSeries_get_boot_time
,
684 .set_rtc_time
= iSeries_set_rtc_time
,
685 .get_rtc_time
= iSeries_get_rtc_time
,
686 .calibrate_decr
= generic_calibrate_decr
,
687 .progress
= iSeries_progress
,
688 .probe
= iseries_probe
,
689 .check_legacy_ioport
= iseries_check_legacy_ioport
,
690 /* XXX Implement enable_pmcs for iSeries */
693 void * __init
iSeries_early_setup(void)
695 unsigned long phys_mem_size
;
697 /* Identify CPU type. This is done again by the common code later
698 * on but calling this function multiple times is fine.
702 powerpc_firmware_features
|= FW_FEATURE_ISERIES
;
703 powerpc_firmware_features
|= FW_FEATURE_LPAR
;
705 iSeries_fixup_klimit();
708 * Initialize the table which translate Linux physical addresses to
709 * AS/400 absolute addresses
711 phys_mem_size
= build_iSeries_Memory_Map();
713 iSeries_get_cmdline();
715 return (void *) __pa(build_flat_dt(phys_mem_size
));
718 static void hvputc(char c
)
723 HvCall_writeLogBuffer(&c
, 1);
726 void __init
udbg_init_iseries(void)