sync hh.org
[hh.org.git] / arch / v850 / kernel / rte_cb.c
blob0f7f6cd705a2d1eae01fa817054e462a577ef917
1 /*
2 * include/asm-v850/rte_cb.c -- Midas lab RTE-CB series of evaluation boards
4 * Copyright (C) 2001,02,03 NEC Electronics Corporation
5 * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org>
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file COPYING in the main directory of this
9 * archive for more details.
11 * Written by Miles Bader <miles@gnu.org>
14 #include <linux/init.h>
15 #include <linux/irq.h>
16 #include <linux/fs.h>
17 #include <linux/module.h>
19 #include <asm/machdep.h>
20 #include <asm/v850e_uart.h>
22 #include "mach.h"
24 static void led_tick (void);
26 /* LED access routines. */
27 extern unsigned read_leds (int pos, char *buf, int len);
28 extern unsigned write_leds (int pos, const char *buf, int len);
30 #ifdef CONFIG_RTE_CB_MULTI
31 extern void multi_init (void);
32 #endif
35 void __init rte_cb_early_init (void)
37 v850e_intc_disable_irqs ();
39 #ifdef CONFIG_RTE_CB_MULTI
40 multi_init ();
41 #endif
44 void __init mach_setup (char **cmdline)
46 #ifdef CONFIG_RTE_MB_A_PCI
47 /* Probe for Mother-A, and print a message if we find it. */
48 *(volatile unsigned long *)MB_A_SRAM_ADDR = 0xDEADBEEF;
49 if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0xDEADBEEF) {
50 *(volatile unsigned long *)MB_A_SRAM_ADDR = 0x12345678;
51 if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0x12345678)
52 printk (KERN_INFO
53 " NEC SolutionGear/Midas lab"
54 " RTE-MOTHER-A motherboard\n");
56 #endif /* CONFIG_RTE_MB_A_PCI */
58 mach_tick = led_tick;
61 void machine_restart (char *__unused)
63 #ifdef CONFIG_RESET_GUARD
64 disable_reset_guard ();
65 #endif
66 asm ("jmp r0"); /* Jump to the reset vector. */
69 /* This says `HALt.' in LEDese. */
70 static unsigned char halt_leds_msg[] = { 0x76, 0x77, 0x38, 0xF8 };
72 void machine_halt (void)
74 #ifdef CONFIG_RESET_GUARD
75 disable_reset_guard ();
76 #endif
78 /* Ignore all interrupts. */
79 local_irq_disable ();
81 /* Write a little message. */
82 write_leds (0, halt_leds_msg, sizeof halt_leds_msg);
84 /* Really halt. */
85 for (;;)
86 asm ("halt; nop; nop; nop; nop; nop");
89 void machine_power_off (void)
91 machine_halt ();
95 /* Animated LED display for timer tick. */
97 #define TICK_UPD_FREQ 6
98 static int tick_frames[][10] = {
99 { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, -1 },
100 { 0x63, 0x5c, -1 },
101 { 0x5c, 0x00, -1 },
102 { 0x63, 0x00, -1 },
103 { -1 }
106 static void led_tick ()
108 static unsigned counter = 0;
110 if (++counter == (HZ / TICK_UPD_FREQ)) {
111 /* Which frame we're currently displaying for each digit. */
112 static unsigned frame_nums[LED_NUM_DIGITS] = { 0 };
113 /* Display image. */
114 static unsigned char image[LED_NUM_DIGITS] = { 0 };
115 unsigned char prev_image[LED_NUM_DIGITS];
116 int write_to_leds = 1; /* true if we should actually display */
117 int digit;
119 /* We check to see if the physical LEDs contains what we last
120 wrote to them; if not, we suppress display (this is so that
121 users can write to the LEDs, and not have their output
122 overwritten). As a special case, we start writing again if
123 all the LEDs are blank, or our display image is all zeros
124 (indicating that this is the initial update, when the actual
125 LEDs might contain random data). */
126 read_leds (0, prev_image, LED_NUM_DIGITS);
127 for (digit = 0; digit < LED_NUM_DIGITS; digit++)
128 if (image[digit] != prev_image[digit]
129 && image[digit] && prev_image[digit])
131 write_to_leds = 0;
132 break;
135 /* Update display image. */
136 for (digit = 0;
137 digit < LED_NUM_DIGITS && tick_frames[digit][0] >= 0;
138 digit++)
140 int frame = tick_frames[digit][frame_nums[digit]];
141 if (frame < 0) {
142 image[digit] = tick_frames[digit][0];
143 frame_nums[digit] = 1;
144 } else {
145 image[digit] = frame;
146 frame_nums[digit]++;
147 break;
151 if (write_to_leds)
152 /* Write the display image to the physical LEDs. */
153 write_leds (0, image, LED_NUM_DIGITS);
155 counter = 0;
160 /* Mother-A interrupts. */
162 #ifdef CONFIG_RTE_GBUS_INT
164 #define L GBUS_INT_PRIORITY_LOW
165 #define M GBUS_INT_PRIORITY_MEDIUM
166 #define H GBUS_INT_PRIORITY_HIGH
168 static struct gbus_int_irq_init gbus_irq_inits[] = {
169 #ifdef CONFIG_RTE_MB_A_PCI
170 { "MB_A_LAN", IRQ_MB_A_LAN, 1, 1, L },
171 { "MB_A_PCI1", IRQ_MB_A_PCI1(0), IRQ_MB_A_PCI1_NUM, 1, L },
172 { "MB_A_PCI2", IRQ_MB_A_PCI2(0), IRQ_MB_A_PCI2_NUM, 1, L },
173 { "MB_A_EXT", IRQ_MB_A_EXT(0), IRQ_MB_A_EXT_NUM, 1, L },
174 { "MB_A_USB_OC",IRQ_MB_A_USB_OC(0), IRQ_MB_A_USB_OC_NUM, 1, L },
175 { "MB_A_PCMCIA_OC",IRQ_MB_A_PCMCIA_OC, 1, 1, L },
176 #endif
177 { 0 }
179 #define NUM_GBUS_IRQ_INITS \
180 ((sizeof gbus_irq_inits / sizeof gbus_irq_inits[0]) - 1)
182 static struct hw_interrupt_type gbus_hw_itypes[NUM_GBUS_IRQ_INITS];
184 #endif /* CONFIG_RTE_GBUS_INT */
187 void __init rte_cb_init_irqs (void)
189 #ifdef CONFIG_RTE_GBUS_INT
190 gbus_int_init_irqs ();
191 gbus_int_init_irq_types (gbus_irq_inits, gbus_hw_itypes);
192 #endif /* CONFIG_RTE_GBUS_INT */