2 * linux/arch/x86-64/kernel/setup.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
11 * This file handles the architecture-dependent parts of initialization
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/screen_info.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/initrd.h>
29 #include <linux/highmem.h>
30 #include <linux/bootmem.h>
31 #include <linux/module.h>
32 #include <asm/processor.h>
33 #include <linux/console.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/root_dev.h>
37 #include <linux/pci.h>
38 #include <linux/acpi.h>
39 #include <linux/kallsyms.h>
40 #include <linux/edd.h>
41 #include <linux/mmzone.h>
42 #include <linux/kexec.h>
43 #include <linux/cpufreq.h>
44 #include <linux/dmi.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/ctype.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
55 #include <video/edid.h>
58 #include <asm/mpspec.h>
59 #include <asm/mmu_context.h>
60 #include <asm/bootsetup.h>
61 #include <asm/proto.h>
62 #include <asm/setup.h>
63 #include <asm/mach_apic.h>
65 #include <asm/sections.h>
72 struct cpuinfo_x86 boot_cpu_data __read_mostly
;
73 EXPORT_SYMBOL(boot_cpu_data
);
75 unsigned long mmu_cr4_features
;
77 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
80 unsigned long saved_video_mode
;
86 char dmi_alloc_data
[DMI_MAX_DATA
];
91 struct screen_info screen_info
;
92 EXPORT_SYMBOL(screen_info
);
93 struct sys_desc_table_struct
{
94 unsigned short length
;
95 unsigned char table
[0];
98 struct edid_info edid_info
;
99 EXPORT_SYMBOL_GPL(edid_info
);
101 extern int root_mountflags
;
103 char command_line
[COMMAND_LINE_SIZE
];
105 struct resource standard_io_resources
[] = {
106 { .name
= "dma1", .start
= 0x00, .end
= 0x1f,
107 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
108 { .name
= "pic1", .start
= 0x20, .end
= 0x21,
109 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
110 { .name
= "timer0", .start
= 0x40, .end
= 0x43,
111 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
112 { .name
= "timer1", .start
= 0x50, .end
= 0x53,
113 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
114 { .name
= "keyboard", .start
= 0x60, .end
= 0x6f,
115 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
116 { .name
= "dma page reg", .start
= 0x80, .end
= 0x8f,
117 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
118 { .name
= "pic2", .start
= 0xa0, .end
= 0xa1,
119 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
120 { .name
= "dma2", .start
= 0xc0, .end
= 0xdf,
121 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
122 { .name
= "fpu", .start
= 0xf0, .end
= 0xff,
123 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
}
126 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
128 struct resource data_resource
= {
129 .name
= "Kernel data",
132 .flags
= IORESOURCE_RAM
,
134 struct resource code_resource
= {
135 .name
= "Kernel code",
138 .flags
= IORESOURCE_RAM
,
141 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
143 static struct resource system_rom_resource
= {
144 .name
= "System ROM",
147 .flags
= IORESOURCE_ROM
,
150 static struct resource extension_rom_resource
= {
151 .name
= "Extension ROM",
154 .flags
= IORESOURCE_ROM
,
157 static struct resource adapter_rom_resources
[] = {
158 { .name
= "Adapter ROM", .start
= 0xc8000, .end
= 0,
159 .flags
= IORESOURCE_ROM
},
160 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
161 .flags
= IORESOURCE_ROM
},
162 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
163 .flags
= IORESOURCE_ROM
},
164 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
165 .flags
= IORESOURCE_ROM
},
166 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
167 .flags
= IORESOURCE_ROM
},
168 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
169 .flags
= IORESOURCE_ROM
}
172 static struct resource video_rom_resource
= {
176 .flags
= IORESOURCE_ROM
,
179 static struct resource video_ram_resource
= {
180 .name
= "Video RAM area",
183 .flags
= IORESOURCE_RAM
,
186 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
188 static int __init
romchecksum(unsigned char *rom
, unsigned long length
)
190 unsigned char *p
, sum
= 0;
192 for (p
= rom
; p
< rom
+ length
; p
++)
197 static void __init
probe_roms(void)
199 unsigned long start
, length
, upper
;
204 upper
= adapter_rom_resources
[0].start
;
205 for (start
= video_rom_resource
.start
; start
< upper
; start
+= 2048) {
206 rom
= isa_bus_to_virt(start
);
207 if (!romsignature(rom
))
210 video_rom_resource
.start
= start
;
212 /* 0 < length <= 0x7f * 512, historically */
213 length
= rom
[2] * 512;
215 /* if checksum okay, trust length byte */
216 if (length
&& romchecksum(rom
, length
))
217 video_rom_resource
.end
= start
+ length
- 1;
219 request_resource(&iomem_resource
, &video_rom_resource
);
223 start
= (video_rom_resource
.end
+ 1 + 2047) & ~2047UL;
228 request_resource(&iomem_resource
, &system_rom_resource
);
229 upper
= system_rom_resource
.start
;
231 /* check for extension rom (ignore length byte!) */
232 rom
= isa_bus_to_virt(extension_rom_resource
.start
);
233 if (romsignature(rom
)) {
234 length
= extension_rom_resource
.end
- extension_rom_resource
.start
+ 1;
235 if (romchecksum(rom
, length
)) {
236 request_resource(&iomem_resource
, &extension_rom_resource
);
237 upper
= extension_rom_resource
.start
;
241 /* check for adapter roms on 2k boundaries */
242 for (i
= 0; i
< ARRAY_SIZE(adapter_rom_resources
) && start
< upper
;
244 rom
= isa_bus_to_virt(start
);
245 if (!romsignature(rom
))
248 /* 0 < length <= 0x7f * 512, historically */
249 length
= rom
[2] * 512;
251 /* but accept any length that fits if checksum okay */
252 if (!length
|| start
+ length
> upper
|| !romchecksum(rom
, length
))
255 adapter_rom_resources
[i
].start
= start
;
256 adapter_rom_resources
[i
].end
= start
+ length
- 1;
257 request_resource(&iomem_resource
, &adapter_rom_resources
[i
]);
259 start
= adapter_rom_resources
[i
++].end
& ~2047UL;
263 #ifdef CONFIG_PROC_VMCORE
264 /* elfcorehdr= specifies the location of elf core header
265 * stored by the crashed kernel. This option will be passed
266 * by kexec loader to the capture kernel.
268 static int __init
setup_elfcorehdr(char *arg
)
273 elfcorehdr_addr
= memparse(arg
, &end
);
274 return end
> arg
? 0 : -EINVAL
;
276 early_param("elfcorehdr", setup_elfcorehdr
);
281 contig_initmem_init(unsigned long start_pfn
, unsigned long end_pfn
)
283 unsigned long bootmap_size
, bootmap
;
285 bootmap_size
= bootmem_bootmap_pages(end_pfn
)<<PAGE_SHIFT
;
286 bootmap
= find_e820_area(0, end_pfn
<<PAGE_SHIFT
, bootmap_size
);
288 panic("Cannot find bootmem map of size %ld\n",bootmap_size
);
289 bootmap_size
= init_bootmem(bootmap
>> PAGE_SHIFT
, end_pfn
);
290 e820_register_active_regions(0, start_pfn
, end_pfn
);
291 free_bootmem_with_active_regions(0, end_pfn
);
292 reserve_bootmem(bootmap
, bootmap_size
);
296 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
298 #ifdef CONFIG_EDD_MODULE
302 * copy_edd() - Copy the BIOS EDD information
303 * from boot_params into a safe place.
306 static inline void copy_edd(void)
308 memcpy(edd
.mbr_signature
, EDD_MBR_SIGNATURE
, sizeof(edd
.mbr_signature
));
309 memcpy(edd
.edd_info
, EDD_BUF
, sizeof(edd
.edd_info
));
310 edd
.mbr_signature_nr
= EDD_MBR_SIG_NR
;
311 edd
.edd_info_nr
= EDD_NR
;
314 static inline void copy_edd(void)
319 #define EBDA_ADDR_POINTER 0x40E
321 unsigned __initdata ebda_addr
;
322 unsigned __initdata ebda_size
;
324 static void discover_ebda(void)
327 * there is a real-mode segmented pointer pointing to the
328 * 4K EBDA area at 0x40E
330 ebda_addr
= *(unsigned short *)EBDA_ADDR_POINTER
;
333 ebda_size
= *(unsigned short *)(unsigned long)ebda_addr
;
335 /* Round EBDA up to pages */
339 ebda_size
= round_up(ebda_size
+ (ebda_addr
& ~PAGE_MASK
), PAGE_SIZE
);
340 if (ebda_size
> 64*1024)
344 void __init
setup_arch(char **cmdline_p
)
346 printk(KERN_INFO
"Command line: %s\n", saved_command_line
);
348 ROOT_DEV
= old_decode_dev(ORIG_ROOT_DEV
);
349 screen_info
= SCREEN_INFO
;
350 edid_info
= EDID_INFO
;
351 saved_video_mode
= SAVED_VIDEO_MODE
;
352 bootloader_type
= LOADER_TYPE
;
354 #ifdef CONFIG_BLK_DEV_RAM
355 rd_image_start
= RAMDISK_FLAGS
& RAMDISK_IMAGE_START_MASK
;
356 rd_prompt
= ((RAMDISK_FLAGS
& RAMDISK_PROMPT_FLAG
) != 0);
357 rd_doload
= ((RAMDISK_FLAGS
& RAMDISK_LOAD_FLAG
) != 0);
359 setup_memory_region();
362 if (!MOUNT_ROOT_RDONLY
)
363 root_mountflags
&= ~MS_RDONLY
;
364 init_mm
.start_code
= (unsigned long) &_text
;
365 init_mm
.end_code
= (unsigned long) &_etext
;
366 init_mm
.end_data
= (unsigned long) &_edata
;
367 init_mm
.brk
= (unsigned long) &_end
;
369 code_resource
.start
= virt_to_phys(&_text
);
370 code_resource
.end
= virt_to_phys(&_etext
)-1;
371 data_resource
.start
= virt_to_phys(&_etext
);
372 data_resource
.end
= virt_to_phys(&_edata
)-1;
374 early_identify_cpu(&boot_cpu_data
);
376 strlcpy(command_line
, saved_command_line
, COMMAND_LINE_SIZE
);
377 *cmdline_p
= command_line
;
381 finish_e820_parsing();
383 e820_register_active_regions(0, 0, -1UL);
385 * partially used pages are not usable - thus
386 * we are rounding upwards:
388 end_pfn
= e820_end_of_ram();
389 num_physpages
= end_pfn
;
395 init_memory_mapping(0, (end_pfn_map
<< PAGE_SHIFT
));
403 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
404 * Call this early for SRAT node setup.
406 acpi_boot_table_init();
409 /* How many end-of-memory variables you have, grandma! */
410 max_low_pfn
= end_pfn
;
412 high_memory
= (void *)__va(end_pfn
* PAGE_SIZE
- 1) + 1;
414 /* Remove active ranges so rediscovery with NUMA-awareness happens */
415 remove_all_active_ranges();
417 #ifdef CONFIG_ACPI_NUMA
419 * Parse SRAT to discover nodes.
425 numa_initmem_init(0, end_pfn
);
427 contig_initmem_init(0, end_pfn
);
430 /* Reserve direct mapping */
431 reserve_bootmem_generic(table_start
<< PAGE_SHIFT
,
432 (table_end
- table_start
) << PAGE_SHIFT
);
435 reserve_bootmem_generic(__pa_symbol(&_text
),
436 __pa_symbol(&_end
) - __pa_symbol(&_text
));
439 * reserve physical page 0 - it's a special BIOS page on many boxes,
440 * enabling clean reboots, SMP operation, laptop functions.
442 reserve_bootmem_generic(0, PAGE_SIZE
);
444 /* reserve ebda region */
446 reserve_bootmem_generic(ebda_addr
, ebda_size
);
450 * But first pinch a few for the stack/trampoline stuff
451 * FIXME: Don't need the extra page at 4K, but need to fix
452 * trampoline before removing it. (see the GDT stuff)
454 reserve_bootmem_generic(PAGE_SIZE
, PAGE_SIZE
);
456 /* Reserve SMP trampoline */
457 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE
, PAGE_SIZE
);
460 #ifdef CONFIG_ACPI_SLEEP
462 * Reserve low memory region for sleep support.
464 acpi_reserve_bootmem();
467 * Find and reserve possible boot-time SMP configuration:
470 #ifdef CONFIG_BLK_DEV_INITRD
471 if (LOADER_TYPE
&& INITRD_START
) {
472 if (INITRD_START
+ INITRD_SIZE
<= (end_pfn
<< PAGE_SHIFT
)) {
473 reserve_bootmem_generic(INITRD_START
, INITRD_SIZE
);
475 INITRD_START
? INITRD_START
+ PAGE_OFFSET
: 0;
476 initrd_end
= initrd_start
+INITRD_SIZE
;
479 printk(KERN_ERR
"initrd extends beyond end of memory "
480 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
481 (unsigned long)(INITRD_START
+ INITRD_SIZE
),
482 (unsigned long)(end_pfn
<< PAGE_SHIFT
));
488 if (crashk_res
.start
!= crashk_res
.end
) {
489 reserve_bootmem_generic(crashk_res
.start
,
490 crashk_res
.end
- crashk_res
.start
+ 1);
501 * set this early, so we dont allocate cpu0
502 * if MADT list doesnt list BSP first
503 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
505 cpu_set(0, cpu_present_map
);
508 * Read APIC and some other early information from ACPI tables.
516 * get boot-time SMP configuration:
518 if (smp_found_config
)
520 init_apic_mappings();
523 * Request address space for all standard RAM and ROM resources
524 * and also for regions reported as reserved by the e820.
527 e820_reserve_resources();
528 e820_mark_nosave_regions();
530 request_resource(&iomem_resource
, &video_ram_resource
);
534 /* request I/O space for devices used on all i[345]86 PCs */
535 for (i
= 0; i
< ARRAY_SIZE(standard_io_resources
); i
++)
536 request_resource(&ioport_resource
, &standard_io_resources
[i
]);
542 #if defined(CONFIG_VGA_CONSOLE)
543 conswitchp
= &vga_con
;
544 #elif defined(CONFIG_DUMMY_CONSOLE)
545 conswitchp
= &dummy_con
;
550 static int __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
554 if (c
->extended_cpuid_level
< 0x80000004)
557 v
= (unsigned int *) c
->x86_model_id
;
558 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
559 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
560 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
561 c
->x86_model_id
[48] = 0;
566 static void __cpuinit
display_cacheinfo(struct cpuinfo_x86
*c
)
568 unsigned int n
, dummy
, eax
, ebx
, ecx
, edx
;
570 n
= c
->extended_cpuid_level
;
572 if (n
>= 0x80000005) {
573 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
574 printk(KERN_INFO
"CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
575 edx
>>24, edx
&0xFF, ecx
>>24, ecx
&0xFF);
576 c
->x86_cache_size
=(ecx
>>24)+(edx
>>24);
577 /* On K8 L1 TLB is inclusive, so don't count it */
581 if (n
>= 0x80000006) {
582 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
583 ecx
= cpuid_ecx(0x80000006);
584 c
->x86_cache_size
= ecx
>> 16;
585 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
587 printk(KERN_INFO
"CPU: L2 Cache: %dK (%d bytes/line)\n",
588 c
->x86_cache_size
, ecx
& 0xFF);
592 cpuid(0x80000007, &dummy
, &dummy
, &dummy
, &c
->x86_power
);
593 if (n
>= 0x80000008) {
594 cpuid(0x80000008, &eax
, &dummy
, &dummy
, &dummy
);
595 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
596 c
->x86_phys_bits
= eax
& 0xff;
601 static int nearby_node(int apicid
)
604 for (i
= apicid
- 1; i
>= 0; i
--) {
605 int node
= apicid_to_node
[i
];
606 if (node
!= NUMA_NO_NODE
&& node_online(node
))
609 for (i
= apicid
+ 1; i
< MAX_LOCAL_APIC
; i
++) {
610 int node
= apicid_to_node
[i
];
611 if (node
!= NUMA_NO_NODE
&& node_online(node
))
614 return first_node(node_online_map
); /* Shouldn't happen */
619 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
620 * Assumes number of cores is a power of two.
622 static void __init
amd_detect_cmp(struct cpuinfo_x86
*c
)
627 int cpu
= smp_processor_id();
629 unsigned apicid
= hard_smp_processor_id();
631 unsigned ecx
= cpuid_ecx(0x80000008);
633 c
->x86_max_cores
= (ecx
& 0xff) + 1;
635 /* CPU telling us the core id bits shift? */
636 bits
= (ecx
>> 12) & 0xF;
638 /* Otherwise recompute */
640 while ((1 << bits
) < c
->x86_max_cores
)
644 /* Low order bits define the core id (index of core in socket) */
645 c
->cpu_core_id
= c
->phys_proc_id
& ((1 << bits
)-1);
646 /* Convert the APIC ID into the socket ID */
647 c
->phys_proc_id
= phys_pkg_id(bits
);
650 node
= c
->phys_proc_id
;
651 if (apicid_to_node
[apicid
] != NUMA_NO_NODE
)
652 node
= apicid_to_node
[apicid
];
653 if (!node_online(node
)) {
654 /* Two possibilities here:
655 - The CPU is missing memory and no node was created.
656 In that case try picking one from a nearby CPU
657 - The APIC IDs differ from the HyperTransport node IDs
658 which the K8 northbridge parsing fills in.
659 Assume they are all increased by a constant offset,
660 but in the same order as the HT nodeids.
661 If that doesn't result in a usable node fall back to the
662 path for the previous case. */
663 int ht_nodeid
= apicid
- (cpu_data
[0].phys_proc_id
<< bits
);
664 if (ht_nodeid
>= 0 &&
665 apicid_to_node
[ht_nodeid
] != NUMA_NO_NODE
)
666 node
= apicid_to_node
[ht_nodeid
];
667 /* Pick a nearby node */
668 if (!node_online(node
))
669 node
= nearby_node(apicid
);
671 numa_set_node(cpu
, node
);
673 printk(KERN_INFO
"CPU %d/%x -> Node %d\n", cpu
, apicid
, node
);
678 static void __cpuinit
init_amd(struct cpuinfo_x86
*c
)
686 * Disable TLB flush filter by setting HWCR.FFDIS on K8
687 * bit 6 of msr C001_0015
689 * Errata 63 for SH-B3 steppings
690 * Errata 122 for all steppings (F+ have it disabled by default)
693 rdmsrl(MSR_K8_HWCR
, value
);
695 wrmsrl(MSR_K8_HWCR
, value
);
699 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
700 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
701 clear_bit(0*32+31, &c
->x86_capability
);
703 /* On C+ stepping K8 rep microcode works well for copy/memset */
704 level
= cpuid_eax(1);
705 if (c
->x86
== 15 && ((level
>= 0x0f48 && level
< 0x0f50) || level
>= 0x0f58))
706 set_bit(X86_FEATURE_REP_GOOD
, &c
->x86_capability
);
708 /* Enable workaround for FXSAVE leak */
710 set_bit(X86_FEATURE_FXSAVE_LEAK
, &c
->x86_capability
);
712 level
= get_model_name(c
);
716 /* Should distinguish Models here, but this is only
717 a fallback anyways. */
718 strcpy(c
->x86_model_id
, "Hammer");
722 display_cacheinfo(c
);
724 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
725 if (c
->x86_power
& (1<<8))
726 set_bit(X86_FEATURE_CONSTANT_TSC
, &c
->x86_capability
);
728 /* Multi core CPU? */
729 if (c
->extended_cpuid_level
>= 0x80000008)
732 /* Fix cpuid4 emulation for more */
733 num_cache_leaves
= 3;
735 /* When there is only one core no need to synchronize RDTSC */
736 if (num_possible_cpus() == 1)
737 set_bit(X86_FEATURE_SYNC_RDTSC
, &c
->x86_capability
);
739 clear_bit(X86_FEATURE_SYNC_RDTSC
, &c
->x86_capability
);
742 static void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
745 u32 eax
, ebx
, ecx
, edx
;
746 int index_msb
, core_bits
;
748 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
751 if (!cpu_has(c
, X86_FEATURE_HT
))
753 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
756 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
758 if (smp_num_siblings
== 1) {
759 printk(KERN_INFO
"CPU: Hyper-Threading is disabled\n");
760 } else if (smp_num_siblings
> 1 ) {
762 if (smp_num_siblings
> NR_CPUS
) {
763 printk(KERN_WARNING
"CPU: Unsupported number of the siblings %d", smp_num_siblings
);
764 smp_num_siblings
= 1;
768 index_msb
= get_count_order(smp_num_siblings
);
769 c
->phys_proc_id
= phys_pkg_id(index_msb
);
771 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
773 index_msb
= get_count_order(smp_num_siblings
) ;
775 core_bits
= get_count_order(c
->x86_max_cores
);
777 c
->cpu_core_id
= phys_pkg_id(index_msb
) &
778 ((1 << core_bits
) - 1);
781 if ((c
->x86_max_cores
* smp_num_siblings
) > 1) {
782 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n", c
->phys_proc_id
);
783 printk(KERN_INFO
"CPU: Processor Core ID: %d\n", c
->cpu_core_id
);
790 * find out the number of processor cores on the die
792 static int __cpuinit
intel_num_cpu_cores(struct cpuinfo_x86
*c
)
796 if (c
->cpuid_level
< 4)
799 cpuid_count(4, 0, &eax
, &t
, &t
, &t
);
802 return ((eax
>> 26) + 1);
807 static void srat_detect_node(void)
811 int cpu
= smp_processor_id();
812 int apicid
= hard_smp_processor_id();
814 /* Don't do the funky fallback heuristics the AMD version employs
816 node
= apicid_to_node
[apicid
];
817 if (node
== NUMA_NO_NODE
)
818 node
= first_node(node_online_map
);
819 numa_set_node(cpu
, node
);
821 printk(KERN_INFO
"CPU %d/%x -> Node %d\n", cpu
, apicid
, node
);
825 static void __cpuinit
init_intel(struct cpuinfo_x86
*c
)
830 init_intel_cacheinfo(c
);
831 if (c
->cpuid_level
> 9 ) {
832 unsigned eax
= cpuid_eax(10);
833 /* Check for version and the number of counters */
834 if ((eax
& 0xff) && (((eax
>>8) & 0xff) > 1))
835 set_bit(X86_FEATURE_ARCH_PERFMON
, &c
->x86_capability
);
838 n
= c
->extended_cpuid_level
;
839 if (n
>= 0x80000008) {
840 unsigned eax
= cpuid_eax(0x80000008);
841 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
842 c
->x86_phys_bits
= eax
& 0xff;
843 /* CPUID workaround for Intel 0F34 CPU */
844 if (c
->x86_vendor
== X86_VENDOR_INTEL
&&
845 c
->x86
== 0xF && c
->x86_model
== 0x3 &&
847 c
->x86_phys_bits
= 36;
851 c
->x86_cache_alignment
= c
->x86_clflush_size
* 2;
852 if ((c
->x86
== 0xf && c
->x86_model
>= 0x03) ||
853 (c
->x86
== 0x6 && c
->x86_model
>= 0x0e))
854 set_bit(X86_FEATURE_CONSTANT_TSC
, &c
->x86_capability
);
856 set_bit(X86_FEATURE_REP_GOOD
, &c
->x86_capability
);
857 set_bit(X86_FEATURE_SYNC_RDTSC
, &c
->x86_capability
);
858 c
->x86_max_cores
= intel_num_cpu_cores(c
);
863 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
865 char *v
= c
->x86_vendor_id
;
867 if (!strcmp(v
, "AuthenticAMD"))
868 c
->x86_vendor
= X86_VENDOR_AMD
;
869 else if (!strcmp(v
, "GenuineIntel"))
870 c
->x86_vendor
= X86_VENDOR_INTEL
;
872 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
875 struct cpu_model_info
{
878 char *model_names
[16];
881 /* Do some early cpuid on the boot CPU to get some parameter that are
882 needed before check_bugs. Everything advanced is in identify_cpu
884 void __cpuinit
early_identify_cpu(struct cpuinfo_x86
*c
)
888 c
->loops_per_jiffy
= loops_per_jiffy
;
889 c
->x86_cache_size
= -1;
890 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
891 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
892 c
->x86_vendor_id
[0] = '\0'; /* Unset */
893 c
->x86_model_id
[0] = '\0'; /* Unset */
894 c
->x86_clflush_size
= 64;
895 c
->x86_cache_alignment
= c
->x86_clflush_size
;
896 c
->x86_max_cores
= 1;
897 c
->extended_cpuid_level
= 0;
898 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
900 /* Get vendor name */
901 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
902 (unsigned int *)&c
->x86_vendor_id
[0],
903 (unsigned int *)&c
->x86_vendor_id
[8],
904 (unsigned int *)&c
->x86_vendor_id
[4]);
908 /* Initialize the standard set of capabilities */
909 /* Note that the vendor-specific code below might override */
911 /* Intel-defined flags: level 0x00000001 */
912 if (c
->cpuid_level
>= 0x00000001) {
914 cpuid(0x00000001, &tfms
, &misc
, &c
->x86_capability
[4],
915 &c
->x86_capability
[0]);
916 c
->x86
= (tfms
>> 8) & 0xf;
917 c
->x86_model
= (tfms
>> 4) & 0xf;
918 c
->x86_mask
= tfms
& 0xf;
920 c
->x86
+= (tfms
>> 20) & 0xff;
922 c
->x86_model
+= ((tfms
>> 16) & 0xF) << 4;
923 if (c
->x86_capability
[0] & (1<<19))
924 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
926 /* Have CPUID level 0 only - unheard of */
931 c
->phys_proc_id
= (cpuid_ebx(1) >> 24) & 0xff;
936 * This does the hard work of actually picking apart the CPU stuff...
938 void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
943 early_identify_cpu(c
);
945 /* AMD-defined flags: level 0x80000001 */
946 xlvl
= cpuid_eax(0x80000000);
947 c
->extended_cpuid_level
= xlvl
;
948 if ((xlvl
& 0xffff0000) == 0x80000000) {
949 if (xlvl
>= 0x80000001) {
950 c
->x86_capability
[1] = cpuid_edx(0x80000001);
951 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
953 if (xlvl
>= 0x80000004)
954 get_model_name(c
); /* Default name */
957 /* Transmeta-defined flags: level 0x80860001 */
958 xlvl
= cpuid_eax(0x80860000);
959 if ((xlvl
& 0xffff0000) == 0x80860000) {
960 /* Don't set x86_cpuid_level here for now to not confuse. */
961 if (xlvl
>= 0x80860001)
962 c
->x86_capability
[2] = cpuid_edx(0x80860001);
965 c
->apicid
= phys_pkg_id(0);
968 * Vendor-specific initialization. In this section we
969 * canonicalize the feature flags, meaning if there are
970 * features a certain CPU supports which CPUID doesn't
971 * tell us, CPUID claiming incorrect flags, or other bugs,
972 * we handle them here.
974 * At the end of this section, c->x86_capability better
975 * indicate the features this CPU genuinely supports!
977 switch (c
->x86_vendor
) {
982 case X86_VENDOR_INTEL
:
986 case X86_VENDOR_UNKNOWN
:
988 display_cacheinfo(c
);
992 select_idle_routine(c
);
996 * On SMP, boot_cpu_data holds the common feature set between
997 * all CPUs; so make sure that we indicate which features are
998 * common between the CPUs. The first time this routine gets
999 * executed, c == &boot_cpu_data.
1001 if (c
!= &boot_cpu_data
) {
1002 /* AND the already accumulated flags with these */
1003 for (i
= 0 ; i
< NCAPINTS
; i
++)
1004 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
1007 #ifdef CONFIG_X86_MCE
1010 if (c
== &boot_cpu_data
)
1015 numa_add_cpu(smp_processor_id());
1020 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
1022 if (c
->x86_model_id
[0])
1023 printk("%s", c
->x86_model_id
);
1025 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1026 printk(" stepping %02x\n", c
->x86_mask
);
1032 * Get CPU information for use by the procfs.
1035 static int show_cpuinfo(struct seq_file
*m
, void *v
)
1037 struct cpuinfo_x86
*c
= v
;
1040 * These flag bits must match the definitions in <asm/cpufeature.h>.
1041 * NULL means this bit is undefined or reserved; either way it doesn't
1042 * have meaning as far as Linux is concerned. Note that it's important
1043 * to realize there is a difference between this table and CPUID -- if
1044 * applications want to get the raw CPUID data, they should access
1045 * /dev/cpu/<cpu_nr>/cpuid instead.
1047 static char *x86_cap_flags
[] = {
1049 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1050 "cx8", "apic", NULL
, "sep", "mtrr", "pge", "mca", "cmov",
1051 "pat", "pse36", "pn", "clflush", NULL
, "dts", "acpi", "mmx",
1052 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL
,
1055 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1056 NULL
, NULL
, NULL
, "syscall", NULL
, NULL
, NULL
, NULL
,
1057 NULL
, NULL
, NULL
, NULL
, "nx", NULL
, "mmxext", NULL
,
1058 NULL
, "fxsr_opt", NULL
, "rdtscp", NULL
, "lm", "3dnowext", "3dnow",
1060 /* Transmeta-defined */
1061 "recovery", "longrun", NULL
, "lrti", NULL
, NULL
, NULL
, NULL
,
1062 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1063 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1064 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1066 /* Other (Linux-defined) */
1067 "cxmmx", NULL
, "cyrix_arr", "centaur_mcr", NULL
,
1068 "constant_tsc", NULL
, NULL
,
1069 "up", NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1070 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1071 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1073 /* Intel-defined (#2) */
1074 "pni", NULL
, NULL
, "monitor", "ds_cpl", "vmx", "smx", "est",
1075 "tm2", "ssse3", "cid", NULL
, NULL
, "cx16", "xtpr", NULL
,
1076 NULL
, NULL
, "dca", NULL
, NULL
, NULL
, NULL
, NULL
,
1077 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1079 /* VIA/Cyrix/Centaur-defined */
1080 NULL
, NULL
, "rng", "rng_en", NULL
, NULL
, "ace", "ace_en",
1081 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1082 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1083 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1085 /* AMD-defined (#2) */
1086 "lahf_lm", "cmp_legacy", "svm", NULL
, "cr8_legacy", NULL
, NULL
, NULL
,
1087 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1088 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1089 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1091 static char *x86_power_flags
[] = {
1092 "ts", /* temperature sensor */
1093 "fid", /* frequency id control */
1094 "vid", /* voltage id control */
1095 "ttp", /* thermal trip */
1099 /* nothing */ /* constant_tsc - moved to flags */
1104 if (!cpu_online(c
-cpu_data
))
1108 seq_printf(m
,"processor\t: %u\n"
1110 "cpu family\t: %d\n"
1112 "model name\t: %s\n",
1113 (unsigned)(c
-cpu_data
),
1114 c
->x86_vendor_id
[0] ? c
->x86_vendor_id
: "unknown",
1117 c
->x86_model_id
[0] ? c
->x86_model_id
: "unknown");
1119 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1120 seq_printf(m
, "stepping\t: %d\n", c
->x86_mask
);
1122 seq_printf(m
, "stepping\t: unknown\n");
1124 if (cpu_has(c
,X86_FEATURE_TSC
)) {
1125 unsigned int freq
= cpufreq_quick_get((unsigned)(c
-cpu_data
));
1128 seq_printf(m
, "cpu MHz\t\t: %u.%03u\n",
1129 freq
/ 1000, (freq
% 1000));
1133 if (c
->x86_cache_size
>= 0)
1134 seq_printf(m
, "cache size\t: %d KB\n", c
->x86_cache_size
);
1137 if (smp_num_siblings
* c
->x86_max_cores
> 1) {
1138 int cpu
= c
- cpu_data
;
1139 seq_printf(m
, "physical id\t: %d\n", c
->phys_proc_id
);
1140 seq_printf(m
, "siblings\t: %d\n", cpus_weight(cpu_core_map
[cpu
]));
1141 seq_printf(m
, "core id\t\t: %d\n", c
->cpu_core_id
);
1142 seq_printf(m
, "cpu cores\t: %d\n", c
->booted_cores
);
1148 "fpu_exception\t: yes\n"
1149 "cpuid level\t: %d\n"
1156 for ( i
= 0 ; i
< 32*NCAPINTS
; i
++ )
1157 if (cpu_has(c
, i
) && x86_cap_flags
[i
] != NULL
)
1158 seq_printf(m
, " %s", x86_cap_flags
[i
]);
1161 seq_printf(m
, "\nbogomips\t: %lu.%02lu\n",
1162 c
->loops_per_jiffy
/(500000/HZ
),
1163 (c
->loops_per_jiffy
/(5000/HZ
)) % 100);
1165 if (c
->x86_tlbsize
> 0)
1166 seq_printf(m
, "TLB size\t: %d 4K pages\n", c
->x86_tlbsize
);
1167 seq_printf(m
, "clflush size\t: %d\n", c
->x86_clflush_size
);
1168 seq_printf(m
, "cache_alignment\t: %d\n", c
->x86_cache_alignment
);
1170 seq_printf(m
, "address sizes\t: %u bits physical, %u bits virtual\n",
1171 c
->x86_phys_bits
, c
->x86_virt_bits
);
1173 seq_printf(m
, "power management:");
1176 for (i
= 0; i
< 32; i
++)
1177 if (c
->x86_power
& (1 << i
)) {
1178 if (i
< ARRAY_SIZE(x86_power_flags
) &&
1180 seq_printf(m
, "%s%s",
1181 x86_power_flags
[i
][0]?" ":"",
1182 x86_power_flags
[i
]);
1184 seq_printf(m
, " [%d]", i
);
1188 seq_printf(m
, "\n\n");
1193 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1195 return *pos
< NR_CPUS
? cpu_data
+ *pos
: NULL
;
1198 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1201 return c_start(m
, pos
);
1204 static void c_stop(struct seq_file
*m
, void *v
)
1208 struct seq_operations cpuinfo_op
= {
1212 .show
= show_cpuinfo
,
1215 #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
1216 #include <linux/platform_device.h>
1217 static __init
int add_pcspkr(void)
1219 struct platform_device
*pd
;
1222 pd
= platform_device_alloc("pcspkr", -1);
1226 ret
= platform_device_add(pd
);
1228 platform_device_put(pd
);
1232 device_initcall(add_pcspkr
);