2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
8 * This code is released under the GNU General Public License version 2 or
12 #include <linux/init.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp_lock.h>
18 #include <linux/smp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/interrupt.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlbflush.h>
26 #include <asm/mach_apic.h>
27 #include <asm/mmu_context.h>
28 #include <asm/proto.h>
29 #include <asm/apicdef.h>
33 * Smarter SMP flushing macros.
36 * These mean you can really definitely utterly forget about
37 * writing to user space from interrupts. (Its not allowed anyway).
39 * Optimizations Manfred Spraul <manfred@colorfullife.com>
41 * More scalable flush, from Andi Kleen
43 * To avoid global state use 8 different call vectors.
44 * Each CPU uses a specific vector to trigger flushes on other
45 * CPUs. Depending on the received vector the target CPUs look into
46 * the right per cpu variable for the flush data.
48 * With more than 8 CPUs they are hashed to the 8 available
49 * vectors. The limited global vector space forces us to this right now.
50 * In future when interrupts are split into per CPU domains this could be
51 * fixed, at the cost of triggering multiple IPIs in some cases.
54 union smp_flush_state
{
56 cpumask_t flush_cpumask
;
57 struct mm_struct
*flush_mm
;
58 unsigned long flush_va
;
59 #define FLUSH_ALL -1ULL
60 spinlock_t tlbstate_lock
;
62 char pad
[SMP_CACHE_BYTES
];
63 } ____cacheline_aligned
;
65 /* State is put into the per CPU data section, but padded
66 to a full cache line because other CPUs can access it and we don't
67 want false sharing in the per cpu data segment. */
68 static DEFINE_PER_CPU(union smp_flush_state
, flush_state
);
71 * We cannot call mmdrop() because we are in interrupt context,
72 * instead update mm->cpu_vm_mask.
74 static inline void leave_mm(int cpu
)
76 if (read_pda(mmu_state
) == TLBSTATE_OK
)
78 cpu_clear(cpu
, read_pda(active_mm
)->cpu_vm_mask
);
79 load_cr3(swapper_pg_dir
);
84 * The flush IPI assumes that a thread switch happens in this order:
85 * [cpu0: the cpu that switches]
86 * 1) switch_mm() either 1a) or 1b)
87 * 1a) thread switch to a different mm
88 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
89 * Stop ipi delivery for the old mm. This is not synchronized with
90 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
91 * for the wrong mm, and in the worst case we perform a superfluous
93 * 1a2) set cpu mmu_state to TLBSTATE_OK
94 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
95 * was in lazy tlb mode.
96 * 1a3) update cpu active_mm
97 * Now cpu0 accepts tlb flushes for the new mm.
98 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
99 * Now the other cpus will send tlb flush ipis.
101 * 1b) thread switch without mm change
102 * cpu active_mm is correct, cpu0 already handles
104 * 1b1) set cpu mmu_state to TLBSTATE_OK
105 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
106 * Atomically set the bit [other cpus will start sending flush ipis],
108 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
109 * 2) switch %%esp, ie current
111 * The interrupt must handle 2 special cases:
112 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
113 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
114 * runs in kernel space, the cpu could load tlb entries for user space
117 * The good news is that cpu mmu_state is local to each cpu, no
118 * write/read ordering problems.
124 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
125 * 2) Leave the mm if we are in the lazy tlb mode.
127 * Interrupts are disabled.
130 asmlinkage
void smp_invalidate_interrupt(struct pt_regs
*regs
)
134 union smp_flush_state
*f
;
136 cpu
= smp_processor_id();
138 * orig_rax contains the negated interrupt vector.
139 * Use that to determine where the sender put the data.
141 sender
= ~regs
->orig_rax
- INVALIDATE_TLB_VECTOR_START
;
142 f
= &per_cpu(flush_state
, sender
);
144 if (!cpu_isset(cpu
, f
->flush_cpumask
))
147 * This was a BUG() but until someone can quote me the
148 * line from the intel manual that guarantees an IPI to
149 * multiple CPUs is retried _only_ on the erroring CPUs
150 * its staying as a return
155 if (f
->flush_mm
== read_pda(active_mm
)) {
156 if (read_pda(mmu_state
) == TLBSTATE_OK
) {
157 if (f
->flush_va
== FLUSH_ALL
)
160 __flush_tlb_one(f
->flush_va
);
166 cpu_clear(cpu
, f
->flush_cpumask
);
169 static void flush_tlb_others(cpumask_t cpumask
, struct mm_struct
*mm
,
173 union smp_flush_state
*f
;
175 /* Caller has disabled preemption */
176 sender
= smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS
;
177 f
= &per_cpu(flush_state
, sender
);
179 /* Could avoid this lock when
180 num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
181 probably not worth checking this for a cache-hot lock. */
182 spin_lock(&f
->tlbstate_lock
);
186 cpus_or(f
->flush_cpumask
, cpumask
, f
->flush_cpumask
);
189 * We have to send the IPI only to
192 send_IPI_mask(cpumask
, INVALIDATE_TLB_VECTOR_START
+ sender
);
194 while (!cpus_empty(f
->flush_cpumask
))
199 spin_unlock(&f
->tlbstate_lock
);
202 int __cpuinit
init_smp_flush(void)
205 for_each_cpu_mask(i
, cpu_possible_map
) {
206 spin_lock_init(&per_cpu(flush_state
, i
).tlbstate_lock
);
211 core_initcall(init_smp_flush
);
213 void flush_tlb_current_task(void)
215 struct mm_struct
*mm
= current
->mm
;
219 cpu_mask
= mm
->cpu_vm_mask
;
220 cpu_clear(smp_processor_id(), cpu_mask
);
223 if (!cpus_empty(cpu_mask
))
224 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
227 EXPORT_SYMBOL(flush_tlb_current_task
);
229 void flush_tlb_mm (struct mm_struct
* mm
)
234 cpu_mask
= mm
->cpu_vm_mask
;
235 cpu_clear(smp_processor_id(), cpu_mask
);
237 if (current
->active_mm
== mm
) {
241 leave_mm(smp_processor_id());
243 if (!cpus_empty(cpu_mask
))
244 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
248 EXPORT_SYMBOL(flush_tlb_mm
);
250 void flush_tlb_page(struct vm_area_struct
* vma
, unsigned long va
)
252 struct mm_struct
*mm
= vma
->vm_mm
;
256 cpu_mask
= mm
->cpu_vm_mask
;
257 cpu_clear(smp_processor_id(), cpu_mask
);
259 if (current
->active_mm
== mm
) {
263 leave_mm(smp_processor_id());
266 if (!cpus_empty(cpu_mask
))
267 flush_tlb_others(cpu_mask
, mm
, va
);
271 EXPORT_SYMBOL(flush_tlb_page
);
273 static void do_flush_tlb_all(void* info
)
275 unsigned long cpu
= smp_processor_id();
278 if (read_pda(mmu_state
) == TLBSTATE_LAZY
)
282 void flush_tlb_all(void)
284 on_each_cpu(do_flush_tlb_all
, NULL
, 1, 1);
288 * this function sends a 'reschedule' IPI to another CPU.
289 * it goes straight through and wastes no time serializing
290 * anything. Worst case is that we lose a reschedule ...
293 void smp_send_reschedule(int cpu
)
295 send_IPI_mask(cpumask_of_cpu(cpu
), RESCHEDULE_VECTOR
);
299 * Structure and data for smp_call_function(). This is designed to minimise
300 * static memory requirements. It also looks cleaner.
302 static DEFINE_SPINLOCK(call_lock
);
304 struct call_data_struct
{
305 void (*func
) (void *info
);
312 static struct call_data_struct
* call_data
;
314 void lock_ipi_call_lock(void)
316 spin_lock_irq(&call_lock
);
319 void unlock_ipi_call_lock(void)
321 spin_unlock_irq(&call_lock
);
325 * this function sends a 'generic call function' IPI to one other CPU
328 * cpu is a standard Linux logical CPU number.
331 __smp_call_function_single(int cpu
, void (*func
) (void *info
), void *info
,
332 int nonatomic
, int wait
)
334 struct call_data_struct data
;
339 atomic_set(&data
.started
, 0);
342 atomic_set(&data
.finished
, 0);
346 /* Send a message to all other CPUs and wait for them to respond */
347 send_IPI_mask(cpumask_of_cpu(cpu
), CALL_FUNCTION_VECTOR
);
349 /* Wait for response */
350 while (atomic_read(&data
.started
) != cpus
)
356 while (atomic_read(&data
.finished
) != cpus
)
361 * smp_call_function_single - Run a function on another CPU
362 * @func: The function to run. This must be fast and non-blocking.
363 * @info: An arbitrary pointer to pass to the function.
364 * @nonatomic: Currently unused.
365 * @wait: If true, wait until function has completed on other CPUs.
367 * Retrurns 0 on success, else a negative status code.
369 * Does not return until the remote CPU is nearly ready to execute <func>
370 * or is or has executed.
373 int smp_call_function_single (int cpu
, void (*func
) (void *info
), void *info
,
374 int nonatomic
, int wait
)
376 /* prevent preemption and reschedule on another processor */
382 spin_lock_bh(&call_lock
);
383 __smp_call_function_single(cpu
, func
, info
, nonatomic
, wait
);
384 spin_unlock_bh(&call_lock
);
390 * this function sends a 'generic call function' IPI to all other CPUs
393 static void __smp_call_function (void (*func
) (void *info
), void *info
,
394 int nonatomic
, int wait
)
396 struct call_data_struct data
;
397 int cpus
= num_online_cpus()-1;
404 atomic_set(&data
.started
, 0);
407 atomic_set(&data
.finished
, 0);
411 /* Send a message to all other CPUs and wait for them to respond */
412 send_IPI_allbutself(CALL_FUNCTION_VECTOR
);
414 /* Wait for response */
415 while (atomic_read(&data
.started
) != cpus
)
421 while (atomic_read(&data
.finished
) != cpus
)
426 * smp_call_function - run a function on all other CPUs.
427 * @func: The function to run. This must be fast and non-blocking.
428 * @info: An arbitrary pointer to pass to the function.
429 * @nonatomic: currently unused.
430 * @wait: If true, wait (atomically) until function has completed on other
433 * Returns 0 on success, else a negative status code. Does not return until
434 * remote CPUs are nearly ready to execute func or are or have executed.
436 * You must not call this function with disabled interrupts or from a
437 * hardware interrupt handler or from a bottom half handler.
438 * Actually there are a few legal cases, like panic.
440 int smp_call_function (void (*func
) (void *info
), void *info
, int nonatomic
,
443 spin_lock(&call_lock
);
444 __smp_call_function(func
,info
,nonatomic
,wait
);
445 spin_unlock(&call_lock
);
448 EXPORT_SYMBOL(smp_call_function
);
450 void smp_stop_cpu(void)
456 cpu_clear(smp_processor_id(), cpu_online_map
);
457 local_irq_save(flags
);
458 disable_local_APIC();
459 local_irq_restore(flags
);
462 static void smp_really_stop_cpu(void *dummy
)
469 void smp_send_stop(void)
474 /* Don't deadlock on the call lock in panic */
475 if (!spin_trylock(&call_lock
)) {
476 /* ignore locking because we have panicked anyways */
479 __smp_call_function(smp_really_stop_cpu
, NULL
, 0, 0);
481 spin_unlock(&call_lock
);
484 disable_local_APIC();
489 * Reschedule call back. Nothing to do,
490 * all the work is done automatically when
491 * we return from the interrupt.
493 asmlinkage
void smp_reschedule_interrupt(void)
498 asmlinkage
void smp_call_function_interrupt(void)
500 void (*func
) (void *info
) = call_data
->func
;
501 void *info
= call_data
->info
;
502 int wait
= call_data
->wait
;
506 * Notify initiating CPU that I've grabbed the data and am
507 * about to execute the function
510 atomic_inc(&call_data
->started
);
512 * At this point the info structure may be out of scope unless wait==1
520 atomic_inc(&call_data
->finished
);