1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
46 #include <asm/uaccess.h>
49 #include <linux/pci.h>
52 /*****************************************************************************/
55 * Define different board types. Use the standard Stallion "assigned"
56 * board numbers. Boards supported in this driver are abbreviated as
57 * EIO = EasyIO and ECH = EasyConnection 8/32.
63 #define BRD_ECH64PCI 27
64 #define BRD_EASYIOPCI 28
67 * Define a configuration structure to hold the board configuration.
68 * Need to set this up in the code (for now) with the boards that are
69 * to be configured into the system. This is what needs to be modified
70 * when adding/removing/modifying boards. Each line entry in the
71 * stl_brdconf[] array is a board. Each line contains io/irq/memory
72 * ranges for that board (as well as what type of board it is).
74 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
75 * This line would configure an EasyIO board (4 or 8, no difference),
76 * at io address 2a0 and irq 10.
78 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
79 * This line will configure an EasyConnection 8/32 board at primary io
80 * address 2a8, secondary io address 280 and irq 12.
81 * Enter as many lines into this array as you want (only the first 4
82 * will actually be used!). Any combination of EasyIO and EasyConnection
83 * boards can be specified. EasyConnection 8/32 boards can share their
84 * secondary io addresses between each other.
86 * NOTE: there is no need to put any entries in this table for PCI
87 * boards. They will be found automatically by the driver - provided
88 * PCI BIOS32 support is compiled into the kernel.
95 unsigned long memaddr
;
100 static stlconf_t stl_brdconf
[] = {
101 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
104 static int stl_nrbrds
= ARRAY_SIZE(stl_brdconf
);
106 /*****************************************************************************/
109 * Define some important driver characteristics. Device major numbers
110 * allocated as per Linux Device Registry.
112 #ifndef STL_SIOMEMMAJOR
113 #define STL_SIOMEMMAJOR 28
115 #ifndef STL_SERIALMAJOR
116 #define STL_SERIALMAJOR 24
118 #ifndef STL_CALLOUTMAJOR
119 #define STL_CALLOUTMAJOR 25
123 * Set the TX buffer size. Bigger is better, but we don't want
124 * to chew too much memory with buffers!
126 #define STL_TXBUFLOW 512
127 #define STL_TXBUFSIZE 4096
129 /*****************************************************************************/
132 * Define our local driver identity first. Set up stuff to deal with
133 * all the local structures required by a serial tty driver.
135 static char *stl_drvtitle
= "Stallion Multiport Serial Driver";
136 static char *stl_drvname
= "stallion";
137 static char *stl_drvversion
= "5.6.0";
139 static struct tty_driver
*stl_serial
;
142 * Define a local default termios struct. All ports will be created
143 * with this termios initially. Basically all it defines is a raw port
144 * at 9600, 8 data bits, 1 stop bit.
146 static struct termios stl_deftermios
= {
147 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
152 * Define global stats structures. Not used often, and can be
153 * re-used for each stats call.
155 static comstats_t stl_comstats
;
156 static combrd_t stl_brdstats
;
157 static stlbrd_t stl_dummybrd
;
158 static stlport_t stl_dummyport
;
161 * Define global place to put buffer overflow characters.
163 static char stl_unwanted
[SC26198_RXFIFOSIZE
];
165 /*****************************************************************************/
167 static stlbrd_t
*stl_brds
[STL_MAXBRDS
];
170 * Per board state flags. Used with the state field of the board struct.
171 * Not really much here!
173 #define BRD_FOUND 0x1
176 * Define the port structure istate flags. These set of flags are
177 * modified at interrupt time - so setting and reseting them needs
178 * to be atomic. Use the bit clear/setting routines for this.
180 #define ASYI_TXBUSY 1
182 #define ASYI_DCDCHANGE 3
183 #define ASYI_TXFLOWED 4
186 * Define an array of board names as printable strings. Handy for
187 * referencing boards when printing trace and stuff.
189 static char *stl_brdnames
[] = {
221 /*****************************************************************************/
224 * Define some string labels for arguments passed from the module
225 * load line. These allow for easy board definitions, and easy
226 * modification of the io, memory and irq resoucres.
228 static int stl_nargs
= 0;
229 static char *board0
[4];
230 static char *board1
[4];
231 static char *board2
[4];
232 static char *board3
[4];
234 static char **stl_brdsp
[] = {
242 * Define a set of common board names, and types. This is used to
243 * parse any module arguments.
246 typedef struct stlbrdtype
{
251 static stlbrdtype_t stl_brdstr
[] = {
252 { "easyio", BRD_EASYIO
},
253 { "eio", BRD_EASYIO
},
254 { "20", BRD_EASYIO
},
255 { "ec8/32", BRD_ECH
},
256 { "ec8/32-at", BRD_ECH
},
257 { "ec8/32-isa", BRD_ECH
},
259 { "echat", BRD_ECH
},
261 { "ec8/32-mc", BRD_ECHMC
},
262 { "ec8/32-mca", BRD_ECHMC
},
263 { "echmc", BRD_ECHMC
},
264 { "echmca", BRD_ECHMC
},
266 { "ec8/32-pc", BRD_ECHPCI
},
267 { "ec8/32-pci", BRD_ECHPCI
},
268 { "26", BRD_ECHPCI
},
269 { "ec8/64-pc", BRD_ECH64PCI
},
270 { "ec8/64-pci", BRD_ECH64PCI
},
271 { "ech-pci", BRD_ECH64PCI
},
272 { "echpci", BRD_ECH64PCI
},
273 { "echpc", BRD_ECH64PCI
},
274 { "27", BRD_ECH64PCI
},
275 { "easyio-pc", BRD_EASYIOPCI
},
276 { "easyio-pci", BRD_EASYIOPCI
},
277 { "eio-pci", BRD_EASYIOPCI
},
278 { "eiopci", BRD_EASYIOPCI
},
279 { "28", BRD_EASYIOPCI
},
283 * Define the module agruments.
285 MODULE_AUTHOR("Greg Ungerer");
286 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
287 MODULE_LICENSE("GPL");
289 module_param_array(board0
, charp
, &stl_nargs
, 0);
290 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
291 module_param_array(board1
, charp
, &stl_nargs
, 0);
292 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
293 module_param_array(board2
, charp
, &stl_nargs
, 0);
294 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
295 module_param_array(board3
, charp
, &stl_nargs
, 0);
296 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
298 /*****************************************************************************/
301 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
302 * to the directly accessible io ports of these boards (not the uarts -
303 * they are in cd1400.h and sc26198.h).
305 #define EIO_8PORTRS 0x04
306 #define EIO_4PORTRS 0x05
307 #define EIO_8PORTDI 0x00
308 #define EIO_8PORTM 0x06
310 #define EIO_IDBITMASK 0x07
312 #define EIO_BRDMASK 0xf0
315 #define ID_BRD16 0x30
317 #define EIO_INTRPEND 0x08
318 #define EIO_INTEDGE 0x00
319 #define EIO_INTLEVEL 0x08
323 #define ECH_IDBITMASK 0xe0
324 #define ECH_BRDENABLE 0x08
325 #define ECH_BRDDISABLE 0x00
326 #define ECH_INTENABLE 0x01
327 #define ECH_INTDISABLE 0x00
328 #define ECH_INTLEVEL 0x02
329 #define ECH_INTEDGE 0x00
330 #define ECH_INTRPEND 0x01
331 #define ECH_BRDRESET 0x01
333 #define ECHMC_INTENABLE 0x01
334 #define ECHMC_BRDRESET 0x02
336 #define ECH_PNLSTATUS 2
337 #define ECH_PNL16PORT 0x20
338 #define ECH_PNLIDMASK 0x07
339 #define ECH_PNLXPID 0x40
340 #define ECH_PNLINTRPEND 0x80
342 #define ECH_ADDR2MASK 0x1e0
345 * Define the vector mapping bits for the programmable interrupt board
346 * hardware. These bits encode the interrupt for the board to use - it
347 * is software selectable (except the EIO-8M).
349 static unsigned char stl_vecmap
[] = {
350 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
351 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
355 * Lock ordering is that you may not take stallion_lock holding
359 static spinlock_t brd_lock
; /* Guard the board mapping */
360 static spinlock_t stallion_lock
; /* Guard the tty driver */
363 * Set up enable and disable macros for the ECH boards. They require
364 * the secondary io address space to be activated and deactivated.
365 * This way all ECH boards can share their secondary io region.
366 * If this is an ECH-PCI board then also need to set the page pointer
367 * to point to the correct page.
369 #define BRDENABLE(brdnr,pagenr) \
370 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
371 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
372 stl_brds[(brdnr)]->ioctrl); \
373 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
374 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
376 #define BRDDISABLE(brdnr) \
377 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
378 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
379 stl_brds[(brdnr)]->ioctrl);
381 #define STL_CD1400MAXBAUD 230400
382 #define STL_SC26198MAXBAUD 460800
384 #define STL_BAUDBASE 115200
385 #define STL_CLOSEDELAY (5 * HZ / 10)
387 /*****************************************************************************/
392 * Define the Stallion PCI vendor and device IDs.
394 #ifndef PCI_VENDOR_ID_STALLION
395 #define PCI_VENDOR_ID_STALLION 0x124d
397 #ifndef PCI_DEVICE_ID_ECHPCI832
398 #define PCI_DEVICE_ID_ECHPCI832 0x0000
400 #ifndef PCI_DEVICE_ID_ECHPCI864
401 #define PCI_DEVICE_ID_ECHPCI864 0x0002
403 #ifndef PCI_DEVICE_ID_EIOPCI
404 #define PCI_DEVICE_ID_EIOPCI 0x0003
408 * Define structure to hold all Stallion PCI boards.
410 typedef struct stlpcibrd
{
411 unsigned short vendid
;
412 unsigned short devid
;
416 static stlpcibrd_t stl_pcibrds
[] = {
417 { PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI864
, BRD_ECH64PCI
},
418 { PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_EIOPCI
, BRD_EASYIOPCI
},
419 { PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI832
, BRD_ECHPCI
},
420 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_87410
, BRD_ECHPCI
},
423 static int stl_nrpcibrds
= ARRAY_SIZE(stl_pcibrds
);
427 /*****************************************************************************/
430 * Define macros to extract a brd/port number from a minor number.
432 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
433 #define MINOR2PORT(min) ((min) & 0x3f)
436 * Define a baud rate table that converts termios baud rate selector
437 * into the actual baud rate value. All baud rate calculations are
438 * based on the actual baud rate required.
440 static unsigned int stl_baudrates
[] = {
441 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
442 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
446 * Define some handy local macros...
449 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
452 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
454 /*****************************************************************************/
457 * Declare all those functions in this driver!
460 static void stl_argbrds(void);
461 static int stl_parsebrd(stlconf_t
*confp
, char **argp
);
463 static unsigned long stl_atol(char *str
);
465 static int stl_init(void);
466 static int stl_open(struct tty_struct
*tty
, struct file
*filp
);
467 static void stl_close(struct tty_struct
*tty
, struct file
*filp
);
468 static int stl_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
);
469 static void stl_putchar(struct tty_struct
*tty
, unsigned char ch
);
470 static void stl_flushchars(struct tty_struct
*tty
);
471 static int stl_writeroom(struct tty_struct
*tty
);
472 static int stl_charsinbuffer(struct tty_struct
*tty
);
473 static int stl_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
);
474 static void stl_settermios(struct tty_struct
*tty
, struct termios
*old
);
475 static void stl_throttle(struct tty_struct
*tty
);
476 static void stl_unthrottle(struct tty_struct
*tty
);
477 static void stl_stop(struct tty_struct
*tty
);
478 static void stl_start(struct tty_struct
*tty
);
479 static void stl_flushbuffer(struct tty_struct
*tty
);
480 static void stl_breakctl(struct tty_struct
*tty
, int state
);
481 static void stl_waituntilsent(struct tty_struct
*tty
, int timeout
);
482 static void stl_sendxchar(struct tty_struct
*tty
, char ch
);
483 static void stl_hangup(struct tty_struct
*tty
);
484 static int stl_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
);
485 static int stl_portinfo(stlport_t
*portp
, int portnr
, char *pos
);
486 static int stl_readproc(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
);
488 static int stl_brdinit(stlbrd_t
*brdp
);
489 static int stl_initports(stlbrd_t
*brdp
, stlpanel_t
*panelp
);
490 static int stl_getserial(stlport_t
*portp
, struct serial_struct __user
*sp
);
491 static int stl_setserial(stlport_t
*portp
, struct serial_struct __user
*sp
);
492 static int stl_getbrdstats(combrd_t __user
*bp
);
493 static int stl_getportstats(stlport_t
*portp
, comstats_t __user
*cp
);
494 static int stl_clrportstats(stlport_t
*portp
, comstats_t __user
*cp
);
495 static int stl_getportstruct(stlport_t __user
*arg
);
496 static int stl_getbrdstruct(stlbrd_t __user
*arg
);
497 static int stl_waitcarrier(stlport_t
*portp
, struct file
*filp
);
498 static int stl_eiointr(stlbrd_t
*brdp
);
499 static int stl_echatintr(stlbrd_t
*brdp
);
500 static int stl_echmcaintr(stlbrd_t
*brdp
);
501 static int stl_echpciintr(stlbrd_t
*brdp
);
502 static int stl_echpci64intr(stlbrd_t
*brdp
);
503 static void stl_offintr(void *private);
504 static stlbrd_t
*stl_allocbrd(void);
505 static stlport_t
*stl_getport(int brdnr
, int panelnr
, int portnr
);
507 static inline int stl_initbrds(void);
508 static inline int stl_initeio(stlbrd_t
*brdp
);
509 static inline int stl_initech(stlbrd_t
*brdp
);
510 static inline int stl_getbrdnr(void);
513 static inline int stl_findpcibrds(void);
514 static inline int stl_initpcibrd(int brdtype
, struct pci_dev
*devp
);
518 * CD1400 uart specific handling functions.
520 static void stl_cd1400setreg(stlport_t
*portp
, int regnr
, int value
);
521 static int stl_cd1400getreg(stlport_t
*portp
, int regnr
);
522 static int stl_cd1400updatereg(stlport_t
*portp
, int regnr
, int value
);
523 static int stl_cd1400panelinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
);
524 static void stl_cd1400portinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
, stlport_t
*portp
);
525 static void stl_cd1400setport(stlport_t
*portp
, struct termios
*tiosp
);
526 static int stl_cd1400getsignals(stlport_t
*portp
);
527 static void stl_cd1400setsignals(stlport_t
*portp
, int dtr
, int rts
);
528 static void stl_cd1400ccrwait(stlport_t
*portp
);
529 static void stl_cd1400enablerxtx(stlport_t
*portp
, int rx
, int tx
);
530 static void stl_cd1400startrxtx(stlport_t
*portp
, int rx
, int tx
);
531 static void stl_cd1400disableintrs(stlport_t
*portp
);
532 static void stl_cd1400sendbreak(stlport_t
*portp
, int len
);
533 static void stl_cd1400flowctrl(stlport_t
*portp
, int state
);
534 static void stl_cd1400sendflow(stlport_t
*portp
, int state
);
535 static void stl_cd1400flush(stlport_t
*portp
);
536 static int stl_cd1400datastate(stlport_t
*portp
);
537 static void stl_cd1400eiointr(stlpanel_t
*panelp
, unsigned int iobase
);
538 static void stl_cd1400echintr(stlpanel_t
*panelp
, unsigned int iobase
);
539 static void stl_cd1400txisr(stlpanel_t
*panelp
, int ioaddr
);
540 static void stl_cd1400rxisr(stlpanel_t
*panelp
, int ioaddr
);
541 static void stl_cd1400mdmisr(stlpanel_t
*panelp
, int ioaddr
);
543 static inline int stl_cd1400breakisr(stlport_t
*portp
, int ioaddr
);
546 * SC26198 uart specific handling functions.
548 static void stl_sc26198setreg(stlport_t
*portp
, int regnr
, int value
);
549 static int stl_sc26198getreg(stlport_t
*portp
, int regnr
);
550 static int stl_sc26198updatereg(stlport_t
*portp
, int regnr
, int value
);
551 static int stl_sc26198getglobreg(stlport_t
*portp
, int regnr
);
552 static int stl_sc26198panelinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
);
553 static void stl_sc26198portinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
, stlport_t
*portp
);
554 static void stl_sc26198setport(stlport_t
*portp
, struct termios
*tiosp
);
555 static int stl_sc26198getsignals(stlport_t
*portp
);
556 static void stl_sc26198setsignals(stlport_t
*portp
, int dtr
, int rts
);
557 static void stl_sc26198enablerxtx(stlport_t
*portp
, int rx
, int tx
);
558 static void stl_sc26198startrxtx(stlport_t
*portp
, int rx
, int tx
);
559 static void stl_sc26198disableintrs(stlport_t
*portp
);
560 static void stl_sc26198sendbreak(stlport_t
*portp
, int len
);
561 static void stl_sc26198flowctrl(stlport_t
*portp
, int state
);
562 static void stl_sc26198sendflow(stlport_t
*portp
, int state
);
563 static void stl_sc26198flush(stlport_t
*portp
);
564 static int stl_sc26198datastate(stlport_t
*portp
);
565 static void stl_sc26198wait(stlport_t
*portp
);
566 static void stl_sc26198txunflow(stlport_t
*portp
, struct tty_struct
*tty
);
567 static void stl_sc26198intr(stlpanel_t
*panelp
, unsigned int iobase
);
568 static void stl_sc26198txisr(stlport_t
*port
);
569 static void stl_sc26198rxisr(stlport_t
*port
, unsigned int iack
);
570 static void stl_sc26198rxbadch(stlport_t
*portp
, unsigned char status
, char ch
);
571 static void stl_sc26198rxbadchars(stlport_t
*portp
);
572 static void stl_sc26198otherisr(stlport_t
*port
, unsigned int iack
);
574 /*****************************************************************************/
577 * Generic UART support structure.
579 typedef struct uart
{
580 int (*panelinit
)(stlbrd_t
*brdp
, stlpanel_t
*panelp
);
581 void (*portinit
)(stlbrd_t
*brdp
, stlpanel_t
*panelp
, stlport_t
*portp
);
582 void (*setport
)(stlport_t
*portp
, struct termios
*tiosp
);
583 int (*getsignals
)(stlport_t
*portp
);
584 void (*setsignals
)(stlport_t
*portp
, int dtr
, int rts
);
585 void (*enablerxtx
)(stlport_t
*portp
, int rx
, int tx
);
586 void (*startrxtx
)(stlport_t
*portp
, int rx
, int tx
);
587 void (*disableintrs
)(stlport_t
*portp
);
588 void (*sendbreak
)(stlport_t
*portp
, int len
);
589 void (*flowctrl
)(stlport_t
*portp
, int state
);
590 void (*sendflow
)(stlport_t
*portp
, int state
);
591 void (*flush
)(stlport_t
*portp
);
592 int (*datastate
)(stlport_t
*portp
);
593 void (*intr
)(stlpanel_t
*panelp
, unsigned int iobase
);
597 * Define some macros to make calling these functions nice and clean.
599 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
600 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
601 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
602 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
603 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
604 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
605 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
606 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
607 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
608 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
609 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
610 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
611 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
613 /*****************************************************************************/
616 * CD1400 UART specific data initialization.
618 static uart_t stl_cd1400uart
= {
622 stl_cd1400getsignals
,
623 stl_cd1400setsignals
,
624 stl_cd1400enablerxtx
,
626 stl_cd1400disableintrs
,
636 * Define the offsets within the register bank of a cd1400 based panel.
637 * These io address offsets are common to the EasyIO board as well.
645 #define EREG_BANKSIZE 8
647 #define CD1400_CLK 25000000
648 #define CD1400_CLK8M 20000000
651 * Define the cd1400 baud rate clocks. These are used when calculating
652 * what clock and divisor to use for the required baud rate. Also
653 * define the maximum baud rate allowed, and the default base baud.
655 static int stl_cd1400clkdivs
[] = {
656 CD1400_CLK0
, CD1400_CLK1
, CD1400_CLK2
, CD1400_CLK3
, CD1400_CLK4
659 /*****************************************************************************/
662 * SC26198 UART specific data initization.
664 static uart_t stl_sc26198uart
= {
665 stl_sc26198panelinit
,
668 stl_sc26198getsignals
,
669 stl_sc26198setsignals
,
670 stl_sc26198enablerxtx
,
671 stl_sc26198startrxtx
,
672 stl_sc26198disableintrs
,
673 stl_sc26198sendbreak
,
677 stl_sc26198datastate
,
682 * Define the offsets within the register bank of a sc26198 based panel.
690 #define XP_BANKSIZE 4
693 * Define the sc26198 baud rate table. Offsets within the table
694 * represent the actual baud rate selector of sc26198 registers.
696 static unsigned int sc26198_baudtable
[] = {
697 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
698 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
699 230400, 460800, 921600
702 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
704 /*****************************************************************************/
707 * Define the driver info for a user level control device. Used mainly
708 * to get at port stats - only not using the port device itself.
710 static const struct file_operations stl_fsiomem
= {
711 .owner
= THIS_MODULE
,
712 .ioctl
= stl_memioctl
,
715 /*****************************************************************************/
717 static struct class *stallion_class
;
720 * Loadable module initialization stuff.
723 static int __init
stallion_module_init(void)
729 /*****************************************************************************/
731 static void __exit
stallion_module_exit(void)
739 printk("cleanup_module()\n");
742 printk(KERN_INFO
"Unloading %s: version %s\n", stl_drvtitle
,
746 * Free up all allocated resources used by the ports. This includes
747 * memory and interrupts. As part of this process we will also do
748 * a hangup on every open port - to try to flush out any processes
749 * hanging onto ports.
751 i
= tty_unregister_driver(stl_serial
);
752 put_tty_driver(stl_serial
);
754 printk("STALLION: failed to un-register tty driver, "
758 for (i
= 0; i
< 4; i
++)
759 class_device_destroy(stallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
));
760 if ((i
= unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem")))
761 printk("STALLION: failed to un-register serial memory device, "
763 class_destroy(stallion_class
);
765 for (i
= 0; (i
< stl_nrbrds
); i
++) {
766 if ((brdp
= stl_brds
[i
]) == (stlbrd_t
*) NULL
)
769 free_irq(brdp
->irq
, brdp
);
771 for (j
= 0; (j
< STL_MAXPANELS
); j
++) {
772 panelp
= brdp
->panels
[j
];
773 if (panelp
== (stlpanel_t
*) NULL
)
775 for (k
= 0; (k
< STL_PORTSPERPANEL
); k
++) {
776 portp
= panelp
->ports
[k
];
777 if (portp
== (stlport_t
*) NULL
)
779 if (portp
->tty
!= (struct tty_struct
*) NULL
)
780 stl_hangup(portp
->tty
);
781 kfree(portp
->tx
.buf
);
787 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
788 if (brdp
->iosize2
> 0)
789 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
792 stl_brds
[i
] = (stlbrd_t
*) NULL
;
796 module_init(stallion_module_init
);
797 module_exit(stallion_module_exit
);
799 /*****************************************************************************/
802 * Check for any arguments passed in on the module load command line.
805 static void stl_argbrds(void)
812 printk("stl_argbrds()\n");
815 for (i
= stl_nrbrds
; (i
< stl_nargs
); i
++) {
816 memset(&conf
, 0, sizeof(conf
));
817 if (stl_parsebrd(&conf
, stl_brdsp
[i
]) == 0)
819 if ((brdp
= stl_allocbrd()) == (stlbrd_t
*) NULL
)
823 brdp
->brdtype
= conf
.brdtype
;
824 brdp
->ioaddr1
= conf
.ioaddr1
;
825 brdp
->ioaddr2
= conf
.ioaddr2
;
826 brdp
->irq
= conf
.irq
;
827 brdp
->irqtype
= conf
.irqtype
;
832 /*****************************************************************************/
835 * Convert an ascii string number into an unsigned long.
838 static unsigned long stl_atol(char *str
)
846 if ((*sp
== '0') && (*(sp
+1) == 'x')) {
849 } else if (*sp
== '0') {
856 for (; (*sp
!= 0); sp
++) {
857 c
= (*sp
> '9') ? (TOLOWER(*sp
) - 'a' + 10) : (*sp
- '0');
858 if ((c
< 0) || (c
>= base
)) {
859 printk("STALLION: invalid argument %s\n", str
);
863 val
= (val
* base
) + c
;
868 /*****************************************************************************/
871 * Parse the supplied argument string, into the board conf struct.
874 static int stl_parsebrd(stlconf_t
*confp
, char **argp
)
880 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp
, (int) argp
);
883 if ((argp
[0] == (char *) NULL
) || (*argp
[0] == 0))
886 for (sp
= argp
[0], i
= 0; ((*sp
!= 0) && (i
< 25)); sp
++, i
++)
889 for (i
= 0; i
< ARRAY_SIZE(stl_brdstr
); i
++) {
890 if (strcmp(stl_brdstr
[i
].name
, argp
[0]) == 0)
893 if (i
== ARRAY_SIZE(stl_brdstr
)) {
894 printk("STALLION: unknown board name, %s?\n", argp
[0]);
898 confp
->brdtype
= stl_brdstr
[i
].type
;
901 if ((argp
[i
] != (char *) NULL
) && (*argp
[i
] != 0))
902 confp
->ioaddr1
= stl_atol(argp
[i
]);
904 if (confp
->brdtype
== BRD_ECH
) {
905 if ((argp
[i
] != (char *) NULL
) && (*argp
[i
] != 0))
906 confp
->ioaddr2
= stl_atol(argp
[i
]);
909 if ((argp
[i
] != (char *) NULL
) && (*argp
[i
] != 0))
910 confp
->irq
= stl_atol(argp
[i
]);
914 /*****************************************************************************/
917 * Allocate a new board structure. Fill out the basic info in it.
920 static stlbrd_t
*stl_allocbrd(void)
924 brdp
= kzalloc(sizeof(stlbrd_t
), GFP_KERNEL
);
926 printk("STALLION: failed to allocate memory (size=%Zd)\n",
931 brdp
->magic
= STL_BOARDMAGIC
;
935 /*****************************************************************************/
937 static int stl_open(struct tty_struct
*tty
, struct file
*filp
)
941 unsigned int minordev
;
942 int brdnr
, panelnr
, portnr
, rc
;
945 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty
,
946 (int) filp
, tty
->name
);
949 minordev
= tty
->index
;
950 brdnr
= MINOR2BRD(minordev
);
951 if (brdnr
>= stl_nrbrds
)
953 brdp
= stl_brds
[brdnr
];
954 if (brdp
== (stlbrd_t
*) NULL
)
956 minordev
= MINOR2PORT(minordev
);
957 for (portnr
= -1, panelnr
= 0; (panelnr
< STL_MAXPANELS
); panelnr
++) {
958 if (brdp
->panels
[panelnr
] == (stlpanel_t
*) NULL
)
960 if (minordev
< brdp
->panels
[panelnr
]->nrports
) {
964 minordev
-= brdp
->panels
[panelnr
]->nrports
;
969 portp
= brdp
->panels
[panelnr
]->ports
[portnr
];
970 if (portp
== (stlport_t
*) NULL
)
974 * On the first open of the device setup the port hardware, and
975 * initialize the per port data structure.
978 tty
->driver_data
= portp
;
981 if ((portp
->flags
& ASYNC_INITIALIZED
) == 0) {
982 if (!portp
->tx
.buf
) {
983 portp
->tx
.buf
= kmalloc(STL_TXBUFSIZE
, GFP_KERNEL
);
986 portp
->tx
.head
= portp
->tx
.buf
;
987 portp
->tx
.tail
= portp
->tx
.buf
;
989 stl_setport(portp
, tty
->termios
);
990 portp
->sigs
= stl_getsignals(portp
);
991 stl_setsignals(portp
, 1, 1);
992 stl_enablerxtx(portp
, 1, 1);
993 stl_startrxtx(portp
, 1, 0);
994 clear_bit(TTY_IO_ERROR
, &tty
->flags
);
995 portp
->flags
|= ASYNC_INITIALIZED
;
999 * Check if this port is in the middle of closing. If so then wait
1000 * until it is closed then return error status, based on flag settings.
1001 * The sleep here does not need interrupt protection since the wakeup
1002 * for it is done with the same context.
1004 if (portp
->flags
& ASYNC_CLOSING
) {
1005 interruptible_sleep_on(&portp
->close_wait
);
1006 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1008 return -ERESTARTSYS
;
1012 * Based on type of open being done check if it can overlap with any
1013 * previous opens still in effect. If we are a normal serial device
1014 * then also we might have to wait for carrier.
1016 if (!(filp
->f_flags
& O_NONBLOCK
)) {
1017 if ((rc
= stl_waitcarrier(portp
, filp
)) != 0)
1020 portp
->flags
|= ASYNC_NORMAL_ACTIVE
;
1025 /*****************************************************************************/
1028 * Possibly need to wait for carrier (DCD signal) to come high. Say
1029 * maybe because if we are clocal then we don't need to wait...
1032 static int stl_waitcarrier(stlport_t
*portp
, struct file
*filp
)
1034 unsigned long flags
;
1038 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp
, (int) filp
);
1044 spin_lock_irqsave(&stallion_lock
, flags
);
1046 if (portp
->tty
->termios
->c_cflag
& CLOCAL
)
1049 portp
->openwaitcnt
++;
1050 if (! tty_hung_up_p(filp
))
1054 /* Takes brd_lock internally */
1055 stl_setsignals(portp
, 1, 1);
1056 if (tty_hung_up_p(filp
) ||
1057 ((portp
->flags
& ASYNC_INITIALIZED
) == 0)) {
1058 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1064 if (((portp
->flags
& ASYNC_CLOSING
) == 0) &&
1065 (doclocal
|| (portp
->sigs
& TIOCM_CD
))) {
1068 if (signal_pending(current
)) {
1073 interruptible_sleep_on(&portp
->open_wait
);
1076 if (! tty_hung_up_p(filp
))
1078 portp
->openwaitcnt
--;
1079 spin_unlock_irqrestore(&stallion_lock
, flags
);
1084 /*****************************************************************************/
1086 static void stl_close(struct tty_struct
*tty
, struct file
*filp
)
1089 unsigned long flags
;
1092 printk("stl_close(tty=%x,filp=%x)\n", (int) tty
, (int) filp
);
1095 portp
= tty
->driver_data
;
1096 if (portp
== (stlport_t
*) NULL
)
1099 spin_lock_irqsave(&stallion_lock
, flags
);
1100 if (tty_hung_up_p(filp
)) {
1101 spin_unlock_irqrestore(&stallion_lock
, flags
);
1104 if ((tty
->count
== 1) && (portp
->refcount
!= 1))
1105 portp
->refcount
= 1;
1106 if (portp
->refcount
-- > 1) {
1107 spin_unlock_irqrestore(&stallion_lock
, flags
);
1111 portp
->refcount
= 0;
1112 portp
->flags
|= ASYNC_CLOSING
;
1115 * May want to wait for any data to drain before closing. The BUSY
1116 * flag keeps track of whether we are still sending or not - it is
1117 * very accurate for the cd1400, not quite so for the sc26198.
1118 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1122 spin_unlock_irqrestore(&stallion_lock
, flags
);
1124 if (portp
->closing_wait
!= ASYNC_CLOSING_WAIT_NONE
)
1125 tty_wait_until_sent(tty
, portp
->closing_wait
);
1126 stl_waituntilsent(tty
, (HZ
/ 2));
1129 spin_lock_irqsave(&stallion_lock
, flags
);
1130 portp
->flags
&= ~ASYNC_INITIALIZED
;
1131 spin_unlock_irqrestore(&stallion_lock
, flags
);
1133 stl_disableintrs(portp
);
1134 if (tty
->termios
->c_cflag
& HUPCL
)
1135 stl_setsignals(portp
, 0, 0);
1136 stl_enablerxtx(portp
, 0, 0);
1137 stl_flushbuffer(tty
);
1139 if (portp
->tx
.buf
!= (char *) NULL
) {
1140 kfree(portp
->tx
.buf
);
1141 portp
->tx
.buf
= (char *) NULL
;
1142 portp
->tx
.head
= (char *) NULL
;
1143 portp
->tx
.tail
= (char *) NULL
;
1145 set_bit(TTY_IO_ERROR
, &tty
->flags
);
1146 tty_ldisc_flush(tty
);
1149 portp
->tty
= (struct tty_struct
*) NULL
;
1151 if (portp
->openwaitcnt
) {
1152 if (portp
->close_delay
)
1153 msleep_interruptible(jiffies_to_msecs(portp
->close_delay
));
1154 wake_up_interruptible(&portp
->open_wait
);
1157 portp
->flags
&= ~(ASYNC_NORMAL_ACTIVE
|ASYNC_CLOSING
);
1158 wake_up_interruptible(&portp
->close_wait
);
1161 /*****************************************************************************/
1164 * Write routine. Take data and stuff it in to the TX ring queue.
1165 * If transmit interrupts are not running then start them.
1168 static int stl_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
1171 unsigned int len
, stlen
;
1172 unsigned char *chbuf
;
1176 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1177 (int) tty
, (int) buf
, count
);
1180 portp
= tty
->driver_data
;
1181 if (portp
== (stlport_t
*) NULL
)
1183 if (portp
->tx
.buf
== (char *) NULL
)
1187 * If copying direct from user space we must cater for page faults,
1188 * causing us to "sleep" here for a while. To handle this copy in all
1189 * the data we need now, into a local buffer. Then when we got it all
1190 * copy it into the TX buffer.
1192 chbuf
= (unsigned char *) buf
;
1194 head
= portp
->tx
.head
;
1195 tail
= portp
->tx
.tail
;
1197 len
= STL_TXBUFSIZE
- (head
- tail
) - 1;
1198 stlen
= STL_TXBUFSIZE
- (head
- portp
->tx
.buf
);
1200 len
= tail
- head
- 1;
1204 len
= MIN(len
, count
);
1207 stlen
= MIN(len
, stlen
);
1208 memcpy(head
, chbuf
, stlen
);
1213 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
)) {
1214 head
= portp
->tx
.buf
;
1215 stlen
= tail
- head
;
1218 portp
->tx
.head
= head
;
1220 clear_bit(ASYI_TXLOW
, &portp
->istate
);
1221 stl_startrxtx(portp
, -1, 1);
1226 /*****************************************************************************/
1228 static void stl_putchar(struct tty_struct
*tty
, unsigned char ch
)
1235 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty
, (int) ch
);
1238 if (tty
== (struct tty_struct
*) NULL
)
1240 portp
= tty
->driver_data
;
1241 if (portp
== (stlport_t
*) NULL
)
1243 if (portp
->tx
.buf
== (char *) NULL
)
1246 head
= portp
->tx
.head
;
1247 tail
= portp
->tx
.tail
;
1249 len
= (head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
)) : (tail
- head
);
1254 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
1255 head
= portp
->tx
.buf
;
1257 portp
->tx
.head
= head
;
1260 /*****************************************************************************/
1263 * If there are any characters in the buffer then make sure that TX
1264 * interrupts are on and get'em out. Normally used after the putchar
1265 * routine has been called.
1268 static void stl_flushchars(struct tty_struct
*tty
)
1273 printk("stl_flushchars(tty=%x)\n", (int) tty
);
1276 if (tty
== (struct tty_struct
*) NULL
)
1278 portp
= tty
->driver_data
;
1279 if (portp
== (stlport_t
*) NULL
)
1281 if (portp
->tx
.buf
== (char *) NULL
)
1284 stl_startrxtx(portp
, -1, 1);
1287 /*****************************************************************************/
1289 static int stl_writeroom(struct tty_struct
*tty
)
1295 printk("stl_writeroom(tty=%x)\n", (int) tty
);
1298 if (tty
== (struct tty_struct
*) NULL
)
1300 portp
= tty
->driver_data
;
1301 if (portp
== (stlport_t
*) NULL
)
1303 if (portp
->tx
.buf
== (char *) NULL
)
1306 head
= portp
->tx
.head
;
1307 tail
= portp
->tx
.tail
;
1308 return ((head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
) - 1) : (tail
- head
- 1));
1311 /*****************************************************************************/
1314 * Return number of chars in the TX buffer. Normally we would just
1315 * calculate the number of chars in the buffer and return that, but if
1316 * the buffer is empty and TX interrupts are still on then we return
1317 * that the buffer still has 1 char in it. This way whoever called us
1318 * will not think that ALL chars have drained - since the UART still
1319 * must have some chars in it (we are busy after all).
1322 static int stl_charsinbuffer(struct tty_struct
*tty
)
1329 printk("stl_charsinbuffer(tty=%x)\n", (int) tty
);
1332 if (tty
== (struct tty_struct
*) NULL
)
1334 portp
= tty
->driver_data
;
1335 if (portp
== (stlport_t
*) NULL
)
1337 if (portp
->tx
.buf
== (char *) NULL
)
1340 head
= portp
->tx
.head
;
1341 tail
= portp
->tx
.tail
;
1342 size
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
1343 if ((size
== 0) && test_bit(ASYI_TXBUSY
, &portp
->istate
))
1348 /*****************************************************************************/
1351 * Generate the serial struct info.
1354 static int stl_getserial(stlport_t
*portp
, struct serial_struct __user
*sp
)
1356 struct serial_struct sio
;
1360 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp
, (int) sp
);
1363 memset(&sio
, 0, sizeof(struct serial_struct
));
1364 sio
.line
= portp
->portnr
;
1365 sio
.port
= portp
->ioaddr
;
1366 sio
.flags
= portp
->flags
;
1367 sio
.baud_base
= portp
->baud_base
;
1368 sio
.close_delay
= portp
->close_delay
;
1369 sio
.closing_wait
= portp
->closing_wait
;
1370 sio
.custom_divisor
= portp
->custom_divisor
;
1372 if (portp
->uartp
== &stl_cd1400uart
) {
1373 sio
.type
= PORT_CIRRUS
;
1374 sio
.xmit_fifo_size
= CD1400_TXFIFOSIZE
;
1376 sio
.type
= PORT_UNKNOWN
;
1377 sio
.xmit_fifo_size
= SC26198_TXFIFOSIZE
;
1380 brdp
= stl_brds
[portp
->brdnr
];
1381 if (brdp
!= (stlbrd_t
*) NULL
)
1382 sio
.irq
= brdp
->irq
;
1384 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ? -EFAULT
: 0;
1387 /*****************************************************************************/
1390 * Set port according to the serial struct info.
1391 * At this point we do not do any auto-configure stuff, so we will
1392 * just quietly ignore any requests to change irq, etc.
1395 static int stl_setserial(stlport_t
*portp
, struct serial_struct __user
*sp
)
1397 struct serial_struct sio
;
1400 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp
, (int) sp
);
1403 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1405 if (!capable(CAP_SYS_ADMIN
)) {
1406 if ((sio
.baud_base
!= portp
->baud_base
) ||
1407 (sio
.close_delay
!= portp
->close_delay
) ||
1408 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1409 (portp
->flags
& ~ASYNC_USR_MASK
)))
1413 portp
->flags
= (portp
->flags
& ~ASYNC_USR_MASK
) |
1414 (sio
.flags
& ASYNC_USR_MASK
);
1415 portp
->baud_base
= sio
.baud_base
;
1416 portp
->close_delay
= sio
.close_delay
;
1417 portp
->closing_wait
= sio
.closing_wait
;
1418 portp
->custom_divisor
= sio
.custom_divisor
;
1419 stl_setport(portp
, portp
->tty
->termios
);
1423 /*****************************************************************************/
1425 static int stl_tiocmget(struct tty_struct
*tty
, struct file
*file
)
1429 if (tty
== (struct tty_struct
*) NULL
)
1431 portp
= tty
->driver_data
;
1432 if (portp
== (stlport_t
*) NULL
)
1434 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1437 return stl_getsignals(portp
);
1440 static int stl_tiocmset(struct tty_struct
*tty
, struct file
*file
,
1441 unsigned int set
, unsigned int clear
)
1444 int rts
= -1, dtr
= -1;
1446 if (tty
== (struct tty_struct
*) NULL
)
1448 portp
= tty
->driver_data
;
1449 if (portp
== (stlport_t
*) NULL
)
1451 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1454 if (set
& TIOCM_RTS
)
1456 if (set
& TIOCM_DTR
)
1458 if (clear
& TIOCM_RTS
)
1460 if (clear
& TIOCM_DTR
)
1463 stl_setsignals(portp
, dtr
, rts
);
1467 static int stl_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1472 void __user
*argp
= (void __user
*)arg
;
1475 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1476 (int) tty
, (int) file
, cmd
, (int) arg
);
1479 if (tty
== (struct tty_struct
*) NULL
)
1481 portp
= tty
->driver_data
;
1482 if (portp
== (stlport_t
*) NULL
)
1485 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
1486 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
)) {
1487 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1495 rc
= put_user(((tty
->termios
->c_cflag
& CLOCAL
) ? 1 : 0),
1496 (unsigned __user
*) argp
);
1499 if (get_user(ival
, (unsigned int __user
*) arg
))
1501 tty
->termios
->c_cflag
=
1502 (tty
->termios
->c_cflag
& ~CLOCAL
) |
1503 (ival
? CLOCAL
: 0);
1506 rc
= stl_getserial(portp
, argp
);
1509 rc
= stl_setserial(portp
, argp
);
1511 case COM_GETPORTSTATS
:
1512 rc
= stl_getportstats(portp
, argp
);
1514 case COM_CLRPORTSTATS
:
1515 rc
= stl_clrportstats(portp
, argp
);
1521 case TIOCSERGSTRUCT
:
1522 case TIOCSERGETMULTI
:
1523 case TIOCSERSETMULTI
:
1532 /*****************************************************************************/
1534 static void stl_settermios(struct tty_struct
*tty
, struct termios
*old
)
1537 struct termios
*tiosp
;
1540 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty
, (int) old
);
1543 if (tty
== (struct tty_struct
*) NULL
)
1545 portp
= tty
->driver_data
;
1546 if (portp
== (stlport_t
*) NULL
)
1549 tiosp
= tty
->termios
;
1550 if ((tiosp
->c_cflag
== old
->c_cflag
) &&
1551 (tiosp
->c_iflag
== old
->c_iflag
))
1554 stl_setport(portp
, tiosp
);
1555 stl_setsignals(portp
, ((tiosp
->c_cflag
& (CBAUD
& ~CBAUDEX
)) ? 1 : 0),
1557 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0)) {
1558 tty
->hw_stopped
= 0;
1561 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
1562 wake_up_interruptible(&portp
->open_wait
);
1565 /*****************************************************************************/
1568 * Attempt to flow control who ever is sending us data. Based on termios
1569 * settings use software or/and hardware flow control.
1572 static void stl_throttle(struct tty_struct
*tty
)
1577 printk("stl_throttle(tty=%x)\n", (int) tty
);
1580 if (tty
== (struct tty_struct
*) NULL
)
1582 portp
= tty
->driver_data
;
1583 if (portp
== (stlport_t
*) NULL
)
1585 stl_flowctrl(portp
, 0);
1588 /*****************************************************************************/
1591 * Unflow control the device sending us data...
1594 static void stl_unthrottle(struct tty_struct
*tty
)
1599 printk("stl_unthrottle(tty=%x)\n", (int) tty
);
1602 if (tty
== (struct tty_struct
*) NULL
)
1604 portp
= tty
->driver_data
;
1605 if (portp
== (stlport_t
*) NULL
)
1607 stl_flowctrl(portp
, 1);
1610 /*****************************************************************************/
1613 * Stop the transmitter. Basically to do this we will just turn TX
1617 static void stl_stop(struct tty_struct
*tty
)
1622 printk("stl_stop(tty=%x)\n", (int) tty
);
1625 if (tty
== (struct tty_struct
*) NULL
)
1627 portp
= tty
->driver_data
;
1628 if (portp
== (stlport_t
*) NULL
)
1630 stl_startrxtx(portp
, -1, 0);
1633 /*****************************************************************************/
1636 * Start the transmitter again. Just turn TX interrupts back on.
1639 static void stl_start(struct tty_struct
*tty
)
1644 printk("stl_start(tty=%x)\n", (int) tty
);
1647 if (tty
== (struct tty_struct
*) NULL
)
1649 portp
= tty
->driver_data
;
1650 if (portp
== (stlport_t
*) NULL
)
1652 stl_startrxtx(portp
, -1, 1);
1655 /*****************************************************************************/
1658 * Hangup this port. This is pretty much like closing the port, only
1659 * a little more brutal. No waiting for data to drain. Shutdown the
1660 * port and maybe drop signals.
1663 static void stl_hangup(struct tty_struct
*tty
)
1668 printk("stl_hangup(tty=%x)\n", (int) tty
);
1671 if (tty
== (struct tty_struct
*) NULL
)
1673 portp
= tty
->driver_data
;
1674 if (portp
== (stlport_t
*) NULL
)
1677 portp
->flags
&= ~ASYNC_INITIALIZED
;
1678 stl_disableintrs(portp
);
1679 if (tty
->termios
->c_cflag
& HUPCL
)
1680 stl_setsignals(portp
, 0, 0);
1681 stl_enablerxtx(portp
, 0, 0);
1682 stl_flushbuffer(tty
);
1684 set_bit(TTY_IO_ERROR
, &tty
->flags
);
1685 if (portp
->tx
.buf
!= (char *) NULL
) {
1686 kfree(portp
->tx
.buf
);
1687 portp
->tx
.buf
= (char *) NULL
;
1688 portp
->tx
.head
= (char *) NULL
;
1689 portp
->tx
.tail
= (char *) NULL
;
1691 portp
->tty
= (struct tty_struct
*) NULL
;
1692 portp
->flags
&= ~ASYNC_NORMAL_ACTIVE
;
1693 portp
->refcount
= 0;
1694 wake_up_interruptible(&portp
->open_wait
);
1697 /*****************************************************************************/
1699 static void stl_flushbuffer(struct tty_struct
*tty
)
1704 printk("stl_flushbuffer(tty=%x)\n", (int) tty
);
1707 if (tty
== (struct tty_struct
*) NULL
)
1709 portp
= tty
->driver_data
;
1710 if (portp
== (stlport_t
*) NULL
)
1717 /*****************************************************************************/
1719 static void stl_breakctl(struct tty_struct
*tty
, int state
)
1724 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty
, state
);
1727 if (tty
== (struct tty_struct
*) NULL
)
1729 portp
= tty
->driver_data
;
1730 if (portp
== (stlport_t
*) NULL
)
1733 stl_sendbreak(portp
, ((state
== -1) ? 1 : 2));
1736 /*****************************************************************************/
1738 static void stl_waituntilsent(struct tty_struct
*tty
, int timeout
)
1744 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty
, timeout
);
1747 if (tty
== (struct tty_struct
*) NULL
)
1749 portp
= tty
->driver_data
;
1750 if (portp
== (stlport_t
*) NULL
)
1755 tend
= jiffies
+ timeout
;
1757 while (stl_datastate(portp
)) {
1758 if (signal_pending(current
))
1760 msleep_interruptible(20);
1761 if (time_after_eq(jiffies
, tend
))
1766 /*****************************************************************************/
1768 static void stl_sendxchar(struct tty_struct
*tty
, char ch
)
1773 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty
, ch
);
1776 if (tty
== (struct tty_struct
*) NULL
)
1778 portp
= tty
->driver_data
;
1779 if (portp
== (stlport_t
*) NULL
)
1782 if (ch
== STOP_CHAR(tty
))
1783 stl_sendflow(portp
, 0);
1784 else if (ch
== START_CHAR(tty
))
1785 stl_sendflow(portp
, 1);
1787 stl_putchar(tty
, ch
);
1790 /*****************************************************************************/
1795 * Format info for a specified port. The line is deliberately limited
1796 * to 80 characters. (If it is too long it will be truncated, if too
1797 * short then padded with spaces).
1800 static int stl_portinfo(stlport_t
*portp
, int portnr
, char *pos
)
1806 sp
+= sprintf(sp
, "%d: uart:%s tx:%d rx:%d",
1807 portnr
, (portp
->hwid
== 1) ? "SC26198" : "CD1400",
1808 (int) portp
->stats
.txtotal
, (int) portp
->stats
.rxtotal
);
1810 if (portp
->stats
.rxframing
)
1811 sp
+= sprintf(sp
, " fe:%d", (int) portp
->stats
.rxframing
);
1812 if (portp
->stats
.rxparity
)
1813 sp
+= sprintf(sp
, " pe:%d", (int) portp
->stats
.rxparity
);
1814 if (portp
->stats
.rxbreaks
)
1815 sp
+= sprintf(sp
, " brk:%d", (int) portp
->stats
.rxbreaks
);
1816 if (portp
->stats
.rxoverrun
)
1817 sp
+= sprintf(sp
, " oe:%d", (int) portp
->stats
.rxoverrun
);
1819 sigs
= stl_getsignals(portp
);
1820 cnt
= sprintf(sp
, "%s%s%s%s%s ",
1821 (sigs
& TIOCM_RTS
) ? "|RTS" : "",
1822 (sigs
& TIOCM_CTS
) ? "|CTS" : "",
1823 (sigs
& TIOCM_DTR
) ? "|DTR" : "",
1824 (sigs
& TIOCM_CD
) ? "|DCD" : "",
1825 (sigs
& TIOCM_DSR
) ? "|DSR" : "");
1829 for (cnt
= (sp
- pos
); (cnt
< (MAXLINE
- 1)); cnt
++)
1832 pos
[(MAXLINE
- 2)] = '+';
1833 pos
[(MAXLINE
- 1)] = '\n';
1838 /*****************************************************************************/
1841 * Port info, read from the /proc file system.
1844 static int stl_readproc(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
1849 int brdnr
, panelnr
, portnr
, totalport
;
1854 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1855 "data=%x\n", (int) page
, (int) start
, (int) off
, count
,
1856 (int) eof
, (int) data
);
1864 pos
+= sprintf(pos
, "%s: version %s", stl_drvtitle
,
1866 while (pos
< (page
+ MAXLINE
- 1))
1873 * We scan through for each board, panel and port. The offset is
1874 * calculated on the fly, and irrelevant ports are skipped.
1876 for (brdnr
= 0; (brdnr
< stl_nrbrds
); brdnr
++) {
1877 brdp
= stl_brds
[brdnr
];
1878 if (brdp
== (stlbrd_t
*) NULL
)
1880 if (brdp
->state
== 0)
1883 maxoff
= curoff
+ (brdp
->nrports
* MAXLINE
);
1884 if (off
>= maxoff
) {
1889 totalport
= brdnr
* STL_MAXPORTS
;
1890 for (panelnr
= 0; (panelnr
< brdp
->nrpanels
); panelnr
++) {
1891 panelp
= brdp
->panels
[panelnr
];
1892 if (panelp
== (stlpanel_t
*) NULL
)
1895 maxoff
= curoff
+ (panelp
->nrports
* MAXLINE
);
1896 if (off
>= maxoff
) {
1898 totalport
+= panelp
->nrports
;
1902 for (portnr
= 0; (portnr
< panelp
->nrports
); portnr
++,
1904 portp
= panelp
->ports
[portnr
];
1905 if (portp
== (stlport_t
*) NULL
)
1907 if (off
>= (curoff
+= MAXLINE
))
1909 if ((pos
- page
+ MAXLINE
) > count
)
1911 pos
+= stl_portinfo(portp
, totalport
, pos
);
1920 return (pos
- page
);
1923 /*****************************************************************************/
1926 * All board interrupts are vectored through here first. This code then
1927 * calls off to the approrpriate board interrupt handlers.
1930 static irqreturn_t
stl_intr(int irq
, void *dev_id
)
1932 stlbrd_t
*brdp
= (stlbrd_t
*) dev_id
;
1935 printk("stl_intr(brdp=%x,irq=%d)\n", (int) brdp
, irq
);
1938 return IRQ_RETVAL((* brdp
->isr
)(brdp
));
1941 /*****************************************************************************/
1944 * Interrupt service routine for EasyIO board types.
1947 static int stl_eiointr(stlbrd_t
*brdp
)
1950 unsigned int iobase
;
1953 spin_lock(&brd_lock
);
1954 panelp
= brdp
->panels
[0];
1955 iobase
= panelp
->iobase
;
1956 while (inb(brdp
->iostatus
) & EIO_INTRPEND
) {
1958 (* panelp
->isr
)(panelp
, iobase
);
1960 spin_unlock(&brd_lock
);
1964 /*****************************************************************************/
1967 * Interrupt service routine for ECH-AT board types.
1970 static int stl_echatintr(stlbrd_t
*brdp
)
1973 unsigned int ioaddr
;
1977 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
1979 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
1981 for (bnknr
= 0; (bnknr
< brdp
->nrbnks
); bnknr
++) {
1982 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1983 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1984 panelp
= brdp
->bnk2panel
[bnknr
];
1985 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1990 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
1995 /*****************************************************************************/
1998 * Interrupt service routine for ECH-MCA board types.
2001 static int stl_echmcaintr(stlbrd_t
*brdp
)
2004 unsigned int ioaddr
;
2008 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
2010 for (bnknr
= 0; (bnknr
< brdp
->nrbnks
); bnknr
++) {
2011 ioaddr
= brdp
->bnkstataddr
[bnknr
];
2012 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
2013 panelp
= brdp
->bnk2panel
[bnknr
];
2014 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
2021 /*****************************************************************************/
2024 * Interrupt service routine for ECH-PCI board types.
2027 static int stl_echpciintr(stlbrd_t
*brdp
)
2030 unsigned int ioaddr
;
2036 for (bnknr
= 0; (bnknr
< brdp
->nrbnks
); bnknr
++) {
2037 outb(brdp
->bnkpageaddr
[bnknr
], brdp
->ioctrl
);
2038 ioaddr
= brdp
->bnkstataddr
[bnknr
];
2039 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
2040 panelp
= brdp
->bnk2panel
[bnknr
];
2041 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
2052 /*****************************************************************************/
2055 * Interrupt service routine for ECH-8/64-PCI board types.
2058 static int stl_echpci64intr(stlbrd_t
*brdp
)
2061 unsigned int ioaddr
;
2065 while (inb(brdp
->ioctrl
) & 0x1) {
2067 for (bnknr
= 0; (bnknr
< brdp
->nrbnks
); bnknr
++) {
2068 ioaddr
= brdp
->bnkstataddr
[bnknr
];
2069 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
2070 panelp
= brdp
->bnk2panel
[bnknr
];
2071 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
2079 /*****************************************************************************/
2082 * Service an off-level request for some channel.
2084 static void stl_offintr(void *private)
2087 struct tty_struct
*tty
;
2088 unsigned int oldsigs
;
2093 printk("stl_offintr(portp=%x)\n", (int) portp
);
2096 if (portp
== (stlport_t
*) NULL
)
2100 if (tty
== (struct tty_struct
*) NULL
)
2104 if (test_bit(ASYI_TXLOW
, &portp
->istate
)) {
2107 if (test_bit(ASYI_DCDCHANGE
, &portp
->istate
)) {
2108 clear_bit(ASYI_DCDCHANGE
, &portp
->istate
);
2109 oldsigs
= portp
->sigs
;
2110 portp
->sigs
= stl_getsignals(portp
);
2111 if ((portp
->sigs
& TIOCM_CD
) && ((oldsigs
& TIOCM_CD
) == 0))
2112 wake_up_interruptible(&portp
->open_wait
);
2113 if ((oldsigs
& TIOCM_CD
) && ((portp
->sigs
& TIOCM_CD
) == 0)) {
2114 if (portp
->flags
& ASYNC_CHECK_CD
)
2115 tty_hangup(tty
); /* FIXME: module removal race here - AKPM */
2121 /*****************************************************************************/
2124 * Initialize all the ports on a panel.
2127 static int __init
stl_initports(stlbrd_t
*brdp
, stlpanel_t
*panelp
)
2133 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp
, (int) panelp
);
2136 chipmask
= stl_panelinit(brdp
, panelp
);
2139 * All UART's are initialized (if found!). Now go through and setup
2140 * each ports data structures.
2142 for (i
= 0; (i
< panelp
->nrports
); i
++) {
2143 portp
= kzalloc(sizeof(stlport_t
), GFP_KERNEL
);
2145 printk("STALLION: failed to allocate memory "
2146 "(size=%Zd)\n", sizeof(stlport_t
));
2150 portp
->magic
= STL_PORTMAGIC
;
2152 portp
->brdnr
= panelp
->brdnr
;
2153 portp
->panelnr
= panelp
->panelnr
;
2154 portp
->uartp
= panelp
->uartp
;
2155 portp
->clk
= brdp
->clk
;
2156 portp
->baud_base
= STL_BAUDBASE
;
2157 portp
->close_delay
= STL_CLOSEDELAY
;
2158 portp
->closing_wait
= 30 * HZ
;
2159 INIT_WORK(&portp
->tqueue
, stl_offintr
, portp
);
2160 init_waitqueue_head(&portp
->open_wait
);
2161 init_waitqueue_head(&portp
->close_wait
);
2162 portp
->stats
.brd
= portp
->brdnr
;
2163 portp
->stats
.panel
= portp
->panelnr
;
2164 portp
->stats
.port
= portp
->portnr
;
2165 panelp
->ports
[i
] = portp
;
2166 stl_portinit(brdp
, panelp
, portp
);
2172 /*****************************************************************************/
2175 * Try to find and initialize an EasyIO board.
2178 static inline int stl_initeio(stlbrd_t
*brdp
)
2181 unsigned int status
;
2186 printk("stl_initeio(brdp=%x)\n", (int) brdp
);
2189 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
2190 brdp
->iostatus
= brdp
->ioaddr1
+ 2;
2192 status
= inb(brdp
->iostatus
);
2193 if ((status
& EIO_IDBITMASK
) == EIO_MK3
)
2197 * Handle board specific stuff now. The real difference is PCI
2200 if (brdp
->brdtype
== BRD_EASYIOPCI
) {
2201 brdp
->iosize1
= 0x80;
2202 brdp
->iosize2
= 0x80;
2203 name
= "serial(EIO-PCI)";
2204 outb(0x41, (brdp
->ioaddr2
+ 0x4c));
2207 name
= "serial(EIO)";
2208 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
2209 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
2210 printk("STALLION: invalid irq=%d for brd=%d\n",
2211 brdp
->irq
, brdp
->brdnr
);
2214 outb((stl_vecmap
[brdp
->irq
] | EIO_0WS
|
2215 ((brdp
->irqtype
) ? EIO_INTLEVEL
: EIO_INTEDGE
)),
2219 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
2220 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
2221 "%x conflicts with another device\n", brdp
->brdnr
,
2226 if (brdp
->iosize2
> 0)
2227 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
2228 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
2229 "address %x conflicts with another device\n",
2230 brdp
->brdnr
, brdp
->ioaddr2
);
2231 printk(KERN_WARNING
"STALLION: Warning, also "
2232 "releasing board %d I/O address %x \n",
2233 brdp
->brdnr
, brdp
->ioaddr1
);
2234 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2239 * Everything looks OK, so let's go ahead and probe for the hardware.
2241 brdp
->clk
= CD1400_CLK
;
2242 brdp
->isr
= stl_eiointr
;
2244 switch (status
& EIO_IDBITMASK
) {
2246 brdp
->clk
= CD1400_CLK8M
;
2256 switch (status
& EIO_BRDMASK
) {
2275 * We have verified that the board is actually present, so now we
2276 * can complete the setup.
2279 panelp
= kzalloc(sizeof(stlpanel_t
), GFP_KERNEL
);
2281 printk(KERN_WARNING
"STALLION: failed to allocate memory "
2282 "(size=%Zd)\n", sizeof(stlpanel_t
));
2286 panelp
->magic
= STL_PANELMAGIC
;
2287 panelp
->brdnr
= brdp
->brdnr
;
2288 panelp
->panelnr
= 0;
2289 panelp
->nrports
= brdp
->nrports
;
2290 panelp
->iobase
= brdp
->ioaddr1
;
2291 panelp
->hwid
= status
;
2292 if ((status
& EIO_IDBITMASK
) == EIO_MK3
) {
2293 panelp
->uartp
= (void *) &stl_sc26198uart
;
2294 panelp
->isr
= stl_sc26198intr
;
2296 panelp
->uartp
= (void *) &stl_cd1400uart
;
2297 panelp
->isr
= stl_cd1400eiointr
;
2300 brdp
->panels
[0] = panelp
;
2302 brdp
->state
|= BRD_FOUND
;
2303 brdp
->hwid
= status
;
2304 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
2305 printk("STALLION: failed to register interrupt "
2306 "routine for %s irq=%d\n", name
, brdp
->irq
);
2314 /*****************************************************************************/
2317 * Try to find an ECH board and initialize it. This code is capable of
2318 * dealing with all types of ECH board.
2321 static inline int stl_initech(stlbrd_t
*brdp
)
2324 unsigned int status
, nxtid
, ioaddr
, conflict
;
2325 int panelnr
, banknr
, i
;
2329 printk("stl_initech(brdp=%x)\n", (int) brdp
);
2336 * Set up the initial board register contents for boards. This varies a
2337 * bit between the different board types. So we need to handle each
2338 * separately. Also do a check that the supplied IRQ is good.
2340 switch (brdp
->brdtype
) {
2343 brdp
->isr
= stl_echatintr
;
2344 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
2345 brdp
->iostatus
= brdp
->ioaddr1
+ 1;
2346 status
= inb(brdp
->iostatus
);
2347 if ((status
& ECH_IDBITMASK
) != ECH_ID
)
2349 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
2350 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
2351 printk("STALLION: invalid irq=%d for brd=%d\n",
2352 brdp
->irq
, brdp
->brdnr
);
2355 status
= ((brdp
->ioaddr2
& ECH_ADDR2MASK
) >> 1);
2356 status
|= (stl_vecmap
[brdp
->irq
] << 1);
2357 outb((status
| ECH_BRDRESET
), brdp
->ioaddr1
);
2358 brdp
->ioctrlval
= ECH_INTENABLE
|
2359 ((brdp
->irqtype
) ? ECH_INTLEVEL
: ECH_INTEDGE
);
2360 for (i
= 0; (i
< 10); i
++)
2361 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
2364 name
= "serial(EC8/32)";
2365 outb(status
, brdp
->ioaddr1
);
2369 brdp
->isr
= stl_echmcaintr
;
2370 brdp
->ioctrl
= brdp
->ioaddr1
+ 0x20;
2371 brdp
->iostatus
= brdp
->ioctrl
;
2372 status
= inb(brdp
->iostatus
);
2373 if ((status
& ECH_IDBITMASK
) != ECH_ID
)
2375 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
2376 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
2377 printk("STALLION: invalid irq=%d for brd=%d\n",
2378 brdp
->irq
, brdp
->brdnr
);
2381 outb(ECHMC_BRDRESET
, brdp
->ioctrl
);
2382 outb(ECHMC_INTENABLE
, brdp
->ioctrl
);
2384 name
= "serial(EC8/32-MC)";
2388 brdp
->isr
= stl_echpciintr
;
2389 brdp
->ioctrl
= brdp
->ioaddr1
+ 2;
2392 name
= "serial(EC8/32-PCI)";
2396 brdp
->isr
= stl_echpci64intr
;
2397 brdp
->ioctrl
= brdp
->ioaddr2
+ 0x40;
2398 outb(0x43, (brdp
->ioaddr1
+ 0x4c));
2399 brdp
->iosize1
= 0x80;
2400 brdp
->iosize2
= 0x80;
2401 name
= "serial(EC8/64-PCI)";
2405 printk("STALLION: unknown board type=%d\n", brdp
->brdtype
);
2411 * Check boards for possible IO address conflicts and return fail status
2412 * if an IO conflict found.
2414 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
2415 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
2416 "%x conflicts with another device\n", brdp
->brdnr
,
2421 if (brdp
->iosize2
> 0)
2422 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
2423 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
2424 "address %x conflicts with another device\n",
2425 brdp
->brdnr
, brdp
->ioaddr2
);
2426 printk(KERN_WARNING
"STALLION: Warning, also "
2427 "releasing board %d I/O address %x \n",
2428 brdp
->brdnr
, brdp
->ioaddr1
);
2429 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2434 * Scan through the secondary io address space looking for panels.
2435 * As we find'em allocate and initialize panel structures for each.
2437 brdp
->clk
= CD1400_CLK
;
2438 brdp
->hwid
= status
;
2440 ioaddr
= brdp
->ioaddr2
;
2445 for (i
= 0; (i
< STL_MAXPANELS
); i
++) {
2446 if (brdp
->brdtype
== BRD_ECHPCI
) {
2447 outb(nxtid
, brdp
->ioctrl
);
2448 ioaddr
= brdp
->ioaddr2
;
2450 status
= inb(ioaddr
+ ECH_PNLSTATUS
);
2451 if ((status
& ECH_PNLIDMASK
) != nxtid
)
2453 panelp
= kzalloc(sizeof(stlpanel_t
), GFP_KERNEL
);
2455 printk("STALLION: failed to allocate memory "
2456 "(size=%Zd)\n", sizeof(stlpanel_t
));
2459 panelp
->magic
= STL_PANELMAGIC
;
2460 panelp
->brdnr
= brdp
->brdnr
;
2461 panelp
->panelnr
= panelnr
;
2462 panelp
->iobase
= ioaddr
;
2463 panelp
->pagenr
= nxtid
;
2464 panelp
->hwid
= status
;
2465 brdp
->bnk2panel
[banknr
] = panelp
;
2466 brdp
->bnkpageaddr
[banknr
] = nxtid
;
2467 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ ECH_PNLSTATUS
;
2469 if (status
& ECH_PNLXPID
) {
2470 panelp
->uartp
= (void *) &stl_sc26198uart
;
2471 panelp
->isr
= stl_sc26198intr
;
2472 if (status
& ECH_PNL16PORT
) {
2473 panelp
->nrports
= 16;
2474 brdp
->bnk2panel
[banknr
] = panelp
;
2475 brdp
->bnkpageaddr
[banknr
] = nxtid
;
2476 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ 4 +
2479 panelp
->nrports
= 8;
2482 panelp
->uartp
= (void *) &stl_cd1400uart
;
2483 panelp
->isr
= stl_cd1400echintr
;
2484 if (status
& ECH_PNL16PORT
) {
2485 panelp
->nrports
= 16;
2486 panelp
->ackmask
= 0x80;
2487 if (brdp
->brdtype
!= BRD_ECHPCI
)
2488 ioaddr
+= EREG_BANKSIZE
;
2489 brdp
->bnk2panel
[banknr
] = panelp
;
2490 brdp
->bnkpageaddr
[banknr
] = ++nxtid
;
2491 brdp
->bnkstataddr
[banknr
++] = ioaddr
+
2494 panelp
->nrports
= 8;
2495 panelp
->ackmask
= 0xc0;
2500 ioaddr
+= EREG_BANKSIZE
;
2501 brdp
->nrports
+= panelp
->nrports
;
2502 brdp
->panels
[panelnr
++] = panelp
;
2503 if ((brdp
->brdtype
!= BRD_ECHPCI
) &&
2504 (ioaddr
>= (brdp
->ioaddr2
+ brdp
->iosize2
)))
2508 brdp
->nrpanels
= panelnr
;
2509 brdp
->nrbnks
= banknr
;
2510 if (brdp
->brdtype
== BRD_ECH
)
2511 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
2513 brdp
->state
|= BRD_FOUND
;
2514 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
2515 printk("STALLION: failed to register interrupt "
2516 "routine for %s irq=%d\n", name
, brdp
->irq
);
2525 /*****************************************************************************/
2528 * Initialize and configure the specified board.
2529 * Scan through all the boards in the configuration and see what we
2530 * can find. Handle EIO and the ECH boards a little differently here
2531 * since the initial search and setup is very different.
2534 static int __init
stl_brdinit(stlbrd_t
*brdp
)
2539 printk("stl_brdinit(brdp=%x)\n", (int) brdp
);
2542 switch (brdp
->brdtype
) {
2554 printk("STALLION: board=%d is unknown board type=%d\n",
2555 brdp
->brdnr
, brdp
->brdtype
);
2559 stl_brds
[brdp
->brdnr
] = brdp
;
2560 if ((brdp
->state
& BRD_FOUND
) == 0) {
2561 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2562 stl_brdnames
[brdp
->brdtype
], brdp
->brdnr
,
2563 brdp
->ioaddr1
, brdp
->irq
);
2567 for (i
= 0; (i
< STL_MAXPANELS
); i
++)
2568 if (brdp
->panels
[i
] != (stlpanel_t
*) NULL
)
2569 stl_initports(brdp
, brdp
->panels
[i
]);
2571 printk("STALLION: %s found, board=%d io=%x irq=%d "
2572 "nrpanels=%d nrports=%d\n", stl_brdnames
[brdp
->brdtype
],
2573 brdp
->brdnr
, brdp
->ioaddr1
, brdp
->irq
, brdp
->nrpanels
,
2578 /*****************************************************************************/
2581 * Find the next available board number that is free.
2584 static inline int stl_getbrdnr(void)
2588 for (i
= 0; (i
< STL_MAXBRDS
); i
++) {
2589 if (stl_brds
[i
] == (stlbrd_t
*) NULL
) {
2590 if (i
>= stl_nrbrds
)
2598 /*****************************************************************************/
2603 * We have a Stallion board. Allocate a board structure and
2604 * initialize it. Read its IO and IRQ resources from PCI
2605 * configuration space.
2608 static inline int stl_initpcibrd(int brdtype
, struct pci_dev
*devp
)
2613 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype
,
2614 devp
->bus
->number
, devp
->devfn
);
2617 if (pci_enable_device(devp
))
2619 if ((brdp
= stl_allocbrd()) == (stlbrd_t
*) NULL
)
2621 if ((brdp
->brdnr
= stl_getbrdnr()) < 0) {
2622 printk("STALLION: too many boards found, "
2623 "maximum supported %d\n", STL_MAXBRDS
);
2626 brdp
->brdtype
= brdtype
;
2629 * Different Stallion boards use the BAR registers in different ways,
2630 * so set up io addresses based on board type.
2633 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__
, __LINE__
,
2634 pci_resource_start(devp
, 0), pci_resource_start(devp
, 1),
2635 pci_resource_start(devp
, 2), pci_resource_start(devp
, 3), devp
->irq
);
2639 * We have all resources from the board, so let's setup the actual
2640 * board structure now.
2644 brdp
->ioaddr2
= pci_resource_start(devp
, 0);
2645 brdp
->ioaddr1
= pci_resource_start(devp
, 1);
2648 brdp
->ioaddr2
= pci_resource_start(devp
, 2);
2649 brdp
->ioaddr1
= pci_resource_start(devp
, 1);
2652 brdp
->ioaddr1
= pci_resource_start(devp
, 2);
2653 brdp
->ioaddr2
= pci_resource_start(devp
, 1);
2656 printk("STALLION: unknown PCI board type=%d\n", brdtype
);
2660 brdp
->irq
= devp
->irq
;
2666 /*****************************************************************************/
2669 * Find all Stallion PCI boards that might be installed. Initialize each
2670 * one as it is found.
2674 static inline int stl_findpcibrds(void)
2676 struct pci_dev
*dev
= NULL
;
2680 printk("stl_findpcibrds()\n");
2683 for (i
= 0; (i
< stl_nrpcibrds
); i
++)
2684 while ((dev
= pci_find_device(stl_pcibrds
[i
].vendid
,
2685 stl_pcibrds
[i
].devid
, dev
))) {
2688 * Found a device on the PCI bus that has our vendor and
2689 * device ID. Need to check now that it is really us.
2691 if ((dev
->class >> 8) == PCI_CLASS_STORAGE_IDE
)
2694 rc
= stl_initpcibrd(stl_pcibrds
[i
].brdtype
, dev
);
2704 /*****************************************************************************/
2707 * Scan through all the boards in the configuration and see what we
2708 * can find. Handle EIO and the ECH boards a little differently here
2709 * since the initial search and setup is too different.
2712 static inline int stl_initbrds(void)
2719 printk("stl_initbrds()\n");
2722 if (stl_nrbrds
> STL_MAXBRDS
) {
2723 printk("STALLION: too many boards in configuration table, "
2724 "truncating to %d\n", STL_MAXBRDS
);
2725 stl_nrbrds
= STL_MAXBRDS
;
2729 * Firstly scan the list of static boards configured. Allocate
2730 * resources and initialize the boards as found.
2732 for (i
= 0; (i
< stl_nrbrds
); i
++) {
2733 confp
= &stl_brdconf
[i
];
2734 stl_parsebrd(confp
, stl_brdsp
[i
]);
2735 if ((brdp
= stl_allocbrd()) == (stlbrd_t
*) NULL
)
2738 brdp
->brdtype
= confp
->brdtype
;
2739 brdp
->ioaddr1
= confp
->ioaddr1
;
2740 brdp
->ioaddr2
= confp
->ioaddr2
;
2741 brdp
->irq
= confp
->irq
;
2742 brdp
->irqtype
= confp
->irqtype
;
2747 * Find any dynamically supported boards. That is via module load
2748 * line options or auto-detected on the PCI bus.
2758 /*****************************************************************************/
2761 * Return the board stats structure to user app.
2764 static int stl_getbrdstats(combrd_t __user
*bp
)
2770 if (copy_from_user(&stl_brdstats
, bp
, sizeof(combrd_t
)))
2772 if (stl_brdstats
.brd
>= STL_MAXBRDS
)
2774 brdp
= stl_brds
[stl_brdstats
.brd
];
2775 if (brdp
== (stlbrd_t
*) NULL
)
2778 memset(&stl_brdstats
, 0, sizeof(combrd_t
));
2779 stl_brdstats
.brd
= brdp
->brdnr
;
2780 stl_brdstats
.type
= brdp
->brdtype
;
2781 stl_brdstats
.hwid
= brdp
->hwid
;
2782 stl_brdstats
.state
= brdp
->state
;
2783 stl_brdstats
.ioaddr
= brdp
->ioaddr1
;
2784 stl_brdstats
.ioaddr2
= brdp
->ioaddr2
;
2785 stl_brdstats
.irq
= brdp
->irq
;
2786 stl_brdstats
.nrpanels
= brdp
->nrpanels
;
2787 stl_brdstats
.nrports
= brdp
->nrports
;
2788 for (i
= 0; (i
< brdp
->nrpanels
); i
++) {
2789 panelp
= brdp
->panels
[i
];
2790 stl_brdstats
.panels
[i
].panel
= i
;
2791 stl_brdstats
.panels
[i
].hwid
= panelp
->hwid
;
2792 stl_brdstats
.panels
[i
].nrports
= panelp
->nrports
;
2795 return copy_to_user(bp
, &stl_brdstats
, sizeof(combrd_t
)) ? -EFAULT
: 0;
2798 /*****************************************************************************/
2801 * Resolve the referenced port number into a port struct pointer.
2804 static stlport_t
*stl_getport(int brdnr
, int panelnr
, int portnr
)
2809 if ((brdnr
< 0) || (brdnr
>= STL_MAXBRDS
))
2810 return((stlport_t
*) NULL
);
2811 brdp
= stl_brds
[brdnr
];
2812 if (brdp
== (stlbrd_t
*) NULL
)
2813 return((stlport_t
*) NULL
);
2814 if ((panelnr
< 0) || (panelnr
>= brdp
->nrpanels
))
2815 return((stlport_t
*) NULL
);
2816 panelp
= brdp
->panels
[panelnr
];
2817 if (panelp
== (stlpanel_t
*) NULL
)
2818 return((stlport_t
*) NULL
);
2819 if ((portnr
< 0) || (portnr
>= panelp
->nrports
))
2820 return((stlport_t
*) NULL
);
2821 return(panelp
->ports
[portnr
]);
2824 /*****************************************************************************/
2827 * Return the port stats structure to user app. A NULL port struct
2828 * pointer passed in means that we need to find out from the app
2829 * what port to get stats for (used through board control device).
2832 static int stl_getportstats(stlport_t
*portp
, comstats_t __user
*cp
)
2834 unsigned char *head
, *tail
;
2835 unsigned long flags
;
2838 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2840 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2842 if (portp
== (stlport_t
*) NULL
)
2846 portp
->stats
.state
= portp
->istate
;
2847 portp
->stats
.flags
= portp
->flags
;
2848 portp
->stats
.hwid
= portp
->hwid
;
2850 portp
->stats
.ttystate
= 0;
2851 portp
->stats
.cflags
= 0;
2852 portp
->stats
.iflags
= 0;
2853 portp
->stats
.oflags
= 0;
2854 portp
->stats
.lflags
= 0;
2855 portp
->stats
.rxbuffered
= 0;
2857 spin_lock_irqsave(&stallion_lock
, flags
);
2858 if (portp
->tty
!= (struct tty_struct
*) NULL
) {
2859 if (portp
->tty
->driver_data
== portp
) {
2860 portp
->stats
.ttystate
= portp
->tty
->flags
;
2861 /* No longer available as a statistic */
2862 portp
->stats
.rxbuffered
= 1; /*portp->tty->flip.count; */
2863 if (portp
->tty
->termios
!= (struct termios
*) NULL
) {
2864 portp
->stats
.cflags
= portp
->tty
->termios
->c_cflag
;
2865 portp
->stats
.iflags
= portp
->tty
->termios
->c_iflag
;
2866 portp
->stats
.oflags
= portp
->tty
->termios
->c_oflag
;
2867 portp
->stats
.lflags
= portp
->tty
->termios
->c_lflag
;
2871 spin_unlock_irqrestore(&stallion_lock
, flags
);
2873 head
= portp
->tx
.head
;
2874 tail
= portp
->tx
.tail
;
2875 portp
->stats
.txbuffered
= ((head
>= tail
) ? (head
- tail
) :
2876 (STL_TXBUFSIZE
- (tail
- head
)));
2878 portp
->stats
.signals
= (unsigned long) stl_getsignals(portp
);
2880 return copy_to_user(cp
, &portp
->stats
,
2881 sizeof(comstats_t
)) ? -EFAULT
: 0;
2884 /*****************************************************************************/
2887 * Clear the port stats structure. We also return it zeroed out...
2890 static int stl_clrportstats(stlport_t
*portp
, comstats_t __user
*cp
)
2893 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2895 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2897 if (portp
== (stlport_t
*) NULL
)
2901 memset(&portp
->stats
, 0, sizeof(comstats_t
));
2902 portp
->stats
.brd
= portp
->brdnr
;
2903 portp
->stats
.panel
= portp
->panelnr
;
2904 portp
->stats
.port
= portp
->portnr
;
2905 return copy_to_user(cp
, &portp
->stats
,
2906 sizeof(comstats_t
)) ? -EFAULT
: 0;
2909 /*****************************************************************************/
2912 * Return the entire driver ports structure to a user app.
2915 static int stl_getportstruct(stlport_t __user
*arg
)
2919 if (copy_from_user(&stl_dummyport
, arg
, sizeof(stlport_t
)))
2921 portp
= stl_getport(stl_dummyport
.brdnr
, stl_dummyport
.panelnr
,
2922 stl_dummyport
.portnr
);
2925 return copy_to_user(arg
, portp
, sizeof(stlport_t
)) ? -EFAULT
: 0;
2928 /*****************************************************************************/
2931 * Return the entire driver board structure to a user app.
2934 static int stl_getbrdstruct(stlbrd_t __user
*arg
)
2938 if (copy_from_user(&stl_dummybrd
, arg
, sizeof(stlbrd_t
)))
2940 if ((stl_dummybrd
.brdnr
< 0) || (stl_dummybrd
.brdnr
>= STL_MAXBRDS
))
2942 brdp
= stl_brds
[stl_dummybrd
.brdnr
];
2945 return copy_to_user(arg
, brdp
, sizeof(stlbrd_t
)) ? -EFAULT
: 0;
2948 /*****************************************************************************/
2951 * The "staliomem" device is also required to do some special operations
2952 * on the board and/or ports. In this driver it is mostly used for stats
2956 static int stl_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
)
2959 void __user
*argp
= (void __user
*)arg
;
2962 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip
,
2963 (int) fp
, cmd
, (int) arg
);
2967 if (brdnr
>= STL_MAXBRDS
)
2972 case COM_GETPORTSTATS
:
2973 rc
= stl_getportstats(NULL
, argp
);
2975 case COM_CLRPORTSTATS
:
2976 rc
= stl_clrportstats(NULL
, argp
);
2978 case COM_GETBRDSTATS
:
2979 rc
= stl_getbrdstats(argp
);
2982 rc
= stl_getportstruct(argp
);
2985 rc
= stl_getbrdstruct(argp
);
2995 static const struct tty_operations stl_ops
= {
2999 .put_char
= stl_putchar
,
3000 .flush_chars
= stl_flushchars
,
3001 .write_room
= stl_writeroom
,
3002 .chars_in_buffer
= stl_charsinbuffer
,
3004 .set_termios
= stl_settermios
,
3005 .throttle
= stl_throttle
,
3006 .unthrottle
= stl_unthrottle
,
3009 .hangup
= stl_hangup
,
3010 .flush_buffer
= stl_flushbuffer
,
3011 .break_ctl
= stl_breakctl
,
3012 .wait_until_sent
= stl_waituntilsent
,
3013 .send_xchar
= stl_sendxchar
,
3014 .read_proc
= stl_readproc
,
3015 .tiocmget
= stl_tiocmget
,
3016 .tiocmset
= stl_tiocmset
,
3019 /*****************************************************************************/
3021 static int __init
stl_init(void)
3024 printk(KERN_INFO
"%s: version %s\n", stl_drvtitle
, stl_drvversion
);
3026 spin_lock_init(&stallion_lock
);
3027 spin_lock_init(&brd_lock
);
3031 stl_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
3036 * Set up a character driver for per board stuff. This is mainly used
3037 * to do stats ioctls on the ports.
3039 if (register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stl_fsiomem
))
3040 printk("STALLION: failed to register serial board device\n");
3042 stallion_class
= class_create(THIS_MODULE
, "staliomem");
3043 for (i
= 0; i
< 4; i
++)
3044 class_device_create(stallion_class
, NULL
,
3045 MKDEV(STL_SIOMEMMAJOR
, i
), NULL
,
3048 stl_serial
->owner
= THIS_MODULE
;
3049 stl_serial
->driver_name
= stl_drvname
;
3050 stl_serial
->name
= "ttyE";
3051 stl_serial
->major
= STL_SERIALMAJOR
;
3052 stl_serial
->minor_start
= 0;
3053 stl_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
3054 stl_serial
->subtype
= SERIAL_TYPE_NORMAL
;
3055 stl_serial
->init_termios
= stl_deftermios
;
3056 stl_serial
->flags
= TTY_DRIVER_REAL_RAW
;
3057 tty_set_operations(stl_serial
, &stl_ops
);
3059 if (tty_register_driver(stl_serial
)) {
3060 put_tty_driver(stl_serial
);
3061 printk("STALLION: failed to register serial driver\n");
3068 /*****************************************************************************/
3069 /* CD1400 HARDWARE FUNCTIONS */
3070 /*****************************************************************************/
3073 * These functions get/set/update the registers of the cd1400 UARTs.
3074 * Access to the cd1400 registers is via an address/data io port pair.
3075 * (Maybe should make this inline...)
3078 static int stl_cd1400getreg(stlport_t
*portp
, int regnr
)
3080 outb((regnr
+ portp
->uartaddr
), portp
->ioaddr
);
3081 return inb(portp
->ioaddr
+ EREG_DATA
);
3084 static void stl_cd1400setreg(stlport_t
*portp
, int regnr
, int value
)
3086 outb((regnr
+ portp
->uartaddr
), portp
->ioaddr
);
3087 outb(value
, portp
->ioaddr
+ EREG_DATA
);
3090 static int stl_cd1400updatereg(stlport_t
*portp
, int regnr
, int value
)
3092 outb((regnr
+ portp
->uartaddr
), portp
->ioaddr
);
3093 if (inb(portp
->ioaddr
+ EREG_DATA
) != value
) {
3094 outb(value
, portp
->ioaddr
+ EREG_DATA
);
3100 /*****************************************************************************/
3103 * Inbitialize the UARTs in a panel. We don't care what sort of board
3104 * these ports are on - since the port io registers are almost
3105 * identical when dealing with ports.
3108 static int stl_cd1400panelinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
)
3112 int nrchips
, uartaddr
, ioaddr
;
3113 unsigned long flags
;
3116 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp
, (int) panelp
);
3119 spin_lock_irqsave(&brd_lock
, flags
);
3120 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
3123 * Check that each chip is present and started up OK.
3126 nrchips
= panelp
->nrports
/ CD1400_PORTS
;
3127 for (i
= 0; (i
< nrchips
); i
++) {
3128 if (brdp
->brdtype
== BRD_ECHPCI
) {
3129 outb((panelp
->pagenr
+ (i
>> 1)), brdp
->ioctrl
);
3130 ioaddr
= panelp
->iobase
;
3132 ioaddr
= panelp
->iobase
+ (EREG_BANKSIZE
* (i
>> 1));
3134 uartaddr
= (i
& 0x01) ? 0x080 : 0;
3135 outb((GFRCR
+ uartaddr
), ioaddr
);
3136 outb(0, (ioaddr
+ EREG_DATA
));
3137 outb((CCR
+ uartaddr
), ioaddr
);
3138 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
3139 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
3140 outb((GFRCR
+ uartaddr
), ioaddr
);
3141 for (j
= 0; (j
< CCR_MAXWAIT
); j
++) {
3142 if ((gfrcr
= inb(ioaddr
+ EREG_DATA
)) != 0)
3145 if ((j
>= CCR_MAXWAIT
) || (gfrcr
< 0x40) || (gfrcr
> 0x60)) {
3146 printk("STALLION: cd1400 not responding, "
3147 "brd=%d panel=%d chip=%d\n",
3148 panelp
->brdnr
, panelp
->panelnr
, i
);
3151 chipmask
|= (0x1 << i
);
3152 outb((PPR
+ uartaddr
), ioaddr
);
3153 outb(PPR_SCALAR
, (ioaddr
+ EREG_DATA
));
3156 BRDDISABLE(panelp
->brdnr
);
3157 spin_unlock_irqrestore(&brd_lock
, flags
);
3161 /*****************************************************************************/
3164 * Initialize hardware specific port registers.
3167 static void stl_cd1400portinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
, stlport_t
*portp
)
3169 unsigned long flags
;
3171 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3172 (int) brdp
, (int) panelp
, (int) portp
);
3175 if ((brdp
== (stlbrd_t
*) NULL
) || (panelp
== (stlpanel_t
*) NULL
) ||
3176 (portp
== (stlport_t
*) NULL
))
3179 spin_lock_irqsave(&brd_lock
, flags
);
3180 portp
->ioaddr
= panelp
->iobase
+ (((brdp
->brdtype
== BRD_ECHPCI
) ||
3181 (portp
->portnr
< 8)) ? 0 : EREG_BANKSIZE
);
3182 portp
->uartaddr
= (portp
->portnr
& 0x04) << 5;
3183 portp
->pagenr
= panelp
->pagenr
+ (portp
->portnr
>> 3);
3185 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3186 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3187 stl_cd1400setreg(portp
, LIVR
, (portp
->portnr
<< 3));
3188 portp
->hwid
= stl_cd1400getreg(portp
, GFRCR
);
3189 BRDDISABLE(portp
->brdnr
);
3190 spin_unlock_irqrestore(&brd_lock
, flags
);
3193 /*****************************************************************************/
3196 * Wait for the command register to be ready. We will poll this,
3197 * since it won't usually take too long to be ready.
3200 static void stl_cd1400ccrwait(stlport_t
*portp
)
3204 for (i
= 0; (i
< CCR_MAXWAIT
); i
++) {
3205 if (stl_cd1400getreg(portp
, CCR
) == 0) {
3210 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3211 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
3214 /*****************************************************************************/
3217 * Set up the cd1400 registers for a port based on the termios port
3221 static void stl_cd1400setport(stlport_t
*portp
, struct termios
*tiosp
)
3224 unsigned long flags
;
3225 unsigned int clkdiv
, baudrate
;
3226 unsigned char cor1
, cor2
, cor3
;
3227 unsigned char cor4
, cor5
, ccr
;
3228 unsigned char srer
, sreron
, sreroff
;
3229 unsigned char mcor1
, mcor2
, rtpr
;
3230 unsigned char clk
, div
;
3246 brdp
= stl_brds
[portp
->brdnr
];
3247 if (brdp
== (stlbrd_t
*) NULL
)
3251 * Set up the RX char ignore mask with those RX error types we
3252 * can ignore. We can get the cd1400 to help us out a little here,
3253 * it will ignore parity errors and breaks for us.
3255 portp
->rxignoremsk
= 0;
3256 if (tiosp
->c_iflag
& IGNPAR
) {
3257 portp
->rxignoremsk
|= (ST_PARITY
| ST_FRAMING
| ST_OVERRUN
);
3258 cor1
|= COR1_PARIGNORE
;
3260 if (tiosp
->c_iflag
& IGNBRK
) {
3261 portp
->rxignoremsk
|= ST_BREAK
;
3262 cor4
|= COR4_IGNBRK
;
3265 portp
->rxmarkmsk
= ST_OVERRUN
;
3266 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
3267 portp
->rxmarkmsk
|= (ST_PARITY
| ST_FRAMING
);
3268 if (tiosp
->c_iflag
& BRKINT
)
3269 portp
->rxmarkmsk
|= ST_BREAK
;
3272 * Go through the char size, parity and stop bits and set all the
3273 * option register appropriately.
3275 switch (tiosp
->c_cflag
& CSIZE
) {
3290 if (tiosp
->c_cflag
& CSTOPB
)
3295 if (tiosp
->c_cflag
& PARENB
) {
3296 if (tiosp
->c_cflag
& PARODD
)
3297 cor1
|= (COR1_PARENB
| COR1_PARODD
);
3299 cor1
|= (COR1_PARENB
| COR1_PAREVEN
);
3301 cor1
|= COR1_PARNONE
;
3305 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3306 * space for hardware flow control and the like. This should be set to
3307 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3308 * really be based on VTIME.
3310 cor3
|= FIFO_RXTHRESHOLD
;
3314 * Calculate the baud rate timers. For now we will just assume that
3315 * the input and output baud are the same. Could have used a baud
3316 * table here, but this way we can generate virtually any baud rate
3319 baudrate
= tiosp
->c_cflag
& CBAUD
;
3320 if (baudrate
& CBAUDEX
) {
3321 baudrate
&= ~CBAUDEX
;
3322 if ((baudrate
< 1) || (baudrate
> 4))
3323 tiosp
->c_cflag
&= ~CBAUDEX
;
3327 baudrate
= stl_baudrates
[baudrate
];
3328 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
3329 if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
3331 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
3333 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
3335 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
3337 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
3338 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
3340 if (baudrate
> STL_CD1400MAXBAUD
)
3341 baudrate
= STL_CD1400MAXBAUD
;
3344 for (clk
= 0; (clk
< CD1400_NUMCLKS
); clk
++) {
3345 clkdiv
= ((portp
->clk
/ stl_cd1400clkdivs
[clk
]) / baudrate
);
3349 div
= (unsigned char) clkdiv
;
3353 * Check what form of modem signaling is required and set it up.
3355 if ((tiosp
->c_cflag
& CLOCAL
) == 0) {
3358 sreron
|= SRER_MODEM
;
3359 portp
->flags
|= ASYNC_CHECK_CD
;
3361 portp
->flags
&= ~ASYNC_CHECK_CD
;
3365 * Setup cd1400 enhanced modes if we can. In particular we want to
3366 * handle as much of the flow control as possible automatically. As
3367 * well as saving a few CPU cycles it will also greatly improve flow
3368 * control reliability.
3370 if (tiosp
->c_iflag
& IXON
) {
3373 if (tiosp
->c_iflag
& IXANY
)
3377 if (tiosp
->c_cflag
& CRTSCTS
) {
3379 mcor1
|= FIFO_RTSTHRESHOLD
;
3383 * All cd1400 register values calculated so go through and set
3388 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3389 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
3390 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3391 cor1
, cor2
, cor3
, cor4
, cor5
);
3392 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3393 mcor1
, mcor2
, rtpr
, sreron
, sreroff
);
3394 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk
, div
, clk
, div
);
3395 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3396 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
3397 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
3400 spin_lock_irqsave(&brd_lock
, flags
);
3401 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3402 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x3));
3403 srer
= stl_cd1400getreg(portp
, SRER
);
3404 stl_cd1400setreg(portp
, SRER
, 0);
3405 if (stl_cd1400updatereg(portp
, COR1
, cor1
))
3407 if (stl_cd1400updatereg(portp
, COR2
, cor2
))
3409 if (stl_cd1400updatereg(portp
, COR3
, cor3
))
3412 stl_cd1400ccrwait(portp
);
3413 stl_cd1400setreg(portp
, CCR
, CCR_CORCHANGE
);
3415 stl_cd1400setreg(portp
, COR4
, cor4
);
3416 stl_cd1400setreg(portp
, COR5
, cor5
);
3417 stl_cd1400setreg(portp
, MCOR1
, mcor1
);
3418 stl_cd1400setreg(portp
, MCOR2
, mcor2
);
3420 stl_cd1400setreg(portp
, TCOR
, clk
);
3421 stl_cd1400setreg(portp
, TBPR
, div
);
3422 stl_cd1400setreg(portp
, RCOR
, clk
);
3423 stl_cd1400setreg(portp
, RBPR
, div
);
3425 stl_cd1400setreg(portp
, SCHR1
, tiosp
->c_cc
[VSTART
]);
3426 stl_cd1400setreg(portp
, SCHR2
, tiosp
->c_cc
[VSTOP
]);
3427 stl_cd1400setreg(portp
, SCHR3
, tiosp
->c_cc
[VSTART
]);
3428 stl_cd1400setreg(portp
, SCHR4
, tiosp
->c_cc
[VSTOP
]);
3429 stl_cd1400setreg(portp
, RTPR
, rtpr
);
3430 mcor1
= stl_cd1400getreg(portp
, MSVR1
);
3431 if (mcor1
& MSVR1_DCD
)
3432 portp
->sigs
|= TIOCM_CD
;
3434 portp
->sigs
&= ~TIOCM_CD
;
3435 stl_cd1400setreg(portp
, SRER
, ((srer
& ~sreroff
) | sreron
));
3436 BRDDISABLE(portp
->brdnr
);
3437 spin_unlock_irqrestore(&brd_lock
, flags
);
3440 /*****************************************************************************/
3443 * Set the state of the DTR and RTS signals.
3446 static void stl_cd1400setsignals(stlport_t
*portp
, int dtr
, int rts
)
3448 unsigned char msvr1
, msvr2
;
3449 unsigned long flags
;
3452 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3453 (int) portp
, dtr
, rts
);
3463 spin_lock_irqsave(&brd_lock
, flags
);
3464 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3465 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3467 stl_cd1400setreg(portp
, MSVR2
, msvr2
);
3469 stl_cd1400setreg(portp
, MSVR1
, msvr1
);
3470 BRDDISABLE(portp
->brdnr
);
3471 spin_unlock_irqrestore(&brd_lock
, flags
);
3474 /*****************************************************************************/
3477 * Return the state of the signals.
3480 static int stl_cd1400getsignals(stlport_t
*portp
)
3482 unsigned char msvr1
, msvr2
;
3483 unsigned long flags
;
3487 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp
);
3490 spin_lock_irqsave(&brd_lock
, flags
);
3491 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3492 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3493 msvr1
= stl_cd1400getreg(portp
, MSVR1
);
3494 msvr2
= stl_cd1400getreg(portp
, MSVR2
);
3495 BRDDISABLE(portp
->brdnr
);
3496 spin_unlock_irqrestore(&brd_lock
, flags
);
3499 sigs
|= (msvr1
& MSVR1_DCD
) ? TIOCM_CD
: 0;
3500 sigs
|= (msvr1
& MSVR1_CTS
) ? TIOCM_CTS
: 0;
3501 sigs
|= (msvr1
& MSVR1_DTR
) ? TIOCM_DTR
: 0;
3502 sigs
|= (msvr2
& MSVR2_RTS
) ? TIOCM_RTS
: 0;
3504 sigs
|= (msvr1
& MSVR1_RI
) ? TIOCM_RI
: 0;
3505 sigs
|= (msvr1
& MSVR1_DSR
) ? TIOCM_DSR
: 0;
3512 /*****************************************************************************/
3515 * Enable/Disable the Transmitter and/or Receiver.
3518 static void stl_cd1400enablerxtx(stlport_t
*portp
, int rx
, int tx
)
3521 unsigned long flags
;
3524 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3525 (int) portp
, rx
, tx
);
3530 ccr
|= CCR_TXDISABLE
;
3532 ccr
|= CCR_TXENABLE
;
3534 ccr
|= CCR_RXDISABLE
;
3536 ccr
|= CCR_RXENABLE
;
3538 spin_lock_irqsave(&brd_lock
, flags
);
3539 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3540 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3541 stl_cd1400ccrwait(portp
);
3542 stl_cd1400setreg(portp
, CCR
, ccr
);
3543 stl_cd1400ccrwait(portp
);
3544 BRDDISABLE(portp
->brdnr
);
3545 spin_unlock_irqrestore(&brd_lock
, flags
);
3548 /*****************************************************************************/
3551 * Start/stop the Transmitter and/or Receiver.
3554 static void stl_cd1400startrxtx(stlport_t
*portp
, int rx
, int tx
)
3556 unsigned char sreron
, sreroff
;
3557 unsigned long flags
;
3560 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3561 (int) portp
, rx
, tx
);
3567 sreroff
|= (SRER_TXDATA
| SRER_TXEMPTY
);
3569 sreron
|= SRER_TXDATA
;
3571 sreron
|= SRER_TXEMPTY
;
3573 sreroff
|= SRER_RXDATA
;
3575 sreron
|= SRER_RXDATA
;
3577 spin_lock_irqsave(&brd_lock
, flags
);
3578 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3579 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3580 stl_cd1400setreg(portp
, SRER
,
3581 ((stl_cd1400getreg(portp
, SRER
) & ~sreroff
) | sreron
));
3582 BRDDISABLE(portp
->brdnr
);
3584 set_bit(ASYI_TXBUSY
, &portp
->istate
);
3585 spin_unlock_irqrestore(&brd_lock
, flags
);
3588 /*****************************************************************************/
3591 * Disable all interrupts from this port.
3594 static void stl_cd1400disableintrs(stlport_t
*portp
)
3596 unsigned long flags
;
3599 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp
);
3601 spin_lock_irqsave(&brd_lock
, flags
);
3602 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3603 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3604 stl_cd1400setreg(portp
, SRER
, 0);
3605 BRDDISABLE(portp
->brdnr
);
3606 spin_unlock_irqrestore(&brd_lock
, flags
);
3609 /*****************************************************************************/
3611 static void stl_cd1400sendbreak(stlport_t
*portp
, int len
)
3613 unsigned long flags
;
3616 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp
, len
);
3619 spin_lock_irqsave(&brd_lock
, flags
);
3620 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3621 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3622 stl_cd1400setreg(portp
, SRER
,
3623 ((stl_cd1400getreg(portp
, SRER
) & ~SRER_TXDATA
) |
3625 BRDDISABLE(portp
->brdnr
);
3626 portp
->brklen
= len
;
3628 portp
->stats
.txbreaks
++;
3629 spin_unlock_irqrestore(&brd_lock
, flags
);
3632 /*****************************************************************************/
3635 * Take flow control actions...
3638 static void stl_cd1400flowctrl(stlport_t
*portp
, int state
)
3640 struct tty_struct
*tty
;
3641 unsigned long flags
;
3644 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp
, state
);
3647 if (portp
== (stlport_t
*) NULL
)
3650 if (tty
== (struct tty_struct
*) NULL
)
3653 spin_lock_irqsave(&brd_lock
, flags
);
3654 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3655 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3658 if (tty
->termios
->c_iflag
& IXOFF
) {
3659 stl_cd1400ccrwait(portp
);
3660 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3661 portp
->stats
.rxxon
++;
3662 stl_cd1400ccrwait(portp
);
3665 * Question: should we return RTS to what it was before? It may
3666 * have been set by an ioctl... Suppose not, since if you have
3667 * hardware flow control set then it is pretty silly to go and
3668 * set the RTS line by hand.
3670 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3671 stl_cd1400setreg(portp
, MCOR1
,
3672 (stl_cd1400getreg(portp
, MCOR1
) |
3673 FIFO_RTSTHRESHOLD
));
3674 stl_cd1400setreg(portp
, MSVR2
, MSVR2_RTS
);
3675 portp
->stats
.rxrtson
++;
3678 if (tty
->termios
->c_iflag
& IXOFF
) {
3679 stl_cd1400ccrwait(portp
);
3680 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3681 portp
->stats
.rxxoff
++;
3682 stl_cd1400ccrwait(portp
);
3684 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3685 stl_cd1400setreg(portp
, MCOR1
,
3686 (stl_cd1400getreg(portp
, MCOR1
) & 0xf0));
3687 stl_cd1400setreg(portp
, MSVR2
, 0);
3688 portp
->stats
.rxrtsoff
++;
3692 BRDDISABLE(portp
->brdnr
);
3693 spin_unlock_irqrestore(&brd_lock
, flags
);
3696 /*****************************************************************************/
3699 * Send a flow control character...
3702 static void stl_cd1400sendflow(stlport_t
*portp
, int state
)
3704 struct tty_struct
*tty
;
3705 unsigned long flags
;
3708 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp
, state
);
3711 if (portp
== (stlport_t
*) NULL
)
3714 if (tty
== (struct tty_struct
*) NULL
)
3717 spin_lock_irqsave(&brd_lock
, flags
);
3718 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3719 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3721 stl_cd1400ccrwait(portp
);
3722 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3723 portp
->stats
.rxxon
++;
3724 stl_cd1400ccrwait(portp
);
3726 stl_cd1400ccrwait(portp
);
3727 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3728 portp
->stats
.rxxoff
++;
3729 stl_cd1400ccrwait(portp
);
3731 BRDDISABLE(portp
->brdnr
);
3732 spin_unlock_irqrestore(&brd_lock
, flags
);
3735 /*****************************************************************************/
3737 static void stl_cd1400flush(stlport_t
*portp
)
3739 unsigned long flags
;
3742 printk("stl_cd1400flush(portp=%x)\n", (int) portp
);
3745 if (portp
== (stlport_t
*) NULL
)
3748 spin_lock_irqsave(&brd_lock
, flags
);
3749 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3750 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3751 stl_cd1400ccrwait(portp
);
3752 stl_cd1400setreg(portp
, CCR
, CCR_TXFLUSHFIFO
);
3753 stl_cd1400ccrwait(portp
);
3754 portp
->tx
.tail
= portp
->tx
.head
;
3755 BRDDISABLE(portp
->brdnr
);
3756 spin_unlock_irqrestore(&brd_lock
, flags
);
3759 /*****************************************************************************/
3762 * Return the current state of data flow on this port. This is only
3763 * really interresting when determining if data has fully completed
3764 * transmission or not... This is easy for the cd1400, it accurately
3765 * maintains the busy port flag.
3768 static int stl_cd1400datastate(stlport_t
*portp
)
3771 printk("stl_cd1400datastate(portp=%x)\n", (int) portp
);
3774 if (portp
== (stlport_t
*) NULL
)
3777 return test_bit(ASYI_TXBUSY
, &portp
->istate
) ? 1 : 0;
3780 /*****************************************************************************/
3783 * Interrupt service routine for cd1400 EasyIO boards.
3786 static void stl_cd1400eiointr(stlpanel_t
*panelp
, unsigned int iobase
)
3788 unsigned char svrtype
;
3791 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3792 (int) panelp
, iobase
);
3795 spin_lock(&brd_lock
);
3797 svrtype
= inb(iobase
+ EREG_DATA
);
3798 if (panelp
->nrports
> 4) {
3799 outb((SVRR
+ 0x80), iobase
);
3800 svrtype
|= inb(iobase
+ EREG_DATA
);
3803 if (svrtype
& SVRR_RX
)
3804 stl_cd1400rxisr(panelp
, iobase
);
3805 else if (svrtype
& SVRR_TX
)
3806 stl_cd1400txisr(panelp
, iobase
);
3807 else if (svrtype
& SVRR_MDM
)
3808 stl_cd1400mdmisr(panelp
, iobase
);
3810 spin_unlock(&brd_lock
);
3813 /*****************************************************************************/
3816 * Interrupt service routine for cd1400 panels.
3819 static void stl_cd1400echintr(stlpanel_t
*panelp
, unsigned int iobase
)
3821 unsigned char svrtype
;
3824 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp
,
3829 svrtype
= inb(iobase
+ EREG_DATA
);
3830 outb((SVRR
+ 0x80), iobase
);
3831 svrtype
|= inb(iobase
+ EREG_DATA
);
3832 if (svrtype
& SVRR_RX
)
3833 stl_cd1400rxisr(panelp
, iobase
);
3834 else if (svrtype
& SVRR_TX
)
3835 stl_cd1400txisr(panelp
, iobase
);
3836 else if (svrtype
& SVRR_MDM
)
3837 stl_cd1400mdmisr(panelp
, iobase
);
3841 /*****************************************************************************/
3844 * Unfortunately we need to handle breaks in the TX data stream, since
3845 * this is the only way to generate them on the cd1400.
3848 static inline int stl_cd1400breakisr(stlport_t
*portp
, int ioaddr
)
3850 if (portp
->brklen
== 1) {
3851 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3852 outb((inb(ioaddr
+ EREG_DATA
) | COR2_ETC
),
3853 (ioaddr
+ EREG_DATA
));
3854 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3855 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3856 outb(ETC_STARTBREAK
, (ioaddr
+ EREG_DATA
));
3857 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3858 outb((inb(ioaddr
+ EREG_DATA
) & ~(SRER_TXDATA
| SRER_TXEMPTY
)),
3859 (ioaddr
+ EREG_DATA
));
3861 } else if (portp
->brklen
> 1) {
3862 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3863 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3864 outb(ETC_STOPBREAK
, (ioaddr
+ EREG_DATA
));
3868 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3869 outb((inb(ioaddr
+ EREG_DATA
) & ~COR2_ETC
),
3870 (ioaddr
+ EREG_DATA
));
3876 /*****************************************************************************/
3879 * Transmit interrupt handler. This has gotta be fast! Handling TX
3880 * chars is pretty simple, stuff as many as possible from the TX buffer
3881 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3882 * are embedded as commands in the data stream. Oh no, had to use a goto!
3883 * This could be optimized more, will do when I get time...
3884 * In practice it is possible that interrupts are enabled but that the
3885 * port has been hung up. Need to handle not having any TX buffer here,
3886 * this is done by using the side effect that head and tail will also
3887 * be NULL if the buffer has been freed.
3890 static void stl_cd1400txisr(stlpanel_t
*panelp
, int ioaddr
)
3895 unsigned char ioack
, srer
;
3898 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp
, ioaddr
);
3901 ioack
= inb(ioaddr
+ EREG_TXACK
);
3902 if (((ioack
& panelp
->ackmask
) != 0) ||
3903 ((ioack
& ACK_TYPMASK
) != ACK_TYPTX
)) {
3904 printk("STALLION: bad TX interrupt ack value=%x\n", ioack
);
3907 portp
= panelp
->ports
[(ioack
>> 3)];
3910 * Unfortunately we need to handle breaks in the data stream, since
3911 * this is the only way to generate them on the cd1400. Do it now if
3912 * a break is to be sent.
3914 if (portp
->brklen
!= 0)
3915 if (stl_cd1400breakisr(portp
, ioaddr
))
3918 head
= portp
->tx
.head
;
3919 tail
= portp
->tx
.tail
;
3920 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
3921 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
3922 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
3923 set_bit(ASYI_TXLOW
, &portp
->istate
);
3924 schedule_work(&portp
->tqueue
);
3928 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3929 srer
= inb(ioaddr
+ EREG_DATA
);
3930 if (srer
& SRER_TXDATA
) {
3931 srer
= (srer
& ~SRER_TXDATA
) | SRER_TXEMPTY
;
3933 srer
&= ~(SRER_TXDATA
| SRER_TXEMPTY
);
3934 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
3936 outb(srer
, (ioaddr
+ EREG_DATA
));
3938 len
= MIN(len
, CD1400_TXFIFOSIZE
);
3939 portp
->stats
.txtotal
+= len
;
3940 stlen
= MIN(len
, ((portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
));
3941 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3942 outsb((ioaddr
+ EREG_DATA
), tail
, stlen
);
3945 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
3946 tail
= portp
->tx
.buf
;
3948 outsb((ioaddr
+ EREG_DATA
), tail
, len
);
3951 portp
->tx
.tail
= tail
;
3955 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3956 outb(0, (ioaddr
+ EREG_DATA
));
3959 /*****************************************************************************/
3962 * Receive character interrupt handler. Determine if we have good chars
3963 * or bad chars and then process appropriately. Good chars are easy
3964 * just shove the lot into the RX buffer and set all status byte to 0.
3965 * If a bad RX char then process as required. This routine needs to be
3966 * fast! In practice it is possible that we get an interrupt on a port
3967 * that is closed. This can happen on hangups - since they completely
3968 * shutdown a port not in user context. Need to handle this case.
3971 static void stl_cd1400rxisr(stlpanel_t
*panelp
, int ioaddr
)
3974 struct tty_struct
*tty
;
3975 unsigned int ioack
, len
, buflen
;
3976 unsigned char status
;
3980 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp
, ioaddr
);
3983 ioack
= inb(ioaddr
+ EREG_RXACK
);
3984 if ((ioack
& panelp
->ackmask
) != 0) {
3985 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
3988 portp
= panelp
->ports
[(ioack
>> 3)];
3991 if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXGOOD
) {
3992 outb((RDCR
+ portp
->uartaddr
), ioaddr
);
3993 len
= inb(ioaddr
+ EREG_DATA
);
3994 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
3995 len
= MIN(len
, sizeof(stl_unwanted
));
3996 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3997 insb((ioaddr
+ EREG_DATA
), &stl_unwanted
[0], len
);
3998 portp
->stats
.rxlost
+= len
;
3999 portp
->stats
.rxtotal
+= len
;
4001 len
= MIN(len
, buflen
);
4004 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
4005 tty_prepare_flip_string(tty
, &ptr
, len
);
4006 insb((ioaddr
+ EREG_DATA
), ptr
, len
);
4007 tty_schedule_flip(tty
);
4008 portp
->stats
.rxtotal
+= len
;
4011 } else if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXBAD
) {
4012 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
4013 status
= inb(ioaddr
+ EREG_DATA
);
4014 ch
= inb(ioaddr
+ EREG_DATA
);
4015 if (status
& ST_PARITY
)
4016 portp
->stats
.rxparity
++;
4017 if (status
& ST_FRAMING
)
4018 portp
->stats
.rxframing
++;
4019 if (status
& ST_OVERRUN
)
4020 portp
->stats
.rxoverrun
++;
4021 if (status
& ST_BREAK
)
4022 portp
->stats
.rxbreaks
++;
4023 if (status
& ST_SCHARMASK
) {
4024 if ((status
& ST_SCHARMASK
) == ST_SCHAR1
)
4025 portp
->stats
.txxon
++;
4026 if ((status
& ST_SCHARMASK
) == ST_SCHAR2
)
4027 portp
->stats
.txxoff
++;
4030 if (tty
!= NULL
&& (portp
->rxignoremsk
& status
) == 0) {
4031 if (portp
->rxmarkmsk
& status
) {
4032 if (status
& ST_BREAK
) {
4034 if (portp
->flags
& ASYNC_SAK
) {
4036 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4038 } else if (status
& ST_PARITY
) {
4039 status
= TTY_PARITY
;
4040 } else if (status
& ST_FRAMING
) {
4042 } else if(status
& ST_OVERRUN
) {
4043 status
= TTY_OVERRUN
;
4050 tty_insert_flip_char(tty
, ch
, status
);
4051 tty_schedule_flip(tty
);
4054 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
4059 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
4060 outb(0, (ioaddr
+ EREG_DATA
));
4063 /*****************************************************************************/
4066 * Modem interrupt handler. The is called when the modem signal line
4067 * (DCD) has changed state. Leave most of the work to the off-level
4068 * processing routine.
4071 static void stl_cd1400mdmisr(stlpanel_t
*panelp
, int ioaddr
)
4078 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp
);
4081 ioack
= inb(ioaddr
+ EREG_MDACK
);
4082 if (((ioack
& panelp
->ackmask
) != 0) ||
4083 ((ioack
& ACK_TYPMASK
) != ACK_TYPMDM
)) {
4084 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack
);
4087 portp
= panelp
->ports
[(ioack
>> 3)];
4089 outb((MISR
+ portp
->uartaddr
), ioaddr
);
4090 misr
= inb(ioaddr
+ EREG_DATA
);
4091 if (misr
& MISR_DCD
) {
4092 set_bit(ASYI_DCDCHANGE
, &portp
->istate
);
4093 schedule_work(&portp
->tqueue
);
4094 portp
->stats
.modem
++;
4097 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
4098 outb(0, (ioaddr
+ EREG_DATA
));
4101 /*****************************************************************************/
4102 /* SC26198 HARDWARE FUNCTIONS */
4103 /*****************************************************************************/
4106 * These functions get/set/update the registers of the sc26198 UARTs.
4107 * Access to the sc26198 registers is via an address/data io port pair.
4108 * (Maybe should make this inline...)
4111 static int stl_sc26198getreg(stlport_t
*portp
, int regnr
)
4113 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
4114 return inb(portp
->ioaddr
+ XP_DATA
);
4117 static void stl_sc26198setreg(stlport_t
*portp
, int regnr
, int value
)
4119 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
4120 outb(value
, (portp
->ioaddr
+ XP_DATA
));
4123 static int stl_sc26198updatereg(stlport_t
*portp
, int regnr
, int value
)
4125 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
4126 if (inb(portp
->ioaddr
+ XP_DATA
) != value
) {
4127 outb(value
, (portp
->ioaddr
+ XP_DATA
));
4133 /*****************************************************************************/
4136 * Functions to get and set the sc26198 global registers.
4139 static int stl_sc26198getglobreg(stlport_t
*portp
, int regnr
)
4141 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
4142 return inb(portp
->ioaddr
+ XP_DATA
);
4146 static void stl_sc26198setglobreg(stlport_t
*portp
, int regnr
, int value
)
4148 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
4149 outb(value
, (portp
->ioaddr
+ XP_DATA
));
4153 /*****************************************************************************/
4156 * Inbitialize the UARTs in a panel. We don't care what sort of board
4157 * these ports are on - since the port io registers are almost
4158 * identical when dealing with ports.
4161 static int stl_sc26198panelinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
)
4164 int nrchips
, ioaddr
;
4167 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4168 (int) brdp
, (int) panelp
);
4171 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
4174 * Check that each chip is present and started up OK.
4177 nrchips
= (panelp
->nrports
+ 4) / SC26198_PORTS
;
4178 if (brdp
->brdtype
== BRD_ECHPCI
)
4179 outb(panelp
->pagenr
, brdp
->ioctrl
);
4181 for (i
= 0; (i
< nrchips
); i
++) {
4182 ioaddr
= panelp
->iobase
+ (i
* 4);
4183 outb(SCCR
, (ioaddr
+ XP_ADDR
));
4184 outb(CR_RESETALL
, (ioaddr
+ XP_DATA
));
4185 outb(TSTR
, (ioaddr
+ XP_ADDR
));
4186 if (inb(ioaddr
+ XP_DATA
) != 0) {
4187 printk("STALLION: sc26198 not responding, "
4188 "brd=%d panel=%d chip=%d\n",
4189 panelp
->brdnr
, panelp
->panelnr
, i
);
4192 chipmask
|= (0x1 << i
);
4193 outb(GCCR
, (ioaddr
+ XP_ADDR
));
4194 outb(GCCR_IVRTYPCHANACK
, (ioaddr
+ XP_DATA
));
4195 outb(WDTRCR
, (ioaddr
+ XP_ADDR
));
4196 outb(0xff, (ioaddr
+ XP_DATA
));
4199 BRDDISABLE(panelp
->brdnr
);
4203 /*****************************************************************************/
4206 * Initialize hardware specific port registers.
4209 static void stl_sc26198portinit(stlbrd_t
*brdp
, stlpanel_t
*panelp
, stlport_t
*portp
)
4212 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4213 (int) brdp
, (int) panelp
, (int) portp
);
4216 if ((brdp
== (stlbrd_t
*) NULL
) || (panelp
== (stlpanel_t
*) NULL
) ||
4217 (portp
== (stlport_t
*) NULL
))
4220 portp
->ioaddr
= panelp
->iobase
+ ((portp
->portnr
< 8) ? 0 : 4);
4221 portp
->uartaddr
= (portp
->portnr
& 0x07) << 4;
4222 portp
->pagenr
= panelp
->pagenr
;
4225 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4226 stl_sc26198setreg(portp
, IOPCR
, IOPCR_SETSIGS
);
4227 BRDDISABLE(portp
->brdnr
);
4230 /*****************************************************************************/
4233 * Set up the sc26198 registers for a port based on the termios port
4237 static void stl_sc26198setport(stlport_t
*portp
, struct termios
*tiosp
)
4240 unsigned long flags
;
4241 unsigned int baudrate
;
4242 unsigned char mr0
, mr1
, mr2
, clk
;
4243 unsigned char imron
, imroff
, iopr
, ipr
;
4253 brdp
= stl_brds
[portp
->brdnr
];
4254 if (brdp
== (stlbrd_t
*) NULL
)
4258 * Set up the RX char ignore mask with those RX error types we
4261 portp
->rxignoremsk
= 0;
4262 if (tiosp
->c_iflag
& IGNPAR
)
4263 portp
->rxignoremsk
|= (SR_RXPARITY
| SR_RXFRAMING
|
4265 if (tiosp
->c_iflag
& IGNBRK
)
4266 portp
->rxignoremsk
|= SR_RXBREAK
;
4268 portp
->rxmarkmsk
= SR_RXOVERRUN
;
4269 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
4270 portp
->rxmarkmsk
|= (SR_RXPARITY
| SR_RXFRAMING
);
4271 if (tiosp
->c_iflag
& BRKINT
)
4272 portp
->rxmarkmsk
|= SR_RXBREAK
;
4275 * Go through the char size, parity and stop bits and set all the
4276 * option register appropriately.
4278 switch (tiosp
->c_cflag
& CSIZE
) {
4293 if (tiosp
->c_cflag
& CSTOPB
)
4298 if (tiosp
->c_cflag
& PARENB
) {
4299 if (tiosp
->c_cflag
& PARODD
)
4300 mr1
|= (MR1_PARENB
| MR1_PARODD
);
4302 mr1
|= (MR1_PARENB
| MR1_PAREVEN
);
4307 mr1
|= MR1_ERRBLOCK
;
4310 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4311 * space for hardware flow control and the like. This should be set to
4314 mr2
|= MR2_RXFIFOHALF
;
4317 * Calculate the baud rate timers. For now we will just assume that
4318 * the input and output baud are the same. The sc26198 has a fixed
4319 * baud rate table, so only discrete baud rates possible.
4321 baudrate
= tiosp
->c_cflag
& CBAUD
;
4322 if (baudrate
& CBAUDEX
) {
4323 baudrate
&= ~CBAUDEX
;
4324 if ((baudrate
< 1) || (baudrate
> 4))
4325 tiosp
->c_cflag
&= ~CBAUDEX
;
4329 baudrate
= stl_baudrates
[baudrate
];
4330 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
4331 if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
4333 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
4335 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
4337 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
4339 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
4340 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
4342 if (baudrate
> STL_SC26198MAXBAUD
)
4343 baudrate
= STL_SC26198MAXBAUD
;
4346 for (clk
= 0; (clk
< SC26198_NRBAUDS
); clk
++) {
4347 if (baudrate
<= sc26198_baudtable
[clk
])
4353 * Check what form of modem signaling is required and set it up.
4355 if (tiosp
->c_cflag
& CLOCAL
) {
4356 portp
->flags
&= ~ASYNC_CHECK_CD
;
4358 iopr
|= IOPR_DCDCOS
;
4360 portp
->flags
|= ASYNC_CHECK_CD
;
4364 * Setup sc26198 enhanced modes if we can. In particular we want to
4365 * handle as much of the flow control as possible automatically. As
4366 * well as saving a few CPU cycles it will also greatly improve flow
4367 * control reliability.
4369 if (tiosp
->c_iflag
& IXON
) {
4370 mr0
|= MR0_SWFTX
| MR0_SWFT
;
4371 imron
|= IR_XONXOFF
;
4373 imroff
|= IR_XONXOFF
;
4375 if (tiosp
->c_iflag
& IXOFF
)
4378 if (tiosp
->c_cflag
& CRTSCTS
) {
4384 * All sc26198 register values calculated so go through and set
4389 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4390 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
4391 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0
, mr1
, mr2
, clk
);
4392 printk(" iopr=%x imron=%x imroff=%x\n", iopr
, imron
, imroff
);
4393 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4394 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
4395 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
4398 spin_lock_irqsave(&brd_lock
, flags
);
4399 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4400 stl_sc26198setreg(portp
, IMR
, 0);
4401 stl_sc26198updatereg(portp
, MR0
, mr0
);
4402 stl_sc26198updatereg(portp
, MR1
, mr1
);
4403 stl_sc26198setreg(portp
, SCCR
, CR_RXERRBLOCK
);
4404 stl_sc26198updatereg(portp
, MR2
, mr2
);
4405 stl_sc26198updatereg(portp
, IOPIOR
,
4406 ((stl_sc26198getreg(portp
, IOPIOR
) & ~IPR_CHANGEMASK
) | iopr
));
4409 stl_sc26198setreg(portp
, TXCSR
, clk
);
4410 stl_sc26198setreg(portp
, RXCSR
, clk
);
4413 stl_sc26198setreg(portp
, XONCR
, tiosp
->c_cc
[VSTART
]);
4414 stl_sc26198setreg(portp
, XOFFCR
, tiosp
->c_cc
[VSTOP
]);
4416 ipr
= stl_sc26198getreg(portp
, IPR
);
4418 portp
->sigs
&= ~TIOCM_CD
;
4420 portp
->sigs
|= TIOCM_CD
;
4422 portp
->imr
= (portp
->imr
& ~imroff
) | imron
;
4423 stl_sc26198setreg(portp
, IMR
, portp
->imr
);
4424 BRDDISABLE(portp
->brdnr
);
4425 spin_unlock_irqrestore(&brd_lock
, flags
);
4428 /*****************************************************************************/
4431 * Set the state of the DTR and RTS signals.
4434 static void stl_sc26198setsignals(stlport_t
*portp
, int dtr
, int rts
)
4436 unsigned char iopioron
, iopioroff
;
4437 unsigned long flags
;
4440 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4441 (int) portp
, dtr
, rts
);
4447 iopioroff
|= IPR_DTR
;
4449 iopioron
|= IPR_DTR
;
4451 iopioroff
|= IPR_RTS
;
4453 iopioron
|= IPR_RTS
;
4455 spin_lock_irqsave(&brd_lock
, flags
);
4456 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4457 stl_sc26198setreg(portp
, IOPIOR
,
4458 ((stl_sc26198getreg(portp
, IOPIOR
) & ~iopioroff
) | iopioron
));
4459 BRDDISABLE(portp
->brdnr
);
4460 spin_unlock_irqrestore(&brd_lock
, flags
);
4463 /*****************************************************************************/
4466 * Return the state of the signals.
4469 static int stl_sc26198getsignals(stlport_t
*portp
)
4472 unsigned long flags
;
4476 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp
);
4479 spin_lock_irqsave(&brd_lock
, flags
);
4480 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4481 ipr
= stl_sc26198getreg(portp
, IPR
);
4482 BRDDISABLE(portp
->brdnr
);
4483 spin_unlock_irqrestore(&brd_lock
, flags
);
4486 sigs
|= (ipr
& IPR_DCD
) ? 0 : TIOCM_CD
;
4487 sigs
|= (ipr
& IPR_CTS
) ? 0 : TIOCM_CTS
;
4488 sigs
|= (ipr
& IPR_DTR
) ? 0: TIOCM_DTR
;
4489 sigs
|= (ipr
& IPR_RTS
) ? 0: TIOCM_RTS
;
4494 /*****************************************************************************/
4497 * Enable/Disable the Transmitter and/or Receiver.
4500 static void stl_sc26198enablerxtx(stlport_t
*portp
, int rx
, int tx
)
4503 unsigned long flags
;
4506 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4507 (int) portp
, rx
, tx
);
4510 ccr
= portp
->crenable
;
4512 ccr
&= ~CR_TXENABLE
;
4516 ccr
&= ~CR_RXENABLE
;
4520 spin_lock_irqsave(&brd_lock
, flags
);
4521 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4522 stl_sc26198setreg(portp
, SCCR
, ccr
);
4523 BRDDISABLE(portp
->brdnr
);
4524 portp
->crenable
= ccr
;
4525 spin_unlock_irqrestore(&brd_lock
, flags
);
4528 /*****************************************************************************/
4531 * Start/stop the Transmitter and/or Receiver.
4534 static void stl_sc26198startrxtx(stlport_t
*portp
, int rx
, int tx
)
4537 unsigned long flags
;
4540 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4541 (int) portp
, rx
, tx
);
4550 imr
&= ~(IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
);
4552 imr
|= IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
;
4554 spin_lock_irqsave(&brd_lock
, flags
);
4555 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4556 stl_sc26198setreg(portp
, IMR
, imr
);
4557 BRDDISABLE(portp
->brdnr
);
4560 set_bit(ASYI_TXBUSY
, &portp
->istate
);
4561 spin_unlock_irqrestore(&brd_lock
, flags
);
4564 /*****************************************************************************/
4567 * Disable all interrupts from this port.
4570 static void stl_sc26198disableintrs(stlport_t
*portp
)
4572 unsigned long flags
;
4575 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp
);
4578 spin_lock_irqsave(&brd_lock
, flags
);
4579 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4581 stl_sc26198setreg(portp
, IMR
, 0);
4582 BRDDISABLE(portp
->brdnr
);
4583 spin_unlock_irqrestore(&brd_lock
, flags
);
4586 /*****************************************************************************/
4588 static void stl_sc26198sendbreak(stlport_t
*portp
, int len
)
4590 unsigned long flags
;
4593 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp
, len
);
4596 spin_lock_irqsave(&brd_lock
, flags
);
4597 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4599 stl_sc26198setreg(portp
, SCCR
, CR_TXSTARTBREAK
);
4600 portp
->stats
.txbreaks
++;
4602 stl_sc26198setreg(portp
, SCCR
, CR_TXSTOPBREAK
);
4604 BRDDISABLE(portp
->brdnr
);
4605 spin_unlock_irqrestore(&brd_lock
, flags
);
4608 /*****************************************************************************/
4611 * Take flow control actions...
4614 static void stl_sc26198flowctrl(stlport_t
*portp
, int state
)
4616 struct tty_struct
*tty
;
4617 unsigned long flags
;
4621 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp
, state
);
4624 if (portp
== (stlport_t
*) NULL
)
4627 if (tty
== (struct tty_struct
*) NULL
)
4630 spin_lock_irqsave(&brd_lock
, flags
);
4631 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4634 if (tty
->termios
->c_iflag
& IXOFF
) {
4635 mr0
= stl_sc26198getreg(portp
, MR0
);
4636 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4637 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4639 portp
->stats
.rxxon
++;
4640 stl_sc26198wait(portp
);
4641 stl_sc26198setreg(portp
, MR0
, mr0
);
4644 * Question: should we return RTS to what it was before? It may
4645 * have been set by an ioctl... Suppose not, since if you have
4646 * hardware flow control set then it is pretty silly to go and
4647 * set the RTS line by hand.
4649 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4650 stl_sc26198setreg(portp
, MR1
,
4651 (stl_sc26198getreg(portp
, MR1
) | MR1_AUTORTS
));
4652 stl_sc26198setreg(portp
, IOPIOR
,
4653 (stl_sc26198getreg(portp
, IOPIOR
) | IOPR_RTS
));
4654 portp
->stats
.rxrtson
++;
4657 if (tty
->termios
->c_iflag
& IXOFF
) {
4658 mr0
= stl_sc26198getreg(portp
, MR0
);
4659 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4660 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4662 portp
->stats
.rxxoff
++;
4663 stl_sc26198wait(portp
);
4664 stl_sc26198setreg(portp
, MR0
, mr0
);
4666 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4667 stl_sc26198setreg(portp
, MR1
,
4668 (stl_sc26198getreg(portp
, MR1
) & ~MR1_AUTORTS
));
4669 stl_sc26198setreg(portp
, IOPIOR
,
4670 (stl_sc26198getreg(portp
, IOPIOR
) & ~IOPR_RTS
));
4671 portp
->stats
.rxrtsoff
++;
4675 BRDDISABLE(portp
->brdnr
);
4676 spin_unlock_irqrestore(&brd_lock
, flags
);
4679 /*****************************************************************************/
4682 * Send a flow control character.
4685 static void stl_sc26198sendflow(stlport_t
*portp
, int state
)
4687 struct tty_struct
*tty
;
4688 unsigned long flags
;
4692 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp
, state
);
4695 if (portp
== (stlport_t
*) NULL
)
4698 if (tty
== (struct tty_struct
*) NULL
)
4701 spin_lock_irqsave(&brd_lock
, flags
);
4702 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4704 mr0
= stl_sc26198getreg(portp
, MR0
);
4705 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4706 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4708 portp
->stats
.rxxon
++;
4709 stl_sc26198wait(portp
);
4710 stl_sc26198setreg(portp
, MR0
, mr0
);
4712 mr0
= stl_sc26198getreg(portp
, MR0
);
4713 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4714 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4716 portp
->stats
.rxxoff
++;
4717 stl_sc26198wait(portp
);
4718 stl_sc26198setreg(portp
, MR0
, mr0
);
4720 BRDDISABLE(portp
->brdnr
);
4721 spin_unlock_irqrestore(&brd_lock
, flags
);
4724 /*****************************************************************************/
4726 static void stl_sc26198flush(stlport_t
*portp
)
4728 unsigned long flags
;
4731 printk("stl_sc26198flush(portp=%x)\n", (int) portp
);
4734 if (portp
== (stlport_t
*) NULL
)
4737 spin_lock_irqsave(&brd_lock
, flags
);
4738 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4739 stl_sc26198setreg(portp
, SCCR
, CR_TXRESET
);
4740 stl_sc26198setreg(portp
, SCCR
, portp
->crenable
);
4741 BRDDISABLE(portp
->brdnr
);
4742 portp
->tx
.tail
= portp
->tx
.head
;
4743 spin_unlock_irqrestore(&brd_lock
, flags
);
4746 /*****************************************************************************/
4749 * Return the current state of data flow on this port. This is only
4750 * really interresting when determining if data has fully completed
4751 * transmission or not... The sc26198 interrupt scheme cannot
4752 * determine when all data has actually drained, so we need to
4753 * check the port statusy register to be sure.
4756 static int stl_sc26198datastate(stlport_t
*portp
)
4758 unsigned long flags
;
4762 printk("stl_sc26198datastate(portp=%x)\n", (int) portp
);
4765 if (portp
== (stlport_t
*) NULL
)
4767 if (test_bit(ASYI_TXBUSY
, &portp
->istate
))
4770 spin_lock_irqsave(&brd_lock
, flags
);
4771 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4772 sr
= stl_sc26198getreg(portp
, SR
);
4773 BRDDISABLE(portp
->brdnr
);
4774 spin_unlock_irqrestore(&brd_lock
, flags
);
4776 return (sr
& SR_TXEMPTY
) ? 0 : 1;
4779 /*****************************************************************************/
4782 * Delay for a small amount of time, to give the sc26198 a chance
4783 * to process a command...
4786 static void stl_sc26198wait(stlport_t
*portp
)
4791 printk("stl_sc26198wait(portp=%x)\n", (int) portp
);
4794 if (portp
== (stlport_t
*) NULL
)
4797 for (i
= 0; (i
< 20); i
++)
4798 stl_sc26198getglobreg(portp
, TSTR
);
4801 /*****************************************************************************/
4804 * If we are TX flow controlled and in IXANY mode then we may
4805 * need to unflow control here. We gotta do this because of the
4806 * automatic flow control modes of the sc26198.
4809 static inline void stl_sc26198txunflow(stlport_t
*portp
, struct tty_struct
*tty
)
4813 mr0
= stl_sc26198getreg(portp
, MR0
);
4814 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4815 stl_sc26198setreg(portp
, SCCR
, CR_HOSTXON
);
4816 stl_sc26198wait(portp
);
4817 stl_sc26198setreg(portp
, MR0
, mr0
);
4818 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
4821 /*****************************************************************************/
4824 * Interrupt service routine for sc26198 panels.
4827 static void stl_sc26198intr(stlpanel_t
*panelp
, unsigned int iobase
)
4832 spin_lock(&brd_lock
);
4835 * Work around bug in sc26198 chip... Cannot have A6 address
4836 * line of UART high, else iack will be returned as 0.
4838 outb(0, (iobase
+ 1));
4840 iack
= inb(iobase
+ XP_IACK
);
4841 portp
= panelp
->ports
[(iack
& IVR_CHANMASK
) + ((iobase
& 0x4) << 1)];
4843 if (iack
& IVR_RXDATA
)
4844 stl_sc26198rxisr(portp
, iack
);
4845 else if (iack
& IVR_TXDATA
)
4846 stl_sc26198txisr(portp
);
4848 stl_sc26198otherisr(portp
, iack
);
4850 spin_unlock(&brd_lock
);
4853 /*****************************************************************************/
4856 * Transmit interrupt handler. This has gotta be fast! Handling TX
4857 * chars is pretty simple, stuff as many as possible from the TX buffer
4858 * into the sc26198 FIFO.
4859 * In practice it is possible that interrupts are enabled but that the
4860 * port has been hung up. Need to handle not having any TX buffer here,
4861 * this is done by using the side effect that head and tail will also
4862 * be NULL if the buffer has been freed.
4865 static void stl_sc26198txisr(stlport_t
*portp
)
4867 unsigned int ioaddr
;
4873 printk("stl_sc26198txisr(portp=%x)\n", (int) portp
);
4876 ioaddr
= portp
->ioaddr
;
4877 head
= portp
->tx
.head
;
4878 tail
= portp
->tx
.tail
;
4879 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
4880 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
4881 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
4882 set_bit(ASYI_TXLOW
, &portp
->istate
);
4883 schedule_work(&portp
->tqueue
);
4887 outb((MR0
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4888 mr0
= inb(ioaddr
+ XP_DATA
);
4889 if ((mr0
& MR0_TXMASK
) == MR0_TXEMPTY
) {
4890 portp
->imr
&= ~IR_TXRDY
;
4891 outb((IMR
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4892 outb(portp
->imr
, (ioaddr
+ XP_DATA
));
4893 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
4895 mr0
|= ((mr0
& ~MR0_TXMASK
) | MR0_TXEMPTY
);
4896 outb(mr0
, (ioaddr
+ XP_DATA
));
4899 len
= MIN(len
, SC26198_TXFIFOSIZE
);
4900 portp
->stats
.txtotal
+= len
;
4901 stlen
= MIN(len
, ((portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
));
4902 outb(GTXFIFO
, (ioaddr
+ XP_ADDR
));
4903 outsb((ioaddr
+ XP_DATA
), tail
, stlen
);
4906 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
4907 tail
= portp
->tx
.buf
;
4909 outsb((ioaddr
+ XP_DATA
), tail
, len
);
4912 portp
->tx
.tail
= tail
;
4916 /*****************************************************************************/
4919 * Receive character interrupt handler. Determine if we have good chars
4920 * or bad chars and then process appropriately. Good chars are easy
4921 * just shove the lot into the RX buffer and set all status byte to 0.
4922 * If a bad RX char then process as required. This routine needs to be
4923 * fast! In practice it is possible that we get an interrupt on a port
4924 * that is closed. This can happen on hangups - since they completely
4925 * shutdown a port not in user context. Need to handle this case.
4928 static void stl_sc26198rxisr(stlport_t
*portp
, unsigned int iack
)
4930 struct tty_struct
*tty
;
4931 unsigned int len
, buflen
, ioaddr
;
4934 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp
, iack
);
4938 ioaddr
= portp
->ioaddr
;
4939 outb(GIBCR
, (ioaddr
+ XP_ADDR
));
4940 len
= inb(ioaddr
+ XP_DATA
) + 1;
4942 if ((iack
& IVR_TYPEMASK
) == IVR_RXDATA
) {
4943 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
4944 len
= MIN(len
, sizeof(stl_unwanted
));
4945 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4946 insb((ioaddr
+ XP_DATA
), &stl_unwanted
[0], len
);
4947 portp
->stats
.rxlost
+= len
;
4948 portp
->stats
.rxtotal
+= len
;
4950 len
= MIN(len
, buflen
);
4953 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4954 tty_prepare_flip_string(tty
, &ptr
, len
);
4955 insb((ioaddr
+ XP_DATA
), ptr
, len
);
4956 tty_schedule_flip(tty
);
4957 portp
->stats
.rxtotal
+= len
;
4961 stl_sc26198rxbadchars(portp
);
4965 * If we are TX flow controlled and in IXANY mode then we may need
4966 * to unflow control here. We gotta do this because of the automatic
4967 * flow control modes of the sc26198.
4969 if (test_bit(ASYI_TXFLOWED
, &portp
->istate
)) {
4970 if ((tty
!= (struct tty_struct
*) NULL
) &&
4971 (tty
->termios
!= (struct termios
*) NULL
) &&
4972 (tty
->termios
->c_iflag
& IXANY
)) {
4973 stl_sc26198txunflow(portp
, tty
);
4978 /*****************************************************************************/
4981 * Process an RX bad character.
4984 static inline void stl_sc26198rxbadch(stlport_t
*portp
, unsigned char status
, char ch
)
4986 struct tty_struct
*tty
;
4987 unsigned int ioaddr
;
4990 ioaddr
= portp
->ioaddr
;
4992 if (status
& SR_RXPARITY
)
4993 portp
->stats
.rxparity
++;
4994 if (status
& SR_RXFRAMING
)
4995 portp
->stats
.rxframing
++;
4996 if (status
& SR_RXOVERRUN
)
4997 portp
->stats
.rxoverrun
++;
4998 if (status
& SR_RXBREAK
)
4999 portp
->stats
.rxbreaks
++;
5001 if ((tty
!= (struct tty_struct
*) NULL
) &&
5002 ((portp
->rxignoremsk
& status
) == 0)) {
5003 if (portp
->rxmarkmsk
& status
) {
5004 if (status
& SR_RXBREAK
) {
5006 if (portp
->flags
& ASYNC_SAK
) {
5008 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
5010 } else if (status
& SR_RXPARITY
) {
5011 status
= TTY_PARITY
;
5012 } else if (status
& SR_RXFRAMING
) {
5014 } else if(status
& SR_RXOVERRUN
) {
5015 status
= TTY_OVERRUN
;
5023 tty_insert_flip_char(tty
, ch
, status
);
5024 tty_schedule_flip(tty
);
5027 portp
->stats
.rxtotal
++;
5031 /*****************************************************************************/
5034 * Process all characters in the RX FIFO of the UART. Check all char
5035 * status bytes as well, and process as required. We need to check
5036 * all bytes in the FIFO, in case some more enter the FIFO while we
5037 * are here. To get the exact character error type we need to switch
5038 * into CHAR error mode (that is why we need to make sure we empty
5042 static void stl_sc26198rxbadchars(stlport_t
*portp
)
5044 unsigned char status
, mr1
;
5048 * To get the precise error type for each character we must switch
5049 * back into CHAR error mode.
5051 mr1
= stl_sc26198getreg(portp
, MR1
);
5052 stl_sc26198setreg(portp
, MR1
, (mr1
& ~MR1_ERRBLOCK
));
5054 while ((status
= stl_sc26198getreg(portp
, SR
)) & SR_RXRDY
) {
5055 stl_sc26198setreg(portp
, SCCR
, CR_CLEARRXERR
);
5056 ch
= stl_sc26198getreg(portp
, RXFIFO
);
5057 stl_sc26198rxbadch(portp
, status
, ch
);
5061 * To get correct interrupt class we must switch back into BLOCK
5064 stl_sc26198setreg(portp
, MR1
, mr1
);
5067 /*****************************************************************************/
5070 * Other interrupt handler. This includes modem signals, flow
5071 * control actions, etc. Most stuff is left to off-level interrupt
5075 static void stl_sc26198otherisr(stlport_t
*portp
, unsigned int iack
)
5077 unsigned char cir
, ipr
, xisr
;
5080 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp
, iack
);
5083 cir
= stl_sc26198getglobreg(portp
, CIR
);
5085 switch (cir
& CIR_SUBTYPEMASK
) {
5087 ipr
= stl_sc26198getreg(portp
, IPR
);
5088 if (ipr
& IPR_DCDCHANGE
) {
5089 set_bit(ASYI_DCDCHANGE
, &portp
->istate
);
5090 schedule_work(&portp
->tqueue
);
5091 portp
->stats
.modem
++;
5094 case CIR_SUBXONXOFF
:
5095 xisr
= stl_sc26198getreg(portp
, XISR
);
5096 if (xisr
& XISR_RXXONGOT
) {
5097 set_bit(ASYI_TXFLOWED
, &portp
->istate
);
5098 portp
->stats
.txxoff
++;
5100 if (xisr
& XISR_RXXOFFGOT
) {
5101 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
5102 portp
->stats
.txxon
++;
5106 stl_sc26198setreg(portp
, SCCR
, CR_BREAKRESET
);
5107 stl_sc26198rxbadchars(portp
);
5114 /*****************************************************************************/