sync hh.org
[hh.org.git] / drivers / char / stallion.c
blob522e88e395ccac7358ed2cb2ac1b999244af55c2
1 /*****************************************************************************/
3 /*
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
48 #ifdef CONFIG_PCI
49 #include <linux/pci.h>
50 #endif
52 /*****************************************************************************/
55 * Define different board types. Use the standard Stallion "assigned"
56 * board numbers. Boards supported in this driver are abbreviated as
57 * EIO = EasyIO and ECH = EasyConnection 8/32.
59 #define BRD_EASYIO 20
60 #define BRD_ECH 21
61 #define BRD_ECHMC 22
62 #define BRD_ECHPCI 26
63 #define BRD_ECH64PCI 27
64 #define BRD_EASYIOPCI 28
67 * Define a configuration structure to hold the board configuration.
68 * Need to set this up in the code (for now) with the boards that are
69 * to be configured into the system. This is what needs to be modified
70 * when adding/removing/modifying boards. Each line entry in the
71 * stl_brdconf[] array is a board. Each line contains io/irq/memory
72 * ranges for that board (as well as what type of board it is).
73 * Some examples:
74 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
75 * This line would configure an EasyIO board (4 or 8, no difference),
76 * at io address 2a0 and irq 10.
77 * Another example:
78 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
79 * This line will configure an EasyConnection 8/32 board at primary io
80 * address 2a8, secondary io address 280 and irq 12.
81 * Enter as many lines into this array as you want (only the first 4
82 * will actually be used!). Any combination of EasyIO and EasyConnection
83 * boards can be specified. EasyConnection 8/32 boards can share their
84 * secondary io addresses between each other.
86 * NOTE: there is no need to put any entries in this table for PCI
87 * boards. They will be found automatically by the driver - provided
88 * PCI BIOS32 support is compiled into the kernel.
91 typedef struct {
92 int brdtype;
93 int ioaddr1;
94 int ioaddr2;
95 unsigned long memaddr;
96 int irq;
97 int irqtype;
98 } stlconf_t;
100 static stlconf_t stl_brdconf[] = {
101 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
104 static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
106 /*****************************************************************************/
109 * Define some important driver characteristics. Device major numbers
110 * allocated as per Linux Device Registry.
112 #ifndef STL_SIOMEMMAJOR
113 #define STL_SIOMEMMAJOR 28
114 #endif
115 #ifndef STL_SERIALMAJOR
116 #define STL_SERIALMAJOR 24
117 #endif
118 #ifndef STL_CALLOUTMAJOR
119 #define STL_CALLOUTMAJOR 25
120 #endif
123 * Set the TX buffer size. Bigger is better, but we don't want
124 * to chew too much memory with buffers!
126 #define STL_TXBUFLOW 512
127 #define STL_TXBUFSIZE 4096
129 /*****************************************************************************/
132 * Define our local driver identity first. Set up stuff to deal with
133 * all the local structures required by a serial tty driver.
135 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
136 static char *stl_drvname = "stallion";
137 static char *stl_drvversion = "5.6.0";
139 static struct tty_driver *stl_serial;
142 * Define a local default termios struct. All ports will be created
143 * with this termios initially. Basically all it defines is a raw port
144 * at 9600, 8 data bits, 1 stop bit.
146 static struct termios stl_deftermios = {
147 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
148 .c_cc = INIT_C_CC,
152 * Define global stats structures. Not used often, and can be
153 * re-used for each stats call.
155 static comstats_t stl_comstats;
156 static combrd_t stl_brdstats;
157 static stlbrd_t stl_dummybrd;
158 static stlport_t stl_dummyport;
161 * Define global place to put buffer overflow characters.
163 static char stl_unwanted[SC26198_RXFIFOSIZE];
165 /*****************************************************************************/
167 static stlbrd_t *stl_brds[STL_MAXBRDS];
170 * Per board state flags. Used with the state field of the board struct.
171 * Not really much here!
173 #define BRD_FOUND 0x1
176 * Define the port structure istate flags. These set of flags are
177 * modified at interrupt time - so setting and reseting them needs
178 * to be atomic. Use the bit clear/setting routines for this.
180 #define ASYI_TXBUSY 1
181 #define ASYI_TXLOW 2
182 #define ASYI_DCDCHANGE 3
183 #define ASYI_TXFLOWED 4
186 * Define an array of board names as printable strings. Handy for
187 * referencing boards when printing trace and stuff.
189 static char *stl_brdnames[] = {
190 (char *) NULL,
191 (char *) NULL,
192 (char *) NULL,
193 (char *) NULL,
194 (char *) NULL,
195 (char *) NULL,
196 (char *) NULL,
197 (char *) NULL,
198 (char *) NULL,
199 (char *) NULL,
200 (char *) NULL,
201 (char *) NULL,
202 (char *) NULL,
203 (char *) NULL,
204 (char *) NULL,
205 (char *) NULL,
206 (char *) NULL,
207 (char *) NULL,
208 (char *) NULL,
209 (char *) NULL,
210 "EasyIO",
211 "EC8/32-AT",
212 "EC8/32-MC",
213 (char *) NULL,
214 (char *) NULL,
215 (char *) NULL,
216 "EC8/32-PCI",
217 "EC8/64-PCI",
218 "EasyIO-PCI",
221 /*****************************************************************************/
224 * Define some string labels for arguments passed from the module
225 * load line. These allow for easy board definitions, and easy
226 * modification of the io, memory and irq resoucres.
228 static int stl_nargs = 0;
229 static char *board0[4];
230 static char *board1[4];
231 static char *board2[4];
232 static char *board3[4];
234 static char **stl_brdsp[] = {
235 (char **) &board0,
236 (char **) &board1,
237 (char **) &board2,
238 (char **) &board3
242 * Define a set of common board names, and types. This is used to
243 * parse any module arguments.
246 typedef struct stlbrdtype {
247 char *name;
248 int type;
249 } stlbrdtype_t;
251 static stlbrdtype_t stl_brdstr[] = {
252 { "easyio", BRD_EASYIO },
253 { "eio", BRD_EASYIO },
254 { "20", BRD_EASYIO },
255 { "ec8/32", BRD_ECH },
256 { "ec8/32-at", BRD_ECH },
257 { "ec8/32-isa", BRD_ECH },
258 { "ech", BRD_ECH },
259 { "echat", BRD_ECH },
260 { "21", BRD_ECH },
261 { "ec8/32-mc", BRD_ECHMC },
262 { "ec8/32-mca", BRD_ECHMC },
263 { "echmc", BRD_ECHMC },
264 { "echmca", BRD_ECHMC },
265 { "22", BRD_ECHMC },
266 { "ec8/32-pc", BRD_ECHPCI },
267 { "ec8/32-pci", BRD_ECHPCI },
268 { "26", BRD_ECHPCI },
269 { "ec8/64-pc", BRD_ECH64PCI },
270 { "ec8/64-pci", BRD_ECH64PCI },
271 { "ech-pci", BRD_ECH64PCI },
272 { "echpci", BRD_ECH64PCI },
273 { "echpc", BRD_ECH64PCI },
274 { "27", BRD_ECH64PCI },
275 { "easyio-pc", BRD_EASYIOPCI },
276 { "easyio-pci", BRD_EASYIOPCI },
277 { "eio-pci", BRD_EASYIOPCI },
278 { "eiopci", BRD_EASYIOPCI },
279 { "28", BRD_EASYIOPCI },
283 * Define the module agruments.
285 MODULE_AUTHOR("Greg Ungerer");
286 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
287 MODULE_LICENSE("GPL");
289 module_param_array(board0, charp, &stl_nargs, 0);
290 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
291 module_param_array(board1, charp, &stl_nargs, 0);
292 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
293 module_param_array(board2, charp, &stl_nargs, 0);
294 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
295 module_param_array(board3, charp, &stl_nargs, 0);
296 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
298 /*****************************************************************************/
301 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
302 * to the directly accessible io ports of these boards (not the uarts -
303 * they are in cd1400.h and sc26198.h).
305 #define EIO_8PORTRS 0x04
306 #define EIO_4PORTRS 0x05
307 #define EIO_8PORTDI 0x00
308 #define EIO_8PORTM 0x06
309 #define EIO_MK3 0x03
310 #define EIO_IDBITMASK 0x07
312 #define EIO_BRDMASK 0xf0
313 #define ID_BRD4 0x10
314 #define ID_BRD8 0x20
315 #define ID_BRD16 0x30
317 #define EIO_INTRPEND 0x08
318 #define EIO_INTEDGE 0x00
319 #define EIO_INTLEVEL 0x08
320 #define EIO_0WS 0x10
322 #define ECH_ID 0xa0
323 #define ECH_IDBITMASK 0xe0
324 #define ECH_BRDENABLE 0x08
325 #define ECH_BRDDISABLE 0x00
326 #define ECH_INTENABLE 0x01
327 #define ECH_INTDISABLE 0x00
328 #define ECH_INTLEVEL 0x02
329 #define ECH_INTEDGE 0x00
330 #define ECH_INTRPEND 0x01
331 #define ECH_BRDRESET 0x01
333 #define ECHMC_INTENABLE 0x01
334 #define ECHMC_BRDRESET 0x02
336 #define ECH_PNLSTATUS 2
337 #define ECH_PNL16PORT 0x20
338 #define ECH_PNLIDMASK 0x07
339 #define ECH_PNLXPID 0x40
340 #define ECH_PNLINTRPEND 0x80
342 #define ECH_ADDR2MASK 0x1e0
345 * Define the vector mapping bits for the programmable interrupt board
346 * hardware. These bits encode the interrupt for the board to use - it
347 * is software selectable (except the EIO-8M).
349 static unsigned char stl_vecmap[] = {
350 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
351 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
355 * Lock ordering is that you may not take stallion_lock holding
356 * brd_lock.
359 static spinlock_t brd_lock; /* Guard the board mapping */
360 static spinlock_t stallion_lock; /* Guard the tty driver */
363 * Set up enable and disable macros for the ECH boards. They require
364 * the secondary io address space to be activated and deactivated.
365 * This way all ECH boards can share their secondary io region.
366 * If this is an ECH-PCI board then also need to set the page pointer
367 * to point to the correct page.
369 #define BRDENABLE(brdnr,pagenr) \
370 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
371 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
372 stl_brds[(brdnr)]->ioctrl); \
373 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
374 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
376 #define BRDDISABLE(brdnr) \
377 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
378 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
379 stl_brds[(brdnr)]->ioctrl);
381 #define STL_CD1400MAXBAUD 230400
382 #define STL_SC26198MAXBAUD 460800
384 #define STL_BAUDBASE 115200
385 #define STL_CLOSEDELAY (5 * HZ / 10)
387 /*****************************************************************************/
389 #ifdef CONFIG_PCI
392 * Define the Stallion PCI vendor and device IDs.
394 #ifndef PCI_VENDOR_ID_STALLION
395 #define PCI_VENDOR_ID_STALLION 0x124d
396 #endif
397 #ifndef PCI_DEVICE_ID_ECHPCI832
398 #define PCI_DEVICE_ID_ECHPCI832 0x0000
399 #endif
400 #ifndef PCI_DEVICE_ID_ECHPCI864
401 #define PCI_DEVICE_ID_ECHPCI864 0x0002
402 #endif
403 #ifndef PCI_DEVICE_ID_EIOPCI
404 #define PCI_DEVICE_ID_EIOPCI 0x0003
405 #endif
408 * Define structure to hold all Stallion PCI boards.
410 typedef struct stlpcibrd {
411 unsigned short vendid;
412 unsigned short devid;
413 int brdtype;
414 } stlpcibrd_t;
416 static stlpcibrd_t stl_pcibrds[] = {
417 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
418 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
419 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
420 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
423 static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
425 #endif
427 /*****************************************************************************/
430 * Define macros to extract a brd/port number from a minor number.
432 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
433 #define MINOR2PORT(min) ((min) & 0x3f)
436 * Define a baud rate table that converts termios baud rate selector
437 * into the actual baud rate value. All baud rate calculations are
438 * based on the actual baud rate required.
440 static unsigned int stl_baudrates[] = {
441 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
442 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
446 * Define some handy local macros...
448 #undef MIN
449 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
451 #undef TOLOWER
452 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
454 /*****************************************************************************/
457 * Declare all those functions in this driver!
460 static void stl_argbrds(void);
461 static int stl_parsebrd(stlconf_t *confp, char **argp);
463 static unsigned long stl_atol(char *str);
465 static int stl_init(void);
466 static int stl_open(struct tty_struct *tty, struct file *filp);
467 static void stl_close(struct tty_struct *tty, struct file *filp);
468 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
469 static void stl_putchar(struct tty_struct *tty, unsigned char ch);
470 static void stl_flushchars(struct tty_struct *tty);
471 static int stl_writeroom(struct tty_struct *tty);
472 static int stl_charsinbuffer(struct tty_struct *tty);
473 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
474 static void stl_settermios(struct tty_struct *tty, struct termios *old);
475 static void stl_throttle(struct tty_struct *tty);
476 static void stl_unthrottle(struct tty_struct *tty);
477 static void stl_stop(struct tty_struct *tty);
478 static void stl_start(struct tty_struct *tty);
479 static void stl_flushbuffer(struct tty_struct *tty);
480 static void stl_breakctl(struct tty_struct *tty, int state);
481 static void stl_waituntilsent(struct tty_struct *tty, int timeout);
482 static void stl_sendxchar(struct tty_struct *tty, char ch);
483 static void stl_hangup(struct tty_struct *tty);
484 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
485 static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
486 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
488 static int stl_brdinit(stlbrd_t *brdp);
489 static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
490 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
491 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
492 static int stl_getbrdstats(combrd_t __user *bp);
493 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
494 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
495 static int stl_getportstruct(stlport_t __user *arg);
496 static int stl_getbrdstruct(stlbrd_t __user *arg);
497 static int stl_waitcarrier(stlport_t *portp, struct file *filp);
498 static int stl_eiointr(stlbrd_t *brdp);
499 static int stl_echatintr(stlbrd_t *brdp);
500 static int stl_echmcaintr(stlbrd_t *brdp);
501 static int stl_echpciintr(stlbrd_t *brdp);
502 static int stl_echpci64intr(stlbrd_t *brdp);
503 static void stl_offintr(void *private);
504 static stlbrd_t *stl_allocbrd(void);
505 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
507 static inline int stl_initbrds(void);
508 static inline int stl_initeio(stlbrd_t *brdp);
509 static inline int stl_initech(stlbrd_t *brdp);
510 static inline int stl_getbrdnr(void);
512 #ifdef CONFIG_PCI
513 static inline int stl_findpcibrds(void);
514 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
515 #endif
518 * CD1400 uart specific handling functions.
520 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
521 static int stl_cd1400getreg(stlport_t *portp, int regnr);
522 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
523 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
524 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
525 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
526 static int stl_cd1400getsignals(stlport_t *portp);
527 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
528 static void stl_cd1400ccrwait(stlport_t *portp);
529 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
530 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
531 static void stl_cd1400disableintrs(stlport_t *portp);
532 static void stl_cd1400sendbreak(stlport_t *portp, int len);
533 static void stl_cd1400flowctrl(stlport_t *portp, int state);
534 static void stl_cd1400sendflow(stlport_t *portp, int state);
535 static void stl_cd1400flush(stlport_t *portp);
536 static int stl_cd1400datastate(stlport_t *portp);
537 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
538 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
539 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
540 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
541 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
543 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
546 * SC26198 uart specific handling functions.
548 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
549 static int stl_sc26198getreg(stlport_t *portp, int regnr);
550 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
551 static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
552 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
553 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
554 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
555 static int stl_sc26198getsignals(stlport_t *portp);
556 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
557 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
558 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
559 static void stl_sc26198disableintrs(stlport_t *portp);
560 static void stl_sc26198sendbreak(stlport_t *portp, int len);
561 static void stl_sc26198flowctrl(stlport_t *portp, int state);
562 static void stl_sc26198sendflow(stlport_t *portp, int state);
563 static void stl_sc26198flush(stlport_t *portp);
564 static int stl_sc26198datastate(stlport_t *portp);
565 static void stl_sc26198wait(stlport_t *portp);
566 static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
567 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
568 static void stl_sc26198txisr(stlport_t *port);
569 static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
570 static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
571 static void stl_sc26198rxbadchars(stlport_t *portp);
572 static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
574 /*****************************************************************************/
577 * Generic UART support structure.
579 typedef struct uart {
580 int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
581 void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
582 void (*setport)(stlport_t *portp, struct termios *tiosp);
583 int (*getsignals)(stlport_t *portp);
584 void (*setsignals)(stlport_t *portp, int dtr, int rts);
585 void (*enablerxtx)(stlport_t *portp, int rx, int tx);
586 void (*startrxtx)(stlport_t *portp, int rx, int tx);
587 void (*disableintrs)(stlport_t *portp);
588 void (*sendbreak)(stlport_t *portp, int len);
589 void (*flowctrl)(stlport_t *portp, int state);
590 void (*sendflow)(stlport_t *portp, int state);
591 void (*flush)(stlport_t *portp);
592 int (*datastate)(stlport_t *portp);
593 void (*intr)(stlpanel_t *panelp, unsigned int iobase);
594 } uart_t;
597 * Define some macros to make calling these functions nice and clean.
599 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
600 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
601 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
602 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
603 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
604 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
605 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
606 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
607 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
608 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
609 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
610 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
611 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
613 /*****************************************************************************/
616 * CD1400 UART specific data initialization.
618 static uart_t stl_cd1400uart = {
619 stl_cd1400panelinit,
620 stl_cd1400portinit,
621 stl_cd1400setport,
622 stl_cd1400getsignals,
623 stl_cd1400setsignals,
624 stl_cd1400enablerxtx,
625 stl_cd1400startrxtx,
626 stl_cd1400disableintrs,
627 stl_cd1400sendbreak,
628 stl_cd1400flowctrl,
629 stl_cd1400sendflow,
630 stl_cd1400flush,
631 stl_cd1400datastate,
632 stl_cd1400eiointr
636 * Define the offsets within the register bank of a cd1400 based panel.
637 * These io address offsets are common to the EasyIO board as well.
639 #define EREG_ADDR 0
640 #define EREG_DATA 4
641 #define EREG_RXACK 5
642 #define EREG_TXACK 6
643 #define EREG_MDACK 7
645 #define EREG_BANKSIZE 8
647 #define CD1400_CLK 25000000
648 #define CD1400_CLK8M 20000000
651 * Define the cd1400 baud rate clocks. These are used when calculating
652 * what clock and divisor to use for the required baud rate. Also
653 * define the maximum baud rate allowed, and the default base baud.
655 static int stl_cd1400clkdivs[] = {
656 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
659 /*****************************************************************************/
662 * SC26198 UART specific data initization.
664 static uart_t stl_sc26198uart = {
665 stl_sc26198panelinit,
666 stl_sc26198portinit,
667 stl_sc26198setport,
668 stl_sc26198getsignals,
669 stl_sc26198setsignals,
670 stl_sc26198enablerxtx,
671 stl_sc26198startrxtx,
672 stl_sc26198disableintrs,
673 stl_sc26198sendbreak,
674 stl_sc26198flowctrl,
675 stl_sc26198sendflow,
676 stl_sc26198flush,
677 stl_sc26198datastate,
678 stl_sc26198intr
682 * Define the offsets within the register bank of a sc26198 based panel.
684 #define XP_DATA 0
685 #define XP_ADDR 1
686 #define XP_MODID 2
687 #define XP_STATUS 2
688 #define XP_IACK 3
690 #define XP_BANKSIZE 4
693 * Define the sc26198 baud rate table. Offsets within the table
694 * represent the actual baud rate selector of sc26198 registers.
696 static unsigned int sc26198_baudtable[] = {
697 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
698 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
699 230400, 460800, 921600
702 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
704 /*****************************************************************************/
707 * Define the driver info for a user level control device. Used mainly
708 * to get at port stats - only not using the port device itself.
710 static const struct file_operations stl_fsiomem = {
711 .owner = THIS_MODULE,
712 .ioctl = stl_memioctl,
715 /*****************************************************************************/
717 static struct class *stallion_class;
720 * Loadable module initialization stuff.
723 static int __init stallion_module_init(void)
725 stl_init();
726 return 0;
729 /*****************************************************************************/
731 static void __exit stallion_module_exit(void)
733 stlbrd_t *brdp;
734 stlpanel_t *panelp;
735 stlport_t *portp;
736 int i, j, k;
738 #ifdef DEBUG
739 printk("cleanup_module()\n");
740 #endif
742 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
743 stl_drvversion);
746 * Free up all allocated resources used by the ports. This includes
747 * memory and interrupts. As part of this process we will also do
748 * a hangup on every open port - to try to flush out any processes
749 * hanging onto ports.
751 i = tty_unregister_driver(stl_serial);
752 put_tty_driver(stl_serial);
753 if (i) {
754 printk("STALLION: failed to un-register tty driver, "
755 "errno=%d\n", -i);
756 return;
758 for (i = 0; i < 4; i++)
759 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
760 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
761 printk("STALLION: failed to un-register serial memory device, "
762 "errno=%d\n", -i);
763 class_destroy(stallion_class);
765 for (i = 0; (i < stl_nrbrds); i++) {
766 if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
767 continue;
769 free_irq(brdp->irq, brdp);
771 for (j = 0; (j < STL_MAXPANELS); j++) {
772 panelp = brdp->panels[j];
773 if (panelp == (stlpanel_t *) NULL)
774 continue;
775 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
776 portp = panelp->ports[k];
777 if (portp == (stlport_t *) NULL)
778 continue;
779 if (portp->tty != (struct tty_struct *) NULL)
780 stl_hangup(portp->tty);
781 kfree(portp->tx.buf);
782 kfree(portp);
784 kfree(panelp);
787 release_region(brdp->ioaddr1, brdp->iosize1);
788 if (brdp->iosize2 > 0)
789 release_region(brdp->ioaddr2, brdp->iosize2);
791 kfree(brdp);
792 stl_brds[i] = (stlbrd_t *) NULL;
796 module_init(stallion_module_init);
797 module_exit(stallion_module_exit);
799 /*****************************************************************************/
802 * Check for any arguments passed in on the module load command line.
805 static void stl_argbrds(void)
807 stlconf_t conf;
808 stlbrd_t *brdp;
809 int i;
811 #ifdef DEBUG
812 printk("stl_argbrds()\n");
813 #endif
815 for (i = stl_nrbrds; (i < stl_nargs); i++) {
816 memset(&conf, 0, sizeof(conf));
817 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
818 continue;
819 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
820 continue;
821 stl_nrbrds = i + 1;
822 brdp->brdnr = i;
823 brdp->brdtype = conf.brdtype;
824 brdp->ioaddr1 = conf.ioaddr1;
825 brdp->ioaddr2 = conf.ioaddr2;
826 brdp->irq = conf.irq;
827 brdp->irqtype = conf.irqtype;
828 stl_brdinit(brdp);
832 /*****************************************************************************/
835 * Convert an ascii string number into an unsigned long.
838 static unsigned long stl_atol(char *str)
840 unsigned long val;
841 int base, c;
842 char *sp;
844 val = 0;
845 sp = str;
846 if ((*sp == '0') && (*(sp+1) == 'x')) {
847 base = 16;
848 sp += 2;
849 } else if (*sp == '0') {
850 base = 8;
851 sp++;
852 } else {
853 base = 10;
856 for (; (*sp != 0); sp++) {
857 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
858 if ((c < 0) || (c >= base)) {
859 printk("STALLION: invalid argument %s\n", str);
860 val = 0;
861 break;
863 val = (val * base) + c;
865 return val;
868 /*****************************************************************************/
871 * Parse the supplied argument string, into the board conf struct.
874 static int stl_parsebrd(stlconf_t *confp, char **argp)
876 char *sp;
877 int i;
879 #ifdef DEBUG
880 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
881 #endif
883 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
884 return 0;
886 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
887 *sp = TOLOWER(*sp);
889 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
890 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
891 break;
893 if (i == ARRAY_SIZE(stl_brdstr)) {
894 printk("STALLION: unknown board name, %s?\n", argp[0]);
895 return 0;
898 confp->brdtype = stl_brdstr[i].type;
900 i = 1;
901 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
902 confp->ioaddr1 = stl_atol(argp[i]);
903 i++;
904 if (confp->brdtype == BRD_ECH) {
905 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
906 confp->ioaddr2 = stl_atol(argp[i]);
907 i++;
909 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
910 confp->irq = stl_atol(argp[i]);
911 return 1;
914 /*****************************************************************************/
917 * Allocate a new board structure. Fill out the basic info in it.
920 static stlbrd_t *stl_allocbrd(void)
922 stlbrd_t *brdp;
924 brdp = kzalloc(sizeof(stlbrd_t), GFP_KERNEL);
925 if (!brdp) {
926 printk("STALLION: failed to allocate memory (size=%Zd)\n",
927 sizeof(stlbrd_t));
928 return NULL;
931 brdp->magic = STL_BOARDMAGIC;
932 return brdp;
935 /*****************************************************************************/
937 static int stl_open(struct tty_struct *tty, struct file *filp)
939 stlport_t *portp;
940 stlbrd_t *brdp;
941 unsigned int minordev;
942 int brdnr, panelnr, portnr, rc;
944 #ifdef DEBUG
945 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
946 (int) filp, tty->name);
947 #endif
949 minordev = tty->index;
950 brdnr = MINOR2BRD(minordev);
951 if (brdnr >= stl_nrbrds)
952 return -ENODEV;
953 brdp = stl_brds[brdnr];
954 if (brdp == (stlbrd_t *) NULL)
955 return -ENODEV;
956 minordev = MINOR2PORT(minordev);
957 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
958 if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
959 break;
960 if (minordev < brdp->panels[panelnr]->nrports) {
961 portnr = minordev;
962 break;
964 minordev -= brdp->panels[panelnr]->nrports;
966 if (portnr < 0)
967 return -ENODEV;
969 portp = brdp->panels[panelnr]->ports[portnr];
970 if (portp == (stlport_t *) NULL)
971 return -ENODEV;
974 * On the first open of the device setup the port hardware, and
975 * initialize the per port data structure.
977 portp->tty = tty;
978 tty->driver_data = portp;
979 portp->refcount++;
981 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
982 if (!portp->tx.buf) {
983 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
984 if (!portp->tx.buf)
985 return -ENOMEM;
986 portp->tx.head = portp->tx.buf;
987 portp->tx.tail = portp->tx.buf;
989 stl_setport(portp, tty->termios);
990 portp->sigs = stl_getsignals(portp);
991 stl_setsignals(portp, 1, 1);
992 stl_enablerxtx(portp, 1, 1);
993 stl_startrxtx(portp, 1, 0);
994 clear_bit(TTY_IO_ERROR, &tty->flags);
995 portp->flags |= ASYNC_INITIALIZED;
999 * Check if this port is in the middle of closing. If so then wait
1000 * until it is closed then return error status, based on flag settings.
1001 * The sleep here does not need interrupt protection since the wakeup
1002 * for it is done with the same context.
1004 if (portp->flags & ASYNC_CLOSING) {
1005 interruptible_sleep_on(&portp->close_wait);
1006 if (portp->flags & ASYNC_HUP_NOTIFY)
1007 return -EAGAIN;
1008 return -ERESTARTSYS;
1012 * Based on type of open being done check if it can overlap with any
1013 * previous opens still in effect. If we are a normal serial device
1014 * then also we might have to wait for carrier.
1016 if (!(filp->f_flags & O_NONBLOCK)) {
1017 if ((rc = stl_waitcarrier(portp, filp)) != 0)
1018 return rc;
1020 portp->flags |= ASYNC_NORMAL_ACTIVE;
1022 return 0;
1025 /*****************************************************************************/
1028 * Possibly need to wait for carrier (DCD signal) to come high. Say
1029 * maybe because if we are clocal then we don't need to wait...
1032 static int stl_waitcarrier(stlport_t *portp, struct file *filp)
1034 unsigned long flags;
1035 int rc, doclocal;
1037 #ifdef DEBUG
1038 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
1039 #endif
1041 rc = 0;
1042 doclocal = 0;
1044 spin_lock_irqsave(&stallion_lock, flags);
1046 if (portp->tty->termios->c_cflag & CLOCAL)
1047 doclocal++;
1049 portp->openwaitcnt++;
1050 if (! tty_hung_up_p(filp))
1051 portp->refcount--;
1053 for (;;) {
1054 /* Takes brd_lock internally */
1055 stl_setsignals(portp, 1, 1);
1056 if (tty_hung_up_p(filp) ||
1057 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1058 if (portp->flags & ASYNC_HUP_NOTIFY)
1059 rc = -EBUSY;
1060 else
1061 rc = -ERESTARTSYS;
1062 break;
1064 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1065 (doclocal || (portp->sigs & TIOCM_CD))) {
1066 break;
1068 if (signal_pending(current)) {
1069 rc = -ERESTARTSYS;
1070 break;
1072 /* FIXME */
1073 interruptible_sleep_on(&portp->open_wait);
1076 if (! tty_hung_up_p(filp))
1077 portp->refcount++;
1078 portp->openwaitcnt--;
1079 spin_unlock_irqrestore(&stallion_lock, flags);
1081 return rc;
1084 /*****************************************************************************/
1086 static void stl_close(struct tty_struct *tty, struct file *filp)
1088 stlport_t *portp;
1089 unsigned long flags;
1091 #ifdef DEBUG
1092 printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1093 #endif
1095 portp = tty->driver_data;
1096 if (portp == (stlport_t *) NULL)
1097 return;
1099 spin_lock_irqsave(&stallion_lock, flags);
1100 if (tty_hung_up_p(filp)) {
1101 spin_unlock_irqrestore(&stallion_lock, flags);
1102 return;
1104 if ((tty->count == 1) && (portp->refcount != 1))
1105 portp->refcount = 1;
1106 if (portp->refcount-- > 1) {
1107 spin_unlock_irqrestore(&stallion_lock, flags);
1108 return;
1111 portp->refcount = 0;
1112 portp->flags |= ASYNC_CLOSING;
1115 * May want to wait for any data to drain before closing. The BUSY
1116 * flag keeps track of whether we are still sending or not - it is
1117 * very accurate for the cd1400, not quite so for the sc26198.
1118 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1120 tty->closing = 1;
1122 spin_unlock_irqrestore(&stallion_lock, flags);
1124 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1125 tty_wait_until_sent(tty, portp->closing_wait);
1126 stl_waituntilsent(tty, (HZ / 2));
1129 spin_lock_irqsave(&stallion_lock, flags);
1130 portp->flags &= ~ASYNC_INITIALIZED;
1131 spin_unlock_irqrestore(&stallion_lock, flags);
1133 stl_disableintrs(portp);
1134 if (tty->termios->c_cflag & HUPCL)
1135 stl_setsignals(portp, 0, 0);
1136 stl_enablerxtx(portp, 0, 0);
1137 stl_flushbuffer(tty);
1138 portp->istate = 0;
1139 if (portp->tx.buf != (char *) NULL) {
1140 kfree(portp->tx.buf);
1141 portp->tx.buf = (char *) NULL;
1142 portp->tx.head = (char *) NULL;
1143 portp->tx.tail = (char *) NULL;
1145 set_bit(TTY_IO_ERROR, &tty->flags);
1146 tty_ldisc_flush(tty);
1148 tty->closing = 0;
1149 portp->tty = (struct tty_struct *) NULL;
1151 if (portp->openwaitcnt) {
1152 if (portp->close_delay)
1153 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1154 wake_up_interruptible(&portp->open_wait);
1157 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1158 wake_up_interruptible(&portp->close_wait);
1161 /*****************************************************************************/
1164 * Write routine. Take data and stuff it in to the TX ring queue.
1165 * If transmit interrupts are not running then start them.
1168 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1170 stlport_t *portp;
1171 unsigned int len, stlen;
1172 unsigned char *chbuf;
1173 char *head, *tail;
1175 #ifdef DEBUG
1176 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1177 (int) tty, (int) buf, count);
1178 #endif
1180 portp = tty->driver_data;
1181 if (portp == (stlport_t *) NULL)
1182 return 0;
1183 if (portp->tx.buf == (char *) NULL)
1184 return 0;
1187 * If copying direct from user space we must cater for page faults,
1188 * causing us to "sleep" here for a while. To handle this copy in all
1189 * the data we need now, into a local buffer. Then when we got it all
1190 * copy it into the TX buffer.
1192 chbuf = (unsigned char *) buf;
1194 head = portp->tx.head;
1195 tail = portp->tx.tail;
1196 if (head >= tail) {
1197 len = STL_TXBUFSIZE - (head - tail) - 1;
1198 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1199 } else {
1200 len = tail - head - 1;
1201 stlen = len;
1204 len = MIN(len, count);
1205 count = 0;
1206 while (len > 0) {
1207 stlen = MIN(len, stlen);
1208 memcpy(head, chbuf, stlen);
1209 len -= stlen;
1210 chbuf += stlen;
1211 count += stlen;
1212 head += stlen;
1213 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1214 head = portp->tx.buf;
1215 stlen = tail - head;
1218 portp->tx.head = head;
1220 clear_bit(ASYI_TXLOW, &portp->istate);
1221 stl_startrxtx(portp, -1, 1);
1223 return count;
1226 /*****************************************************************************/
1228 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1230 stlport_t *portp;
1231 unsigned int len;
1232 char *head, *tail;
1234 #ifdef DEBUG
1235 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1236 #endif
1238 if (tty == (struct tty_struct *) NULL)
1239 return;
1240 portp = tty->driver_data;
1241 if (portp == (stlport_t *) NULL)
1242 return;
1243 if (portp->tx.buf == (char *) NULL)
1244 return;
1246 head = portp->tx.head;
1247 tail = portp->tx.tail;
1249 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1250 len--;
1252 if (len > 0) {
1253 *head++ = ch;
1254 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1255 head = portp->tx.buf;
1257 portp->tx.head = head;
1260 /*****************************************************************************/
1263 * If there are any characters in the buffer then make sure that TX
1264 * interrupts are on and get'em out. Normally used after the putchar
1265 * routine has been called.
1268 static void stl_flushchars(struct tty_struct *tty)
1270 stlport_t *portp;
1272 #ifdef DEBUG
1273 printk("stl_flushchars(tty=%x)\n", (int) tty);
1274 #endif
1276 if (tty == (struct tty_struct *) NULL)
1277 return;
1278 portp = tty->driver_data;
1279 if (portp == (stlport_t *) NULL)
1280 return;
1281 if (portp->tx.buf == (char *) NULL)
1282 return;
1284 stl_startrxtx(portp, -1, 1);
1287 /*****************************************************************************/
1289 static int stl_writeroom(struct tty_struct *tty)
1291 stlport_t *portp;
1292 char *head, *tail;
1294 #ifdef DEBUG
1295 printk("stl_writeroom(tty=%x)\n", (int) tty);
1296 #endif
1298 if (tty == (struct tty_struct *) NULL)
1299 return 0;
1300 portp = tty->driver_data;
1301 if (portp == (stlport_t *) NULL)
1302 return 0;
1303 if (portp->tx.buf == (char *) NULL)
1304 return 0;
1306 head = portp->tx.head;
1307 tail = portp->tx.tail;
1308 return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1311 /*****************************************************************************/
1314 * Return number of chars in the TX buffer. Normally we would just
1315 * calculate the number of chars in the buffer and return that, but if
1316 * the buffer is empty and TX interrupts are still on then we return
1317 * that the buffer still has 1 char in it. This way whoever called us
1318 * will not think that ALL chars have drained - since the UART still
1319 * must have some chars in it (we are busy after all).
1322 static int stl_charsinbuffer(struct tty_struct *tty)
1324 stlport_t *portp;
1325 unsigned int size;
1326 char *head, *tail;
1328 #ifdef DEBUG
1329 printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
1330 #endif
1332 if (tty == (struct tty_struct *) NULL)
1333 return 0;
1334 portp = tty->driver_data;
1335 if (portp == (stlport_t *) NULL)
1336 return 0;
1337 if (portp->tx.buf == (char *) NULL)
1338 return 0;
1340 head = portp->tx.head;
1341 tail = portp->tx.tail;
1342 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1343 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1344 size = 1;
1345 return size;
1348 /*****************************************************************************/
1351 * Generate the serial struct info.
1354 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
1356 struct serial_struct sio;
1357 stlbrd_t *brdp;
1359 #ifdef DEBUG
1360 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1361 #endif
1363 memset(&sio, 0, sizeof(struct serial_struct));
1364 sio.line = portp->portnr;
1365 sio.port = portp->ioaddr;
1366 sio.flags = portp->flags;
1367 sio.baud_base = portp->baud_base;
1368 sio.close_delay = portp->close_delay;
1369 sio.closing_wait = portp->closing_wait;
1370 sio.custom_divisor = portp->custom_divisor;
1371 sio.hub6 = 0;
1372 if (portp->uartp == &stl_cd1400uart) {
1373 sio.type = PORT_CIRRUS;
1374 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1375 } else {
1376 sio.type = PORT_UNKNOWN;
1377 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1380 brdp = stl_brds[portp->brdnr];
1381 if (brdp != (stlbrd_t *) NULL)
1382 sio.irq = brdp->irq;
1384 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1387 /*****************************************************************************/
1390 * Set port according to the serial struct info.
1391 * At this point we do not do any auto-configure stuff, so we will
1392 * just quietly ignore any requests to change irq, etc.
1395 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
1397 struct serial_struct sio;
1399 #ifdef DEBUG
1400 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1401 #endif
1403 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1404 return -EFAULT;
1405 if (!capable(CAP_SYS_ADMIN)) {
1406 if ((sio.baud_base != portp->baud_base) ||
1407 (sio.close_delay != portp->close_delay) ||
1408 ((sio.flags & ~ASYNC_USR_MASK) !=
1409 (portp->flags & ~ASYNC_USR_MASK)))
1410 return -EPERM;
1413 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1414 (sio.flags & ASYNC_USR_MASK);
1415 portp->baud_base = sio.baud_base;
1416 portp->close_delay = sio.close_delay;
1417 portp->closing_wait = sio.closing_wait;
1418 portp->custom_divisor = sio.custom_divisor;
1419 stl_setport(portp, portp->tty->termios);
1420 return 0;
1423 /*****************************************************************************/
1425 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1427 stlport_t *portp;
1429 if (tty == (struct tty_struct *) NULL)
1430 return -ENODEV;
1431 portp = tty->driver_data;
1432 if (portp == (stlport_t *) NULL)
1433 return -ENODEV;
1434 if (tty->flags & (1 << TTY_IO_ERROR))
1435 return -EIO;
1437 return stl_getsignals(portp);
1440 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1441 unsigned int set, unsigned int clear)
1443 stlport_t *portp;
1444 int rts = -1, dtr = -1;
1446 if (tty == (struct tty_struct *) NULL)
1447 return -ENODEV;
1448 portp = tty->driver_data;
1449 if (portp == (stlport_t *) NULL)
1450 return -ENODEV;
1451 if (tty->flags & (1 << TTY_IO_ERROR))
1452 return -EIO;
1454 if (set & TIOCM_RTS)
1455 rts = 1;
1456 if (set & TIOCM_DTR)
1457 dtr = 1;
1458 if (clear & TIOCM_RTS)
1459 rts = 0;
1460 if (clear & TIOCM_DTR)
1461 dtr = 0;
1463 stl_setsignals(portp, dtr, rts);
1464 return 0;
1467 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1469 stlport_t *portp;
1470 unsigned int ival;
1471 int rc;
1472 void __user *argp = (void __user *)arg;
1474 #ifdef DEBUG
1475 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1476 (int) tty, (int) file, cmd, (int) arg);
1477 #endif
1479 if (tty == (struct tty_struct *) NULL)
1480 return -ENODEV;
1481 portp = tty->driver_data;
1482 if (portp == (stlport_t *) NULL)
1483 return -ENODEV;
1485 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1486 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1487 if (tty->flags & (1 << TTY_IO_ERROR))
1488 return -EIO;
1491 rc = 0;
1493 switch (cmd) {
1494 case TIOCGSOFTCAR:
1495 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1496 (unsigned __user *) argp);
1497 break;
1498 case TIOCSSOFTCAR:
1499 if (get_user(ival, (unsigned int __user *) arg))
1500 return -EFAULT;
1501 tty->termios->c_cflag =
1502 (tty->termios->c_cflag & ~CLOCAL) |
1503 (ival ? CLOCAL : 0);
1504 break;
1505 case TIOCGSERIAL:
1506 rc = stl_getserial(portp, argp);
1507 break;
1508 case TIOCSSERIAL:
1509 rc = stl_setserial(portp, argp);
1510 break;
1511 case COM_GETPORTSTATS:
1512 rc = stl_getportstats(portp, argp);
1513 break;
1514 case COM_CLRPORTSTATS:
1515 rc = stl_clrportstats(portp, argp);
1516 break;
1517 case TIOCSERCONFIG:
1518 case TIOCSERGWILD:
1519 case TIOCSERSWILD:
1520 case TIOCSERGETLSR:
1521 case TIOCSERGSTRUCT:
1522 case TIOCSERGETMULTI:
1523 case TIOCSERSETMULTI:
1524 default:
1525 rc = -ENOIOCTLCMD;
1526 break;
1529 return rc;
1532 /*****************************************************************************/
1534 static void stl_settermios(struct tty_struct *tty, struct termios *old)
1536 stlport_t *portp;
1537 struct termios *tiosp;
1539 #ifdef DEBUG
1540 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
1541 #endif
1543 if (tty == (struct tty_struct *) NULL)
1544 return;
1545 portp = tty->driver_data;
1546 if (portp == (stlport_t *) NULL)
1547 return;
1549 tiosp = tty->termios;
1550 if ((tiosp->c_cflag == old->c_cflag) &&
1551 (tiosp->c_iflag == old->c_iflag))
1552 return;
1554 stl_setport(portp, tiosp);
1555 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1556 -1);
1557 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1558 tty->hw_stopped = 0;
1559 stl_start(tty);
1561 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1562 wake_up_interruptible(&portp->open_wait);
1565 /*****************************************************************************/
1568 * Attempt to flow control who ever is sending us data. Based on termios
1569 * settings use software or/and hardware flow control.
1572 static void stl_throttle(struct tty_struct *tty)
1574 stlport_t *portp;
1576 #ifdef DEBUG
1577 printk("stl_throttle(tty=%x)\n", (int) tty);
1578 #endif
1580 if (tty == (struct tty_struct *) NULL)
1581 return;
1582 portp = tty->driver_data;
1583 if (portp == (stlport_t *) NULL)
1584 return;
1585 stl_flowctrl(portp, 0);
1588 /*****************************************************************************/
1591 * Unflow control the device sending us data...
1594 static void stl_unthrottle(struct tty_struct *tty)
1596 stlport_t *portp;
1598 #ifdef DEBUG
1599 printk("stl_unthrottle(tty=%x)\n", (int) tty);
1600 #endif
1602 if (tty == (struct tty_struct *) NULL)
1603 return;
1604 portp = tty->driver_data;
1605 if (portp == (stlport_t *) NULL)
1606 return;
1607 stl_flowctrl(portp, 1);
1610 /*****************************************************************************/
1613 * Stop the transmitter. Basically to do this we will just turn TX
1614 * interrupts off.
1617 static void stl_stop(struct tty_struct *tty)
1619 stlport_t *portp;
1621 #ifdef DEBUG
1622 printk("stl_stop(tty=%x)\n", (int) tty);
1623 #endif
1625 if (tty == (struct tty_struct *) NULL)
1626 return;
1627 portp = tty->driver_data;
1628 if (portp == (stlport_t *) NULL)
1629 return;
1630 stl_startrxtx(portp, -1, 0);
1633 /*****************************************************************************/
1636 * Start the transmitter again. Just turn TX interrupts back on.
1639 static void stl_start(struct tty_struct *tty)
1641 stlport_t *portp;
1643 #ifdef DEBUG
1644 printk("stl_start(tty=%x)\n", (int) tty);
1645 #endif
1647 if (tty == (struct tty_struct *) NULL)
1648 return;
1649 portp = tty->driver_data;
1650 if (portp == (stlport_t *) NULL)
1651 return;
1652 stl_startrxtx(portp, -1, 1);
1655 /*****************************************************************************/
1658 * Hangup this port. This is pretty much like closing the port, only
1659 * a little more brutal. No waiting for data to drain. Shutdown the
1660 * port and maybe drop signals.
1663 static void stl_hangup(struct tty_struct *tty)
1665 stlport_t *portp;
1667 #ifdef DEBUG
1668 printk("stl_hangup(tty=%x)\n", (int) tty);
1669 #endif
1671 if (tty == (struct tty_struct *) NULL)
1672 return;
1673 portp = tty->driver_data;
1674 if (portp == (stlport_t *) NULL)
1675 return;
1677 portp->flags &= ~ASYNC_INITIALIZED;
1678 stl_disableintrs(portp);
1679 if (tty->termios->c_cflag & HUPCL)
1680 stl_setsignals(portp, 0, 0);
1681 stl_enablerxtx(portp, 0, 0);
1682 stl_flushbuffer(tty);
1683 portp->istate = 0;
1684 set_bit(TTY_IO_ERROR, &tty->flags);
1685 if (portp->tx.buf != (char *) NULL) {
1686 kfree(portp->tx.buf);
1687 portp->tx.buf = (char *) NULL;
1688 portp->tx.head = (char *) NULL;
1689 portp->tx.tail = (char *) NULL;
1691 portp->tty = (struct tty_struct *) NULL;
1692 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1693 portp->refcount = 0;
1694 wake_up_interruptible(&portp->open_wait);
1697 /*****************************************************************************/
1699 static void stl_flushbuffer(struct tty_struct *tty)
1701 stlport_t *portp;
1703 #ifdef DEBUG
1704 printk("stl_flushbuffer(tty=%x)\n", (int) tty);
1705 #endif
1707 if (tty == (struct tty_struct *) NULL)
1708 return;
1709 portp = tty->driver_data;
1710 if (portp == (stlport_t *) NULL)
1711 return;
1713 stl_flush(portp);
1714 tty_wakeup(tty);
1717 /*****************************************************************************/
1719 static void stl_breakctl(struct tty_struct *tty, int state)
1721 stlport_t *portp;
1723 #ifdef DEBUG
1724 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
1725 #endif
1727 if (tty == (struct tty_struct *) NULL)
1728 return;
1729 portp = tty->driver_data;
1730 if (portp == (stlport_t *) NULL)
1731 return;
1733 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1736 /*****************************************************************************/
1738 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
1740 stlport_t *portp;
1741 unsigned long tend;
1743 #ifdef DEBUG
1744 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
1745 #endif
1747 if (tty == (struct tty_struct *) NULL)
1748 return;
1749 portp = tty->driver_data;
1750 if (portp == (stlport_t *) NULL)
1751 return;
1753 if (timeout == 0)
1754 timeout = HZ;
1755 tend = jiffies + timeout;
1757 while (stl_datastate(portp)) {
1758 if (signal_pending(current))
1759 break;
1760 msleep_interruptible(20);
1761 if (time_after_eq(jiffies, tend))
1762 break;
1766 /*****************************************************************************/
1768 static void stl_sendxchar(struct tty_struct *tty, char ch)
1770 stlport_t *portp;
1772 #ifdef DEBUG
1773 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
1774 #endif
1776 if (tty == (struct tty_struct *) NULL)
1777 return;
1778 portp = tty->driver_data;
1779 if (portp == (stlport_t *) NULL)
1780 return;
1782 if (ch == STOP_CHAR(tty))
1783 stl_sendflow(portp, 0);
1784 else if (ch == START_CHAR(tty))
1785 stl_sendflow(portp, 1);
1786 else
1787 stl_putchar(tty, ch);
1790 /*****************************************************************************/
1792 #define MAXLINE 80
1795 * Format info for a specified port. The line is deliberately limited
1796 * to 80 characters. (If it is too long it will be truncated, if too
1797 * short then padded with spaces).
1800 static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
1802 char *sp;
1803 int sigs, cnt;
1805 sp = pos;
1806 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1807 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1808 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1810 if (portp->stats.rxframing)
1811 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1812 if (portp->stats.rxparity)
1813 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1814 if (portp->stats.rxbreaks)
1815 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1816 if (portp->stats.rxoverrun)
1817 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1819 sigs = stl_getsignals(portp);
1820 cnt = sprintf(sp, "%s%s%s%s%s ",
1821 (sigs & TIOCM_RTS) ? "|RTS" : "",
1822 (sigs & TIOCM_CTS) ? "|CTS" : "",
1823 (sigs & TIOCM_DTR) ? "|DTR" : "",
1824 (sigs & TIOCM_CD) ? "|DCD" : "",
1825 (sigs & TIOCM_DSR) ? "|DSR" : "");
1826 *sp = ' ';
1827 sp += cnt;
1829 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1830 *sp++ = ' ';
1831 if (cnt >= MAXLINE)
1832 pos[(MAXLINE - 2)] = '+';
1833 pos[(MAXLINE - 1)] = '\n';
1835 return MAXLINE;
1838 /*****************************************************************************/
1841 * Port info, read from the /proc file system.
1844 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1846 stlbrd_t *brdp;
1847 stlpanel_t *panelp;
1848 stlport_t *portp;
1849 int brdnr, panelnr, portnr, totalport;
1850 int curoff, maxoff;
1851 char *pos;
1853 #ifdef DEBUG
1854 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1855 "data=%x\n", (int) page, (int) start, (int) off, count,
1856 (int) eof, (int) data);
1857 #endif
1859 pos = page;
1860 totalport = 0;
1861 curoff = 0;
1863 if (off == 0) {
1864 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1865 stl_drvversion);
1866 while (pos < (page + MAXLINE - 1))
1867 *pos++ = ' ';
1868 *pos++ = '\n';
1870 curoff = MAXLINE;
1873 * We scan through for each board, panel and port. The offset is
1874 * calculated on the fly, and irrelevant ports are skipped.
1876 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1877 brdp = stl_brds[brdnr];
1878 if (brdp == (stlbrd_t *) NULL)
1879 continue;
1880 if (brdp->state == 0)
1881 continue;
1883 maxoff = curoff + (brdp->nrports * MAXLINE);
1884 if (off >= maxoff) {
1885 curoff = maxoff;
1886 continue;
1889 totalport = brdnr * STL_MAXPORTS;
1890 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1891 panelp = brdp->panels[panelnr];
1892 if (panelp == (stlpanel_t *) NULL)
1893 continue;
1895 maxoff = curoff + (panelp->nrports * MAXLINE);
1896 if (off >= maxoff) {
1897 curoff = maxoff;
1898 totalport += panelp->nrports;
1899 continue;
1902 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1903 totalport++) {
1904 portp = panelp->ports[portnr];
1905 if (portp == (stlport_t *) NULL)
1906 continue;
1907 if (off >= (curoff += MAXLINE))
1908 continue;
1909 if ((pos - page + MAXLINE) > count)
1910 goto stl_readdone;
1911 pos += stl_portinfo(portp, totalport, pos);
1916 *eof = 1;
1918 stl_readdone:
1919 *start = page;
1920 return (pos - page);
1923 /*****************************************************************************/
1926 * All board interrupts are vectored through here first. This code then
1927 * calls off to the approrpriate board interrupt handlers.
1930 static irqreturn_t stl_intr(int irq, void *dev_id)
1932 stlbrd_t *brdp = (stlbrd_t *) dev_id;
1934 #ifdef DEBUG
1935 printk("stl_intr(brdp=%x,irq=%d)\n", (int) brdp, irq);
1936 #endif
1938 return IRQ_RETVAL((* brdp->isr)(brdp));
1941 /*****************************************************************************/
1944 * Interrupt service routine for EasyIO board types.
1947 static int stl_eiointr(stlbrd_t *brdp)
1949 stlpanel_t *panelp;
1950 unsigned int iobase;
1951 int handled = 0;
1953 spin_lock(&brd_lock);
1954 panelp = brdp->panels[0];
1955 iobase = panelp->iobase;
1956 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1957 handled = 1;
1958 (* panelp->isr)(panelp, iobase);
1960 spin_unlock(&brd_lock);
1961 return handled;
1964 /*****************************************************************************/
1967 * Interrupt service routine for ECH-AT board types.
1970 static int stl_echatintr(stlbrd_t *brdp)
1972 stlpanel_t *panelp;
1973 unsigned int ioaddr;
1974 int bnknr;
1975 int handled = 0;
1977 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1979 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1980 handled = 1;
1981 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1982 ioaddr = brdp->bnkstataddr[bnknr];
1983 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1984 panelp = brdp->bnk2panel[bnknr];
1985 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1990 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1992 return handled;
1995 /*****************************************************************************/
1998 * Interrupt service routine for ECH-MCA board types.
2001 static int stl_echmcaintr(stlbrd_t *brdp)
2003 stlpanel_t *panelp;
2004 unsigned int ioaddr;
2005 int bnknr;
2006 int handled = 0;
2008 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2009 handled = 1;
2010 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2011 ioaddr = brdp->bnkstataddr[bnknr];
2012 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2013 panelp = brdp->bnk2panel[bnknr];
2014 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2018 return handled;
2021 /*****************************************************************************/
2024 * Interrupt service routine for ECH-PCI board types.
2027 static int stl_echpciintr(stlbrd_t *brdp)
2029 stlpanel_t *panelp;
2030 unsigned int ioaddr;
2031 int bnknr, recheck;
2032 int handled = 0;
2034 while (1) {
2035 recheck = 0;
2036 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2037 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
2038 ioaddr = brdp->bnkstataddr[bnknr];
2039 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2040 panelp = brdp->bnk2panel[bnknr];
2041 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2042 recheck++;
2043 handled = 1;
2046 if (! recheck)
2047 break;
2049 return handled;
2052 /*****************************************************************************/
2055 * Interrupt service routine for ECH-8/64-PCI board types.
2058 static int stl_echpci64intr(stlbrd_t *brdp)
2060 stlpanel_t *panelp;
2061 unsigned int ioaddr;
2062 int bnknr;
2063 int handled = 0;
2065 while (inb(brdp->ioctrl) & 0x1) {
2066 handled = 1;
2067 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2068 ioaddr = brdp->bnkstataddr[bnknr];
2069 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2070 panelp = brdp->bnk2panel[bnknr];
2071 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2076 return handled;
2079 /*****************************************************************************/
2082 * Service an off-level request for some channel.
2084 static void stl_offintr(void *private)
2086 stlport_t *portp;
2087 struct tty_struct *tty;
2088 unsigned int oldsigs;
2090 portp = private;
2092 #ifdef DEBUG
2093 printk("stl_offintr(portp=%x)\n", (int) portp);
2094 #endif
2096 if (portp == (stlport_t *) NULL)
2097 return;
2099 tty = portp->tty;
2100 if (tty == (struct tty_struct *) NULL)
2101 return;
2103 lock_kernel();
2104 if (test_bit(ASYI_TXLOW, &portp->istate)) {
2105 tty_wakeup(tty);
2107 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
2108 clear_bit(ASYI_DCDCHANGE, &portp->istate);
2109 oldsigs = portp->sigs;
2110 portp->sigs = stl_getsignals(portp);
2111 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
2112 wake_up_interruptible(&portp->open_wait);
2113 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
2114 if (portp->flags & ASYNC_CHECK_CD)
2115 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2118 unlock_kernel();
2121 /*****************************************************************************/
2124 * Initialize all the ports on a panel.
2127 static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
2129 stlport_t *portp;
2130 int chipmask, i;
2132 #ifdef DEBUG
2133 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
2134 #endif
2136 chipmask = stl_panelinit(brdp, panelp);
2139 * All UART's are initialized (if found!). Now go through and setup
2140 * each ports data structures.
2142 for (i = 0; (i < panelp->nrports); i++) {
2143 portp = kzalloc(sizeof(stlport_t), GFP_KERNEL);
2144 if (!portp) {
2145 printk("STALLION: failed to allocate memory "
2146 "(size=%Zd)\n", sizeof(stlport_t));
2147 break;
2150 portp->magic = STL_PORTMAGIC;
2151 portp->portnr = i;
2152 portp->brdnr = panelp->brdnr;
2153 portp->panelnr = panelp->panelnr;
2154 portp->uartp = panelp->uartp;
2155 portp->clk = brdp->clk;
2156 portp->baud_base = STL_BAUDBASE;
2157 portp->close_delay = STL_CLOSEDELAY;
2158 portp->closing_wait = 30 * HZ;
2159 INIT_WORK(&portp->tqueue, stl_offintr, portp);
2160 init_waitqueue_head(&portp->open_wait);
2161 init_waitqueue_head(&portp->close_wait);
2162 portp->stats.brd = portp->brdnr;
2163 portp->stats.panel = portp->panelnr;
2164 portp->stats.port = portp->portnr;
2165 panelp->ports[i] = portp;
2166 stl_portinit(brdp, panelp, portp);
2169 return(0);
2172 /*****************************************************************************/
2175 * Try to find and initialize an EasyIO board.
2178 static inline int stl_initeio(stlbrd_t *brdp)
2180 stlpanel_t *panelp;
2181 unsigned int status;
2182 char *name;
2183 int rc;
2185 #ifdef DEBUG
2186 printk("stl_initeio(brdp=%x)\n", (int) brdp);
2187 #endif
2189 brdp->ioctrl = brdp->ioaddr1 + 1;
2190 brdp->iostatus = brdp->ioaddr1 + 2;
2192 status = inb(brdp->iostatus);
2193 if ((status & EIO_IDBITMASK) == EIO_MK3)
2194 brdp->ioctrl++;
2197 * Handle board specific stuff now. The real difference is PCI
2198 * or not PCI.
2200 if (brdp->brdtype == BRD_EASYIOPCI) {
2201 brdp->iosize1 = 0x80;
2202 brdp->iosize2 = 0x80;
2203 name = "serial(EIO-PCI)";
2204 outb(0x41, (brdp->ioaddr2 + 0x4c));
2205 } else {
2206 brdp->iosize1 = 8;
2207 name = "serial(EIO)";
2208 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2209 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2210 printk("STALLION: invalid irq=%d for brd=%d\n",
2211 brdp->irq, brdp->brdnr);
2212 return(-EINVAL);
2214 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2215 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2216 brdp->ioctrl);
2219 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2220 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2221 "%x conflicts with another device\n", brdp->brdnr,
2222 brdp->ioaddr1);
2223 return(-EBUSY);
2226 if (brdp->iosize2 > 0)
2227 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2228 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2229 "address %x conflicts with another device\n",
2230 brdp->brdnr, brdp->ioaddr2);
2231 printk(KERN_WARNING "STALLION: Warning, also "
2232 "releasing board %d I/O address %x \n",
2233 brdp->brdnr, brdp->ioaddr1);
2234 release_region(brdp->ioaddr1, brdp->iosize1);
2235 return(-EBUSY);
2239 * Everything looks OK, so let's go ahead and probe for the hardware.
2241 brdp->clk = CD1400_CLK;
2242 brdp->isr = stl_eiointr;
2244 switch (status & EIO_IDBITMASK) {
2245 case EIO_8PORTM:
2246 brdp->clk = CD1400_CLK8M;
2247 /* fall thru */
2248 case EIO_8PORTRS:
2249 case EIO_8PORTDI:
2250 brdp->nrports = 8;
2251 break;
2252 case EIO_4PORTRS:
2253 brdp->nrports = 4;
2254 break;
2255 case EIO_MK3:
2256 switch (status & EIO_BRDMASK) {
2257 case ID_BRD4:
2258 brdp->nrports = 4;
2259 break;
2260 case ID_BRD8:
2261 brdp->nrports = 8;
2262 break;
2263 case ID_BRD16:
2264 brdp->nrports = 16;
2265 break;
2266 default:
2267 return(-ENODEV);
2269 break;
2270 default:
2271 return(-ENODEV);
2275 * We have verified that the board is actually present, so now we
2276 * can complete the setup.
2279 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2280 if (!panelp) {
2281 printk(KERN_WARNING "STALLION: failed to allocate memory "
2282 "(size=%Zd)\n", sizeof(stlpanel_t));
2283 return -ENOMEM;
2286 panelp->magic = STL_PANELMAGIC;
2287 panelp->brdnr = brdp->brdnr;
2288 panelp->panelnr = 0;
2289 panelp->nrports = brdp->nrports;
2290 panelp->iobase = brdp->ioaddr1;
2291 panelp->hwid = status;
2292 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2293 panelp->uartp = (void *) &stl_sc26198uart;
2294 panelp->isr = stl_sc26198intr;
2295 } else {
2296 panelp->uartp = (void *) &stl_cd1400uart;
2297 panelp->isr = stl_cd1400eiointr;
2300 brdp->panels[0] = panelp;
2301 brdp->nrpanels = 1;
2302 brdp->state |= BRD_FOUND;
2303 brdp->hwid = status;
2304 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2305 printk("STALLION: failed to register interrupt "
2306 "routine for %s irq=%d\n", name, brdp->irq);
2307 rc = -ENODEV;
2308 } else {
2309 rc = 0;
2311 return rc;
2314 /*****************************************************************************/
2317 * Try to find an ECH board and initialize it. This code is capable of
2318 * dealing with all types of ECH board.
2321 static inline int stl_initech(stlbrd_t *brdp)
2323 stlpanel_t *panelp;
2324 unsigned int status, nxtid, ioaddr, conflict;
2325 int panelnr, banknr, i;
2326 char *name;
2328 #ifdef DEBUG
2329 printk("stl_initech(brdp=%x)\n", (int) brdp);
2330 #endif
2332 status = 0;
2333 conflict = 0;
2336 * Set up the initial board register contents for boards. This varies a
2337 * bit between the different board types. So we need to handle each
2338 * separately. Also do a check that the supplied IRQ is good.
2340 switch (brdp->brdtype) {
2342 case BRD_ECH:
2343 brdp->isr = stl_echatintr;
2344 brdp->ioctrl = brdp->ioaddr1 + 1;
2345 brdp->iostatus = brdp->ioaddr1 + 1;
2346 status = inb(brdp->iostatus);
2347 if ((status & ECH_IDBITMASK) != ECH_ID)
2348 return(-ENODEV);
2349 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2350 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2351 printk("STALLION: invalid irq=%d for brd=%d\n",
2352 brdp->irq, brdp->brdnr);
2353 return(-EINVAL);
2355 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2356 status |= (stl_vecmap[brdp->irq] << 1);
2357 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2358 brdp->ioctrlval = ECH_INTENABLE |
2359 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2360 for (i = 0; (i < 10); i++)
2361 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2362 brdp->iosize1 = 2;
2363 brdp->iosize2 = 32;
2364 name = "serial(EC8/32)";
2365 outb(status, brdp->ioaddr1);
2366 break;
2368 case BRD_ECHMC:
2369 brdp->isr = stl_echmcaintr;
2370 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2371 brdp->iostatus = brdp->ioctrl;
2372 status = inb(brdp->iostatus);
2373 if ((status & ECH_IDBITMASK) != ECH_ID)
2374 return(-ENODEV);
2375 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2376 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2377 printk("STALLION: invalid irq=%d for brd=%d\n",
2378 brdp->irq, brdp->brdnr);
2379 return(-EINVAL);
2381 outb(ECHMC_BRDRESET, brdp->ioctrl);
2382 outb(ECHMC_INTENABLE, brdp->ioctrl);
2383 brdp->iosize1 = 64;
2384 name = "serial(EC8/32-MC)";
2385 break;
2387 case BRD_ECHPCI:
2388 brdp->isr = stl_echpciintr;
2389 brdp->ioctrl = brdp->ioaddr1 + 2;
2390 brdp->iosize1 = 4;
2391 brdp->iosize2 = 8;
2392 name = "serial(EC8/32-PCI)";
2393 break;
2395 case BRD_ECH64PCI:
2396 brdp->isr = stl_echpci64intr;
2397 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2398 outb(0x43, (brdp->ioaddr1 + 0x4c));
2399 brdp->iosize1 = 0x80;
2400 brdp->iosize2 = 0x80;
2401 name = "serial(EC8/64-PCI)";
2402 break;
2404 default:
2405 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2406 return(-EINVAL);
2407 break;
2411 * Check boards for possible IO address conflicts and return fail status
2412 * if an IO conflict found.
2414 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2415 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2416 "%x conflicts with another device\n", brdp->brdnr,
2417 brdp->ioaddr1);
2418 return(-EBUSY);
2421 if (brdp->iosize2 > 0)
2422 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2423 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2424 "address %x conflicts with another device\n",
2425 brdp->brdnr, brdp->ioaddr2);
2426 printk(KERN_WARNING "STALLION: Warning, also "
2427 "releasing board %d I/O address %x \n",
2428 brdp->brdnr, brdp->ioaddr1);
2429 release_region(brdp->ioaddr1, brdp->iosize1);
2430 return(-EBUSY);
2434 * Scan through the secondary io address space looking for panels.
2435 * As we find'em allocate and initialize panel structures for each.
2437 brdp->clk = CD1400_CLK;
2438 brdp->hwid = status;
2440 ioaddr = brdp->ioaddr2;
2441 banknr = 0;
2442 panelnr = 0;
2443 nxtid = 0;
2445 for (i = 0; (i < STL_MAXPANELS); i++) {
2446 if (brdp->brdtype == BRD_ECHPCI) {
2447 outb(nxtid, brdp->ioctrl);
2448 ioaddr = brdp->ioaddr2;
2450 status = inb(ioaddr + ECH_PNLSTATUS);
2451 if ((status & ECH_PNLIDMASK) != nxtid)
2452 break;
2453 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2454 if (!panelp) {
2455 printk("STALLION: failed to allocate memory "
2456 "(size=%Zd)\n", sizeof(stlpanel_t));
2457 break;
2459 panelp->magic = STL_PANELMAGIC;
2460 panelp->brdnr = brdp->brdnr;
2461 panelp->panelnr = panelnr;
2462 panelp->iobase = ioaddr;
2463 panelp->pagenr = nxtid;
2464 panelp->hwid = status;
2465 brdp->bnk2panel[banknr] = panelp;
2466 brdp->bnkpageaddr[banknr] = nxtid;
2467 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2469 if (status & ECH_PNLXPID) {
2470 panelp->uartp = (void *) &stl_sc26198uart;
2471 panelp->isr = stl_sc26198intr;
2472 if (status & ECH_PNL16PORT) {
2473 panelp->nrports = 16;
2474 brdp->bnk2panel[banknr] = panelp;
2475 brdp->bnkpageaddr[banknr] = nxtid;
2476 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2477 ECH_PNLSTATUS;
2478 } else {
2479 panelp->nrports = 8;
2481 } else {
2482 panelp->uartp = (void *) &stl_cd1400uart;
2483 panelp->isr = stl_cd1400echintr;
2484 if (status & ECH_PNL16PORT) {
2485 panelp->nrports = 16;
2486 panelp->ackmask = 0x80;
2487 if (brdp->brdtype != BRD_ECHPCI)
2488 ioaddr += EREG_BANKSIZE;
2489 brdp->bnk2panel[banknr] = panelp;
2490 brdp->bnkpageaddr[banknr] = ++nxtid;
2491 brdp->bnkstataddr[banknr++] = ioaddr +
2492 ECH_PNLSTATUS;
2493 } else {
2494 panelp->nrports = 8;
2495 panelp->ackmask = 0xc0;
2499 nxtid++;
2500 ioaddr += EREG_BANKSIZE;
2501 brdp->nrports += panelp->nrports;
2502 brdp->panels[panelnr++] = panelp;
2503 if ((brdp->brdtype != BRD_ECHPCI) &&
2504 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2505 break;
2508 brdp->nrpanels = panelnr;
2509 brdp->nrbnks = banknr;
2510 if (brdp->brdtype == BRD_ECH)
2511 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2513 brdp->state |= BRD_FOUND;
2514 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2515 printk("STALLION: failed to register interrupt "
2516 "routine for %s irq=%d\n", name, brdp->irq);
2517 i = -ENODEV;
2518 } else {
2519 i = 0;
2522 return(i);
2525 /*****************************************************************************/
2528 * Initialize and configure the specified board.
2529 * Scan through all the boards in the configuration and see what we
2530 * can find. Handle EIO and the ECH boards a little differently here
2531 * since the initial search and setup is very different.
2534 static int __init stl_brdinit(stlbrd_t *brdp)
2536 int i;
2538 #ifdef DEBUG
2539 printk("stl_brdinit(brdp=%x)\n", (int) brdp);
2540 #endif
2542 switch (brdp->brdtype) {
2543 case BRD_EASYIO:
2544 case BRD_EASYIOPCI:
2545 stl_initeio(brdp);
2546 break;
2547 case BRD_ECH:
2548 case BRD_ECHMC:
2549 case BRD_ECHPCI:
2550 case BRD_ECH64PCI:
2551 stl_initech(brdp);
2552 break;
2553 default:
2554 printk("STALLION: board=%d is unknown board type=%d\n",
2555 brdp->brdnr, brdp->brdtype);
2556 return(ENODEV);
2559 stl_brds[brdp->brdnr] = brdp;
2560 if ((brdp->state & BRD_FOUND) == 0) {
2561 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2562 stl_brdnames[brdp->brdtype], brdp->brdnr,
2563 brdp->ioaddr1, brdp->irq);
2564 return(ENODEV);
2567 for (i = 0; (i < STL_MAXPANELS); i++)
2568 if (brdp->panels[i] != (stlpanel_t *) NULL)
2569 stl_initports(brdp, brdp->panels[i]);
2571 printk("STALLION: %s found, board=%d io=%x irq=%d "
2572 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2573 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2574 brdp->nrports);
2575 return(0);
2578 /*****************************************************************************/
2581 * Find the next available board number that is free.
2584 static inline int stl_getbrdnr(void)
2586 int i;
2588 for (i = 0; (i < STL_MAXBRDS); i++) {
2589 if (stl_brds[i] == (stlbrd_t *) NULL) {
2590 if (i >= stl_nrbrds)
2591 stl_nrbrds = i + 1;
2592 return(i);
2595 return(-1);
2598 /*****************************************************************************/
2600 #ifdef CONFIG_PCI
2603 * We have a Stallion board. Allocate a board structure and
2604 * initialize it. Read its IO and IRQ resources from PCI
2605 * configuration space.
2608 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
2610 stlbrd_t *brdp;
2612 #ifdef DEBUG
2613 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2614 devp->bus->number, devp->devfn);
2615 #endif
2617 if (pci_enable_device(devp))
2618 return(-EIO);
2619 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2620 return(-ENOMEM);
2621 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2622 printk("STALLION: too many boards found, "
2623 "maximum supported %d\n", STL_MAXBRDS);
2624 return(0);
2626 brdp->brdtype = brdtype;
2629 * Different Stallion boards use the BAR registers in different ways,
2630 * so set up io addresses based on board type.
2632 #ifdef DEBUG
2633 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
2634 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2635 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2636 #endif
2639 * We have all resources from the board, so let's setup the actual
2640 * board structure now.
2642 switch (brdtype) {
2643 case BRD_ECHPCI:
2644 brdp->ioaddr2 = pci_resource_start(devp, 0);
2645 brdp->ioaddr1 = pci_resource_start(devp, 1);
2646 break;
2647 case BRD_ECH64PCI:
2648 brdp->ioaddr2 = pci_resource_start(devp, 2);
2649 brdp->ioaddr1 = pci_resource_start(devp, 1);
2650 break;
2651 case BRD_EASYIOPCI:
2652 brdp->ioaddr1 = pci_resource_start(devp, 2);
2653 brdp->ioaddr2 = pci_resource_start(devp, 1);
2654 break;
2655 default:
2656 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2657 break;
2660 brdp->irq = devp->irq;
2661 stl_brdinit(brdp);
2663 return(0);
2666 /*****************************************************************************/
2669 * Find all Stallion PCI boards that might be installed. Initialize each
2670 * one as it is found.
2674 static inline int stl_findpcibrds(void)
2676 struct pci_dev *dev = NULL;
2677 int i, rc;
2679 #ifdef DEBUG
2680 printk("stl_findpcibrds()\n");
2681 #endif
2683 for (i = 0; (i < stl_nrpcibrds); i++)
2684 while ((dev = pci_find_device(stl_pcibrds[i].vendid,
2685 stl_pcibrds[i].devid, dev))) {
2688 * Found a device on the PCI bus that has our vendor and
2689 * device ID. Need to check now that it is really us.
2691 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2692 continue;
2694 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2695 if (rc)
2696 return(rc);
2699 return(0);
2702 #endif
2704 /*****************************************************************************/
2707 * Scan through all the boards in the configuration and see what we
2708 * can find. Handle EIO and the ECH boards a little differently here
2709 * since the initial search and setup is too different.
2712 static inline int stl_initbrds(void)
2714 stlbrd_t *brdp;
2715 stlconf_t *confp;
2716 int i;
2718 #ifdef DEBUG
2719 printk("stl_initbrds()\n");
2720 #endif
2722 if (stl_nrbrds > STL_MAXBRDS) {
2723 printk("STALLION: too many boards in configuration table, "
2724 "truncating to %d\n", STL_MAXBRDS);
2725 stl_nrbrds = STL_MAXBRDS;
2729 * Firstly scan the list of static boards configured. Allocate
2730 * resources and initialize the boards as found.
2732 for (i = 0; (i < stl_nrbrds); i++) {
2733 confp = &stl_brdconf[i];
2734 stl_parsebrd(confp, stl_brdsp[i]);
2735 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2736 return(-ENOMEM);
2737 brdp->brdnr = i;
2738 brdp->brdtype = confp->brdtype;
2739 brdp->ioaddr1 = confp->ioaddr1;
2740 brdp->ioaddr2 = confp->ioaddr2;
2741 brdp->irq = confp->irq;
2742 brdp->irqtype = confp->irqtype;
2743 stl_brdinit(brdp);
2747 * Find any dynamically supported boards. That is via module load
2748 * line options or auto-detected on the PCI bus.
2750 stl_argbrds();
2751 #ifdef CONFIG_PCI
2752 stl_findpcibrds();
2753 #endif
2755 return(0);
2758 /*****************************************************************************/
2761 * Return the board stats structure to user app.
2764 static int stl_getbrdstats(combrd_t __user *bp)
2766 stlbrd_t *brdp;
2767 stlpanel_t *panelp;
2768 int i;
2770 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2771 return -EFAULT;
2772 if (stl_brdstats.brd >= STL_MAXBRDS)
2773 return(-ENODEV);
2774 brdp = stl_brds[stl_brdstats.brd];
2775 if (brdp == (stlbrd_t *) NULL)
2776 return(-ENODEV);
2778 memset(&stl_brdstats, 0, sizeof(combrd_t));
2779 stl_brdstats.brd = brdp->brdnr;
2780 stl_brdstats.type = brdp->brdtype;
2781 stl_brdstats.hwid = brdp->hwid;
2782 stl_brdstats.state = brdp->state;
2783 stl_brdstats.ioaddr = brdp->ioaddr1;
2784 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2785 stl_brdstats.irq = brdp->irq;
2786 stl_brdstats.nrpanels = brdp->nrpanels;
2787 stl_brdstats.nrports = brdp->nrports;
2788 for (i = 0; (i < brdp->nrpanels); i++) {
2789 panelp = brdp->panels[i];
2790 stl_brdstats.panels[i].panel = i;
2791 stl_brdstats.panels[i].hwid = panelp->hwid;
2792 stl_brdstats.panels[i].nrports = panelp->nrports;
2795 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2798 /*****************************************************************************/
2801 * Resolve the referenced port number into a port struct pointer.
2804 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
2806 stlbrd_t *brdp;
2807 stlpanel_t *panelp;
2809 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2810 return((stlport_t *) NULL);
2811 brdp = stl_brds[brdnr];
2812 if (brdp == (stlbrd_t *) NULL)
2813 return((stlport_t *) NULL);
2814 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2815 return((stlport_t *) NULL);
2816 panelp = brdp->panels[panelnr];
2817 if (panelp == (stlpanel_t *) NULL)
2818 return((stlport_t *) NULL);
2819 if ((portnr < 0) || (portnr >= panelp->nrports))
2820 return((stlport_t *) NULL);
2821 return(panelp->ports[portnr]);
2824 /*****************************************************************************/
2827 * Return the port stats structure to user app. A NULL port struct
2828 * pointer passed in means that we need to find out from the app
2829 * what port to get stats for (used through board control device).
2832 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
2834 unsigned char *head, *tail;
2835 unsigned long flags;
2837 if (!portp) {
2838 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2839 return -EFAULT;
2840 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2841 stl_comstats.port);
2842 if (portp == (stlport_t *) NULL)
2843 return(-ENODEV);
2846 portp->stats.state = portp->istate;
2847 portp->stats.flags = portp->flags;
2848 portp->stats.hwid = portp->hwid;
2850 portp->stats.ttystate = 0;
2851 portp->stats.cflags = 0;
2852 portp->stats.iflags = 0;
2853 portp->stats.oflags = 0;
2854 portp->stats.lflags = 0;
2855 portp->stats.rxbuffered = 0;
2857 spin_lock_irqsave(&stallion_lock, flags);
2858 if (portp->tty != (struct tty_struct *) NULL) {
2859 if (portp->tty->driver_data == portp) {
2860 portp->stats.ttystate = portp->tty->flags;
2861 /* No longer available as a statistic */
2862 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2863 if (portp->tty->termios != (struct termios *) NULL) {
2864 portp->stats.cflags = portp->tty->termios->c_cflag;
2865 portp->stats.iflags = portp->tty->termios->c_iflag;
2866 portp->stats.oflags = portp->tty->termios->c_oflag;
2867 portp->stats.lflags = portp->tty->termios->c_lflag;
2871 spin_unlock_irqrestore(&stallion_lock, flags);
2873 head = portp->tx.head;
2874 tail = portp->tx.tail;
2875 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2876 (STL_TXBUFSIZE - (tail - head)));
2878 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2880 return copy_to_user(cp, &portp->stats,
2881 sizeof(comstats_t)) ? -EFAULT : 0;
2884 /*****************************************************************************/
2887 * Clear the port stats structure. We also return it zeroed out...
2890 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
2892 if (!portp) {
2893 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2894 return -EFAULT;
2895 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2896 stl_comstats.port);
2897 if (portp == (stlport_t *) NULL)
2898 return(-ENODEV);
2901 memset(&portp->stats, 0, sizeof(comstats_t));
2902 portp->stats.brd = portp->brdnr;
2903 portp->stats.panel = portp->panelnr;
2904 portp->stats.port = portp->portnr;
2905 return copy_to_user(cp, &portp->stats,
2906 sizeof(comstats_t)) ? -EFAULT : 0;
2909 /*****************************************************************************/
2912 * Return the entire driver ports structure to a user app.
2915 static int stl_getportstruct(stlport_t __user *arg)
2917 stlport_t *portp;
2919 if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
2920 return -EFAULT;
2921 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2922 stl_dummyport.portnr);
2923 if (!portp)
2924 return -ENODEV;
2925 return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
2928 /*****************************************************************************/
2931 * Return the entire driver board structure to a user app.
2934 static int stl_getbrdstruct(stlbrd_t __user *arg)
2936 stlbrd_t *brdp;
2938 if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
2939 return -EFAULT;
2940 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2941 return -ENODEV;
2942 brdp = stl_brds[stl_dummybrd.brdnr];
2943 if (!brdp)
2944 return(-ENODEV);
2945 return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
2948 /*****************************************************************************/
2951 * The "staliomem" device is also required to do some special operations
2952 * on the board and/or ports. In this driver it is mostly used for stats
2953 * collection.
2956 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2958 int brdnr, rc;
2959 void __user *argp = (void __user *)arg;
2961 #ifdef DEBUG
2962 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
2963 (int) fp, cmd, (int) arg);
2964 #endif
2966 brdnr = iminor(ip);
2967 if (brdnr >= STL_MAXBRDS)
2968 return(-ENODEV);
2969 rc = 0;
2971 switch (cmd) {
2972 case COM_GETPORTSTATS:
2973 rc = stl_getportstats(NULL, argp);
2974 break;
2975 case COM_CLRPORTSTATS:
2976 rc = stl_clrportstats(NULL, argp);
2977 break;
2978 case COM_GETBRDSTATS:
2979 rc = stl_getbrdstats(argp);
2980 break;
2981 case COM_READPORT:
2982 rc = stl_getportstruct(argp);
2983 break;
2984 case COM_READBOARD:
2985 rc = stl_getbrdstruct(argp);
2986 break;
2987 default:
2988 rc = -ENOIOCTLCMD;
2989 break;
2992 return(rc);
2995 static const struct tty_operations stl_ops = {
2996 .open = stl_open,
2997 .close = stl_close,
2998 .write = stl_write,
2999 .put_char = stl_putchar,
3000 .flush_chars = stl_flushchars,
3001 .write_room = stl_writeroom,
3002 .chars_in_buffer = stl_charsinbuffer,
3003 .ioctl = stl_ioctl,
3004 .set_termios = stl_settermios,
3005 .throttle = stl_throttle,
3006 .unthrottle = stl_unthrottle,
3007 .stop = stl_stop,
3008 .start = stl_start,
3009 .hangup = stl_hangup,
3010 .flush_buffer = stl_flushbuffer,
3011 .break_ctl = stl_breakctl,
3012 .wait_until_sent = stl_waituntilsent,
3013 .send_xchar = stl_sendxchar,
3014 .read_proc = stl_readproc,
3015 .tiocmget = stl_tiocmget,
3016 .tiocmset = stl_tiocmset,
3019 /*****************************************************************************/
3021 static int __init stl_init(void)
3023 int i;
3024 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
3026 spin_lock_init(&stallion_lock);
3027 spin_lock_init(&brd_lock);
3029 stl_initbrds();
3031 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
3032 if (!stl_serial)
3033 return -1;
3036 * Set up a character driver for per board stuff. This is mainly used
3037 * to do stats ioctls on the ports.
3039 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
3040 printk("STALLION: failed to register serial board device\n");
3042 stallion_class = class_create(THIS_MODULE, "staliomem");
3043 for (i = 0; i < 4; i++)
3044 class_device_create(stallion_class, NULL,
3045 MKDEV(STL_SIOMEMMAJOR, i), NULL,
3046 "staliomem%d", i);
3048 stl_serial->owner = THIS_MODULE;
3049 stl_serial->driver_name = stl_drvname;
3050 stl_serial->name = "ttyE";
3051 stl_serial->major = STL_SERIALMAJOR;
3052 stl_serial->minor_start = 0;
3053 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
3054 stl_serial->subtype = SERIAL_TYPE_NORMAL;
3055 stl_serial->init_termios = stl_deftermios;
3056 stl_serial->flags = TTY_DRIVER_REAL_RAW;
3057 tty_set_operations(stl_serial, &stl_ops);
3059 if (tty_register_driver(stl_serial)) {
3060 put_tty_driver(stl_serial);
3061 printk("STALLION: failed to register serial driver\n");
3062 return -1;
3065 return 0;
3068 /*****************************************************************************/
3069 /* CD1400 HARDWARE FUNCTIONS */
3070 /*****************************************************************************/
3073 * These functions get/set/update the registers of the cd1400 UARTs.
3074 * Access to the cd1400 registers is via an address/data io port pair.
3075 * (Maybe should make this inline...)
3078 static int stl_cd1400getreg(stlport_t *portp, int regnr)
3080 outb((regnr + portp->uartaddr), portp->ioaddr);
3081 return inb(portp->ioaddr + EREG_DATA);
3084 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
3086 outb((regnr + portp->uartaddr), portp->ioaddr);
3087 outb(value, portp->ioaddr + EREG_DATA);
3090 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
3092 outb((regnr + portp->uartaddr), portp->ioaddr);
3093 if (inb(portp->ioaddr + EREG_DATA) != value) {
3094 outb(value, portp->ioaddr + EREG_DATA);
3095 return 1;
3097 return 0;
3100 /*****************************************************************************/
3103 * Inbitialize the UARTs in a panel. We don't care what sort of board
3104 * these ports are on - since the port io registers are almost
3105 * identical when dealing with ports.
3108 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
3110 unsigned int gfrcr;
3111 int chipmask, i, j;
3112 int nrchips, uartaddr, ioaddr;
3113 unsigned long flags;
3115 #ifdef DEBUG
3116 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
3117 #endif
3119 spin_lock_irqsave(&brd_lock, flags);
3120 BRDENABLE(panelp->brdnr, panelp->pagenr);
3123 * Check that each chip is present and started up OK.
3125 chipmask = 0;
3126 nrchips = panelp->nrports / CD1400_PORTS;
3127 for (i = 0; (i < nrchips); i++) {
3128 if (brdp->brdtype == BRD_ECHPCI) {
3129 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
3130 ioaddr = panelp->iobase;
3131 } else {
3132 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
3134 uartaddr = (i & 0x01) ? 0x080 : 0;
3135 outb((GFRCR + uartaddr), ioaddr);
3136 outb(0, (ioaddr + EREG_DATA));
3137 outb((CCR + uartaddr), ioaddr);
3138 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3139 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3140 outb((GFRCR + uartaddr), ioaddr);
3141 for (j = 0; (j < CCR_MAXWAIT); j++) {
3142 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
3143 break;
3145 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
3146 printk("STALLION: cd1400 not responding, "
3147 "brd=%d panel=%d chip=%d\n",
3148 panelp->brdnr, panelp->panelnr, i);
3149 continue;
3151 chipmask |= (0x1 << i);
3152 outb((PPR + uartaddr), ioaddr);
3153 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
3156 BRDDISABLE(panelp->brdnr);
3157 spin_unlock_irqrestore(&brd_lock, flags);
3158 return chipmask;
3161 /*****************************************************************************/
3164 * Initialize hardware specific port registers.
3167 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
3169 unsigned long flags;
3170 #ifdef DEBUG
3171 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3172 (int) brdp, (int) panelp, (int) portp);
3173 #endif
3175 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
3176 (portp == (stlport_t *) NULL))
3177 return;
3179 spin_lock_irqsave(&brd_lock, flags);
3180 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
3181 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
3182 portp->uartaddr = (portp->portnr & 0x04) << 5;
3183 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
3185 BRDENABLE(portp->brdnr, portp->pagenr);
3186 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3187 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
3188 portp->hwid = stl_cd1400getreg(portp, GFRCR);
3189 BRDDISABLE(portp->brdnr);
3190 spin_unlock_irqrestore(&brd_lock, flags);
3193 /*****************************************************************************/
3196 * Wait for the command register to be ready. We will poll this,
3197 * since it won't usually take too long to be ready.
3200 static void stl_cd1400ccrwait(stlport_t *portp)
3202 int i;
3204 for (i = 0; (i < CCR_MAXWAIT); i++) {
3205 if (stl_cd1400getreg(portp, CCR) == 0) {
3206 return;
3210 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3211 portp->portnr, portp->panelnr, portp->brdnr);
3214 /*****************************************************************************/
3217 * Set up the cd1400 registers for a port based on the termios port
3218 * settings.
3221 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
3223 stlbrd_t *brdp;
3224 unsigned long flags;
3225 unsigned int clkdiv, baudrate;
3226 unsigned char cor1, cor2, cor3;
3227 unsigned char cor4, cor5, ccr;
3228 unsigned char srer, sreron, sreroff;
3229 unsigned char mcor1, mcor2, rtpr;
3230 unsigned char clk, div;
3232 cor1 = 0;
3233 cor2 = 0;
3234 cor3 = 0;
3235 cor4 = 0;
3236 cor5 = 0;
3237 ccr = 0;
3238 rtpr = 0;
3239 clk = 0;
3240 div = 0;
3241 mcor1 = 0;
3242 mcor2 = 0;
3243 sreron = 0;
3244 sreroff = 0;
3246 brdp = stl_brds[portp->brdnr];
3247 if (brdp == (stlbrd_t *) NULL)
3248 return;
3251 * Set up the RX char ignore mask with those RX error types we
3252 * can ignore. We can get the cd1400 to help us out a little here,
3253 * it will ignore parity errors and breaks for us.
3255 portp->rxignoremsk = 0;
3256 if (tiosp->c_iflag & IGNPAR) {
3257 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
3258 cor1 |= COR1_PARIGNORE;
3260 if (tiosp->c_iflag & IGNBRK) {
3261 portp->rxignoremsk |= ST_BREAK;
3262 cor4 |= COR4_IGNBRK;
3265 portp->rxmarkmsk = ST_OVERRUN;
3266 if (tiosp->c_iflag & (INPCK | PARMRK))
3267 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
3268 if (tiosp->c_iflag & BRKINT)
3269 portp->rxmarkmsk |= ST_BREAK;
3272 * Go through the char size, parity and stop bits and set all the
3273 * option register appropriately.
3275 switch (tiosp->c_cflag & CSIZE) {
3276 case CS5:
3277 cor1 |= COR1_CHL5;
3278 break;
3279 case CS6:
3280 cor1 |= COR1_CHL6;
3281 break;
3282 case CS7:
3283 cor1 |= COR1_CHL7;
3284 break;
3285 default:
3286 cor1 |= COR1_CHL8;
3287 break;
3290 if (tiosp->c_cflag & CSTOPB)
3291 cor1 |= COR1_STOP2;
3292 else
3293 cor1 |= COR1_STOP1;
3295 if (tiosp->c_cflag & PARENB) {
3296 if (tiosp->c_cflag & PARODD)
3297 cor1 |= (COR1_PARENB | COR1_PARODD);
3298 else
3299 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3300 } else {
3301 cor1 |= COR1_PARNONE;
3305 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3306 * space for hardware flow control and the like. This should be set to
3307 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3308 * really be based on VTIME.
3310 cor3 |= FIFO_RXTHRESHOLD;
3311 rtpr = 2;
3314 * Calculate the baud rate timers. For now we will just assume that
3315 * the input and output baud are the same. Could have used a baud
3316 * table here, but this way we can generate virtually any baud rate
3317 * we like!
3319 baudrate = tiosp->c_cflag & CBAUD;
3320 if (baudrate & CBAUDEX) {
3321 baudrate &= ~CBAUDEX;
3322 if ((baudrate < 1) || (baudrate > 4))
3323 tiosp->c_cflag &= ~CBAUDEX;
3324 else
3325 baudrate += 15;
3327 baudrate = stl_baudrates[baudrate];
3328 if ((tiosp->c_cflag & CBAUD) == B38400) {
3329 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3330 baudrate = 57600;
3331 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3332 baudrate = 115200;
3333 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3334 baudrate = 230400;
3335 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3336 baudrate = 460800;
3337 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3338 baudrate = (portp->baud_base / portp->custom_divisor);
3340 if (baudrate > STL_CD1400MAXBAUD)
3341 baudrate = STL_CD1400MAXBAUD;
3343 if (baudrate > 0) {
3344 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3345 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3346 if (clkdiv < 0x100)
3347 break;
3349 div = (unsigned char) clkdiv;
3353 * Check what form of modem signaling is required and set it up.
3355 if ((tiosp->c_cflag & CLOCAL) == 0) {
3356 mcor1 |= MCOR1_DCD;
3357 mcor2 |= MCOR2_DCD;
3358 sreron |= SRER_MODEM;
3359 portp->flags |= ASYNC_CHECK_CD;
3360 } else {
3361 portp->flags &= ~ASYNC_CHECK_CD;
3365 * Setup cd1400 enhanced modes if we can. In particular we want to
3366 * handle as much of the flow control as possible automatically. As
3367 * well as saving a few CPU cycles it will also greatly improve flow
3368 * control reliability.
3370 if (tiosp->c_iflag & IXON) {
3371 cor2 |= COR2_TXIBE;
3372 cor3 |= COR3_SCD12;
3373 if (tiosp->c_iflag & IXANY)
3374 cor2 |= COR2_IXM;
3377 if (tiosp->c_cflag & CRTSCTS) {
3378 cor2 |= COR2_CTSAE;
3379 mcor1 |= FIFO_RTSTHRESHOLD;
3383 * All cd1400 register values calculated so go through and set
3384 * them all up.
3387 #ifdef DEBUG
3388 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3389 portp->portnr, portp->panelnr, portp->brdnr);
3390 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3391 cor1, cor2, cor3, cor4, cor5);
3392 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3393 mcor1, mcor2, rtpr, sreron, sreroff);
3394 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3395 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3396 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3397 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3398 #endif
3400 spin_lock_irqsave(&brd_lock, flags);
3401 BRDENABLE(portp->brdnr, portp->pagenr);
3402 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3403 srer = stl_cd1400getreg(portp, SRER);
3404 stl_cd1400setreg(portp, SRER, 0);
3405 if (stl_cd1400updatereg(portp, COR1, cor1))
3406 ccr = 1;
3407 if (stl_cd1400updatereg(portp, COR2, cor2))
3408 ccr = 1;
3409 if (stl_cd1400updatereg(portp, COR3, cor3))
3410 ccr = 1;
3411 if (ccr) {
3412 stl_cd1400ccrwait(portp);
3413 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3415 stl_cd1400setreg(portp, COR4, cor4);
3416 stl_cd1400setreg(portp, COR5, cor5);
3417 stl_cd1400setreg(portp, MCOR1, mcor1);
3418 stl_cd1400setreg(portp, MCOR2, mcor2);
3419 if (baudrate > 0) {
3420 stl_cd1400setreg(portp, TCOR, clk);
3421 stl_cd1400setreg(portp, TBPR, div);
3422 stl_cd1400setreg(portp, RCOR, clk);
3423 stl_cd1400setreg(portp, RBPR, div);
3425 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3426 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3427 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3428 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3429 stl_cd1400setreg(portp, RTPR, rtpr);
3430 mcor1 = stl_cd1400getreg(portp, MSVR1);
3431 if (mcor1 & MSVR1_DCD)
3432 portp->sigs |= TIOCM_CD;
3433 else
3434 portp->sigs &= ~TIOCM_CD;
3435 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3436 BRDDISABLE(portp->brdnr);
3437 spin_unlock_irqrestore(&brd_lock, flags);
3440 /*****************************************************************************/
3443 * Set the state of the DTR and RTS signals.
3446 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
3448 unsigned char msvr1, msvr2;
3449 unsigned long flags;
3451 #ifdef DEBUG
3452 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3453 (int) portp, dtr, rts);
3454 #endif
3456 msvr1 = 0;
3457 msvr2 = 0;
3458 if (dtr > 0)
3459 msvr1 = MSVR1_DTR;
3460 if (rts > 0)
3461 msvr2 = MSVR2_RTS;
3463 spin_lock_irqsave(&brd_lock, flags);
3464 BRDENABLE(portp->brdnr, portp->pagenr);
3465 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3466 if (rts >= 0)
3467 stl_cd1400setreg(portp, MSVR2, msvr2);
3468 if (dtr >= 0)
3469 stl_cd1400setreg(portp, MSVR1, msvr1);
3470 BRDDISABLE(portp->brdnr);
3471 spin_unlock_irqrestore(&brd_lock, flags);
3474 /*****************************************************************************/
3477 * Return the state of the signals.
3480 static int stl_cd1400getsignals(stlport_t *portp)
3482 unsigned char msvr1, msvr2;
3483 unsigned long flags;
3484 int sigs;
3486 #ifdef DEBUG
3487 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
3488 #endif
3490 spin_lock_irqsave(&brd_lock, flags);
3491 BRDENABLE(portp->brdnr, portp->pagenr);
3492 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3493 msvr1 = stl_cd1400getreg(portp, MSVR1);
3494 msvr2 = stl_cd1400getreg(portp, MSVR2);
3495 BRDDISABLE(portp->brdnr);
3496 spin_unlock_irqrestore(&brd_lock, flags);
3498 sigs = 0;
3499 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3500 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3501 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3502 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3503 #if 0
3504 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3505 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3506 #else
3507 sigs |= TIOCM_DSR;
3508 #endif
3509 return sigs;
3512 /*****************************************************************************/
3515 * Enable/Disable the Transmitter and/or Receiver.
3518 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
3520 unsigned char ccr;
3521 unsigned long flags;
3523 #ifdef DEBUG
3524 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3525 (int) portp, rx, tx);
3526 #endif
3527 ccr = 0;
3529 if (tx == 0)
3530 ccr |= CCR_TXDISABLE;
3531 else if (tx > 0)
3532 ccr |= CCR_TXENABLE;
3533 if (rx == 0)
3534 ccr |= CCR_RXDISABLE;
3535 else if (rx > 0)
3536 ccr |= CCR_RXENABLE;
3538 spin_lock_irqsave(&brd_lock, flags);
3539 BRDENABLE(portp->brdnr, portp->pagenr);
3540 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3541 stl_cd1400ccrwait(portp);
3542 stl_cd1400setreg(portp, CCR, ccr);
3543 stl_cd1400ccrwait(portp);
3544 BRDDISABLE(portp->brdnr);
3545 spin_unlock_irqrestore(&brd_lock, flags);
3548 /*****************************************************************************/
3551 * Start/stop the Transmitter and/or Receiver.
3554 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
3556 unsigned char sreron, sreroff;
3557 unsigned long flags;
3559 #ifdef DEBUG
3560 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3561 (int) portp, rx, tx);
3562 #endif
3564 sreron = 0;
3565 sreroff = 0;
3566 if (tx == 0)
3567 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3568 else if (tx == 1)
3569 sreron |= SRER_TXDATA;
3570 else if (tx >= 2)
3571 sreron |= SRER_TXEMPTY;
3572 if (rx == 0)
3573 sreroff |= SRER_RXDATA;
3574 else if (rx > 0)
3575 sreron |= SRER_RXDATA;
3577 spin_lock_irqsave(&brd_lock, flags);
3578 BRDENABLE(portp->brdnr, portp->pagenr);
3579 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3580 stl_cd1400setreg(portp, SRER,
3581 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3582 BRDDISABLE(portp->brdnr);
3583 if (tx > 0)
3584 set_bit(ASYI_TXBUSY, &portp->istate);
3585 spin_unlock_irqrestore(&brd_lock, flags);
3588 /*****************************************************************************/
3591 * Disable all interrupts from this port.
3594 static void stl_cd1400disableintrs(stlport_t *portp)
3596 unsigned long flags;
3598 #ifdef DEBUG
3599 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
3600 #endif
3601 spin_lock_irqsave(&brd_lock, flags);
3602 BRDENABLE(portp->brdnr, portp->pagenr);
3603 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3604 stl_cd1400setreg(portp, SRER, 0);
3605 BRDDISABLE(portp->brdnr);
3606 spin_unlock_irqrestore(&brd_lock, flags);
3609 /*****************************************************************************/
3611 static void stl_cd1400sendbreak(stlport_t *portp, int len)
3613 unsigned long flags;
3615 #ifdef DEBUG
3616 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
3617 #endif
3619 spin_lock_irqsave(&brd_lock, flags);
3620 BRDENABLE(portp->brdnr, portp->pagenr);
3621 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3622 stl_cd1400setreg(portp, SRER,
3623 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3624 SRER_TXEMPTY));
3625 BRDDISABLE(portp->brdnr);
3626 portp->brklen = len;
3627 if (len == 1)
3628 portp->stats.txbreaks++;
3629 spin_unlock_irqrestore(&brd_lock, flags);
3632 /*****************************************************************************/
3635 * Take flow control actions...
3638 static void stl_cd1400flowctrl(stlport_t *portp, int state)
3640 struct tty_struct *tty;
3641 unsigned long flags;
3643 #ifdef DEBUG
3644 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
3645 #endif
3647 if (portp == (stlport_t *) NULL)
3648 return;
3649 tty = portp->tty;
3650 if (tty == (struct tty_struct *) NULL)
3651 return;
3653 spin_lock_irqsave(&brd_lock, flags);
3654 BRDENABLE(portp->brdnr, portp->pagenr);
3655 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3657 if (state) {
3658 if (tty->termios->c_iflag & IXOFF) {
3659 stl_cd1400ccrwait(portp);
3660 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3661 portp->stats.rxxon++;
3662 stl_cd1400ccrwait(portp);
3665 * Question: should we return RTS to what it was before? It may
3666 * have been set by an ioctl... Suppose not, since if you have
3667 * hardware flow control set then it is pretty silly to go and
3668 * set the RTS line by hand.
3670 if (tty->termios->c_cflag & CRTSCTS) {
3671 stl_cd1400setreg(portp, MCOR1,
3672 (stl_cd1400getreg(portp, MCOR1) |
3673 FIFO_RTSTHRESHOLD));
3674 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3675 portp->stats.rxrtson++;
3677 } else {
3678 if (tty->termios->c_iflag & IXOFF) {
3679 stl_cd1400ccrwait(portp);
3680 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3681 portp->stats.rxxoff++;
3682 stl_cd1400ccrwait(portp);
3684 if (tty->termios->c_cflag & CRTSCTS) {
3685 stl_cd1400setreg(portp, MCOR1,
3686 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3687 stl_cd1400setreg(portp, MSVR2, 0);
3688 portp->stats.rxrtsoff++;
3692 BRDDISABLE(portp->brdnr);
3693 spin_unlock_irqrestore(&brd_lock, flags);
3696 /*****************************************************************************/
3699 * Send a flow control character...
3702 static void stl_cd1400sendflow(stlport_t *portp, int state)
3704 struct tty_struct *tty;
3705 unsigned long flags;
3707 #ifdef DEBUG
3708 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
3709 #endif
3711 if (portp == (stlport_t *) NULL)
3712 return;
3713 tty = portp->tty;
3714 if (tty == (struct tty_struct *) NULL)
3715 return;
3717 spin_lock_irqsave(&brd_lock, flags);
3718 BRDENABLE(portp->brdnr, portp->pagenr);
3719 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3720 if (state) {
3721 stl_cd1400ccrwait(portp);
3722 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3723 portp->stats.rxxon++;
3724 stl_cd1400ccrwait(portp);
3725 } else {
3726 stl_cd1400ccrwait(portp);
3727 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3728 portp->stats.rxxoff++;
3729 stl_cd1400ccrwait(portp);
3731 BRDDISABLE(portp->brdnr);
3732 spin_unlock_irqrestore(&brd_lock, flags);
3735 /*****************************************************************************/
3737 static void stl_cd1400flush(stlport_t *portp)
3739 unsigned long flags;
3741 #ifdef DEBUG
3742 printk("stl_cd1400flush(portp=%x)\n", (int) portp);
3743 #endif
3745 if (portp == (stlport_t *) NULL)
3746 return;
3748 spin_lock_irqsave(&brd_lock, flags);
3749 BRDENABLE(portp->brdnr, portp->pagenr);
3750 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3751 stl_cd1400ccrwait(portp);
3752 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3753 stl_cd1400ccrwait(portp);
3754 portp->tx.tail = portp->tx.head;
3755 BRDDISABLE(portp->brdnr);
3756 spin_unlock_irqrestore(&brd_lock, flags);
3759 /*****************************************************************************/
3762 * Return the current state of data flow on this port. This is only
3763 * really interresting when determining if data has fully completed
3764 * transmission or not... This is easy for the cd1400, it accurately
3765 * maintains the busy port flag.
3768 static int stl_cd1400datastate(stlport_t *portp)
3770 #ifdef DEBUG
3771 printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
3772 #endif
3774 if (portp == (stlport_t *) NULL)
3775 return 0;
3777 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3780 /*****************************************************************************/
3783 * Interrupt service routine for cd1400 EasyIO boards.
3786 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
3788 unsigned char svrtype;
3790 #ifdef DEBUG
3791 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3792 (int) panelp, iobase);
3793 #endif
3795 spin_lock(&brd_lock);
3796 outb(SVRR, iobase);
3797 svrtype = inb(iobase + EREG_DATA);
3798 if (panelp->nrports > 4) {
3799 outb((SVRR + 0x80), iobase);
3800 svrtype |= inb(iobase + EREG_DATA);
3803 if (svrtype & SVRR_RX)
3804 stl_cd1400rxisr(panelp, iobase);
3805 else if (svrtype & SVRR_TX)
3806 stl_cd1400txisr(panelp, iobase);
3807 else if (svrtype & SVRR_MDM)
3808 stl_cd1400mdmisr(panelp, iobase);
3810 spin_unlock(&brd_lock);
3813 /*****************************************************************************/
3816 * Interrupt service routine for cd1400 panels.
3819 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
3821 unsigned char svrtype;
3823 #ifdef DEBUG
3824 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
3825 iobase);
3826 #endif
3828 outb(SVRR, iobase);
3829 svrtype = inb(iobase + EREG_DATA);
3830 outb((SVRR + 0x80), iobase);
3831 svrtype |= inb(iobase + EREG_DATA);
3832 if (svrtype & SVRR_RX)
3833 stl_cd1400rxisr(panelp, iobase);
3834 else if (svrtype & SVRR_TX)
3835 stl_cd1400txisr(panelp, iobase);
3836 else if (svrtype & SVRR_MDM)
3837 stl_cd1400mdmisr(panelp, iobase);
3841 /*****************************************************************************/
3844 * Unfortunately we need to handle breaks in the TX data stream, since
3845 * this is the only way to generate them on the cd1400.
3848 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
3850 if (portp->brklen == 1) {
3851 outb((COR2 + portp->uartaddr), ioaddr);
3852 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3853 (ioaddr + EREG_DATA));
3854 outb((TDR + portp->uartaddr), ioaddr);
3855 outb(ETC_CMD, (ioaddr + EREG_DATA));
3856 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3857 outb((SRER + portp->uartaddr), ioaddr);
3858 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3859 (ioaddr + EREG_DATA));
3860 return 1;
3861 } else if (portp->brklen > 1) {
3862 outb((TDR + portp->uartaddr), ioaddr);
3863 outb(ETC_CMD, (ioaddr + EREG_DATA));
3864 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3865 portp->brklen = -1;
3866 return 1;
3867 } else {
3868 outb((COR2 + portp->uartaddr), ioaddr);
3869 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3870 (ioaddr + EREG_DATA));
3871 portp->brklen = 0;
3873 return 0;
3876 /*****************************************************************************/
3879 * Transmit interrupt handler. This has gotta be fast! Handling TX
3880 * chars is pretty simple, stuff as many as possible from the TX buffer
3881 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3882 * are embedded as commands in the data stream. Oh no, had to use a goto!
3883 * This could be optimized more, will do when I get time...
3884 * In practice it is possible that interrupts are enabled but that the
3885 * port has been hung up. Need to handle not having any TX buffer here,
3886 * this is done by using the side effect that head and tail will also
3887 * be NULL if the buffer has been freed.
3890 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
3892 stlport_t *portp;
3893 int len, stlen;
3894 char *head, *tail;
3895 unsigned char ioack, srer;
3897 #ifdef DEBUG
3898 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3899 #endif
3901 ioack = inb(ioaddr + EREG_TXACK);
3902 if (((ioack & panelp->ackmask) != 0) ||
3903 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3904 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3905 return;
3907 portp = panelp->ports[(ioack >> 3)];
3910 * Unfortunately we need to handle breaks in the data stream, since
3911 * this is the only way to generate them on the cd1400. Do it now if
3912 * a break is to be sent.
3914 if (portp->brklen != 0)
3915 if (stl_cd1400breakisr(portp, ioaddr))
3916 goto stl_txalldone;
3918 head = portp->tx.head;
3919 tail = portp->tx.tail;
3920 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3921 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3922 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3923 set_bit(ASYI_TXLOW, &portp->istate);
3924 schedule_work(&portp->tqueue);
3927 if (len == 0) {
3928 outb((SRER + portp->uartaddr), ioaddr);
3929 srer = inb(ioaddr + EREG_DATA);
3930 if (srer & SRER_TXDATA) {
3931 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3932 } else {
3933 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3934 clear_bit(ASYI_TXBUSY, &portp->istate);
3936 outb(srer, (ioaddr + EREG_DATA));
3937 } else {
3938 len = MIN(len, CD1400_TXFIFOSIZE);
3939 portp->stats.txtotal += len;
3940 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3941 outb((TDR + portp->uartaddr), ioaddr);
3942 outsb((ioaddr + EREG_DATA), tail, stlen);
3943 len -= stlen;
3944 tail += stlen;
3945 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3946 tail = portp->tx.buf;
3947 if (len > 0) {
3948 outsb((ioaddr + EREG_DATA), tail, len);
3949 tail += len;
3951 portp->tx.tail = tail;
3954 stl_txalldone:
3955 outb((EOSRR + portp->uartaddr), ioaddr);
3956 outb(0, (ioaddr + EREG_DATA));
3959 /*****************************************************************************/
3962 * Receive character interrupt handler. Determine if we have good chars
3963 * or bad chars and then process appropriately. Good chars are easy
3964 * just shove the lot into the RX buffer and set all status byte to 0.
3965 * If a bad RX char then process as required. This routine needs to be
3966 * fast! In practice it is possible that we get an interrupt on a port
3967 * that is closed. This can happen on hangups - since they completely
3968 * shutdown a port not in user context. Need to handle this case.
3971 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
3973 stlport_t *portp;
3974 struct tty_struct *tty;
3975 unsigned int ioack, len, buflen;
3976 unsigned char status;
3977 char ch;
3979 #ifdef DEBUG
3980 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3981 #endif
3983 ioack = inb(ioaddr + EREG_RXACK);
3984 if ((ioack & panelp->ackmask) != 0) {
3985 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3986 return;
3988 portp = panelp->ports[(ioack >> 3)];
3989 tty = portp->tty;
3991 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3992 outb((RDCR + portp->uartaddr), ioaddr);
3993 len = inb(ioaddr + EREG_DATA);
3994 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3995 len = MIN(len, sizeof(stl_unwanted));
3996 outb((RDSR + portp->uartaddr), ioaddr);
3997 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3998 portp->stats.rxlost += len;
3999 portp->stats.rxtotal += len;
4000 } else {
4001 len = MIN(len, buflen);
4002 if (len > 0) {
4003 unsigned char *ptr;
4004 outb((RDSR + portp->uartaddr), ioaddr);
4005 tty_prepare_flip_string(tty, &ptr, len);
4006 insb((ioaddr + EREG_DATA), ptr, len);
4007 tty_schedule_flip(tty);
4008 portp->stats.rxtotal += len;
4011 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
4012 outb((RDSR + portp->uartaddr), ioaddr);
4013 status = inb(ioaddr + EREG_DATA);
4014 ch = inb(ioaddr + EREG_DATA);
4015 if (status & ST_PARITY)
4016 portp->stats.rxparity++;
4017 if (status & ST_FRAMING)
4018 portp->stats.rxframing++;
4019 if (status & ST_OVERRUN)
4020 portp->stats.rxoverrun++;
4021 if (status & ST_BREAK)
4022 portp->stats.rxbreaks++;
4023 if (status & ST_SCHARMASK) {
4024 if ((status & ST_SCHARMASK) == ST_SCHAR1)
4025 portp->stats.txxon++;
4026 if ((status & ST_SCHARMASK) == ST_SCHAR2)
4027 portp->stats.txxoff++;
4028 goto stl_rxalldone;
4030 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
4031 if (portp->rxmarkmsk & status) {
4032 if (status & ST_BREAK) {
4033 status = TTY_BREAK;
4034 if (portp->flags & ASYNC_SAK) {
4035 do_SAK(tty);
4036 BRDENABLE(portp->brdnr, portp->pagenr);
4038 } else if (status & ST_PARITY) {
4039 status = TTY_PARITY;
4040 } else if (status & ST_FRAMING) {
4041 status = TTY_FRAME;
4042 } else if(status & ST_OVERRUN) {
4043 status = TTY_OVERRUN;
4044 } else {
4045 status = 0;
4047 } else {
4048 status = 0;
4050 tty_insert_flip_char(tty, ch, status);
4051 tty_schedule_flip(tty);
4053 } else {
4054 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4055 return;
4058 stl_rxalldone:
4059 outb((EOSRR + portp->uartaddr), ioaddr);
4060 outb(0, (ioaddr + EREG_DATA));
4063 /*****************************************************************************/
4066 * Modem interrupt handler. The is called when the modem signal line
4067 * (DCD) has changed state. Leave most of the work to the off-level
4068 * processing routine.
4071 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
4073 stlport_t *portp;
4074 unsigned int ioack;
4075 unsigned char misr;
4077 #ifdef DEBUG
4078 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
4079 #endif
4081 ioack = inb(ioaddr + EREG_MDACK);
4082 if (((ioack & panelp->ackmask) != 0) ||
4083 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
4084 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
4085 return;
4087 portp = panelp->ports[(ioack >> 3)];
4089 outb((MISR + portp->uartaddr), ioaddr);
4090 misr = inb(ioaddr + EREG_DATA);
4091 if (misr & MISR_DCD) {
4092 set_bit(ASYI_DCDCHANGE, &portp->istate);
4093 schedule_work(&portp->tqueue);
4094 portp->stats.modem++;
4097 outb((EOSRR + portp->uartaddr), ioaddr);
4098 outb(0, (ioaddr + EREG_DATA));
4101 /*****************************************************************************/
4102 /* SC26198 HARDWARE FUNCTIONS */
4103 /*****************************************************************************/
4106 * These functions get/set/update the registers of the sc26198 UARTs.
4107 * Access to the sc26198 registers is via an address/data io port pair.
4108 * (Maybe should make this inline...)
4111 static int stl_sc26198getreg(stlport_t *portp, int regnr)
4113 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4114 return inb(portp->ioaddr + XP_DATA);
4117 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
4119 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4120 outb(value, (portp->ioaddr + XP_DATA));
4123 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
4125 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4126 if (inb(portp->ioaddr + XP_DATA) != value) {
4127 outb(value, (portp->ioaddr + XP_DATA));
4128 return 1;
4130 return 0;
4133 /*****************************************************************************/
4136 * Functions to get and set the sc26198 global registers.
4139 static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
4141 outb(regnr, (portp->ioaddr + XP_ADDR));
4142 return inb(portp->ioaddr + XP_DATA);
4145 #if 0
4146 static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
4148 outb(regnr, (portp->ioaddr + XP_ADDR));
4149 outb(value, (portp->ioaddr + XP_DATA));
4151 #endif
4153 /*****************************************************************************/
4156 * Inbitialize the UARTs in a panel. We don't care what sort of board
4157 * these ports are on - since the port io registers are almost
4158 * identical when dealing with ports.
4161 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
4163 int chipmask, i;
4164 int nrchips, ioaddr;
4166 #ifdef DEBUG
4167 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4168 (int) brdp, (int) panelp);
4169 #endif
4171 BRDENABLE(panelp->brdnr, panelp->pagenr);
4174 * Check that each chip is present and started up OK.
4176 chipmask = 0;
4177 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
4178 if (brdp->brdtype == BRD_ECHPCI)
4179 outb(panelp->pagenr, brdp->ioctrl);
4181 for (i = 0; (i < nrchips); i++) {
4182 ioaddr = panelp->iobase + (i * 4);
4183 outb(SCCR, (ioaddr + XP_ADDR));
4184 outb(CR_RESETALL, (ioaddr + XP_DATA));
4185 outb(TSTR, (ioaddr + XP_ADDR));
4186 if (inb(ioaddr + XP_DATA) != 0) {
4187 printk("STALLION: sc26198 not responding, "
4188 "brd=%d panel=%d chip=%d\n",
4189 panelp->brdnr, panelp->panelnr, i);
4190 continue;
4192 chipmask |= (0x1 << i);
4193 outb(GCCR, (ioaddr + XP_ADDR));
4194 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
4195 outb(WDTRCR, (ioaddr + XP_ADDR));
4196 outb(0xff, (ioaddr + XP_DATA));
4199 BRDDISABLE(panelp->brdnr);
4200 return chipmask;
4203 /*****************************************************************************/
4206 * Initialize hardware specific port registers.
4209 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
4211 #ifdef DEBUG
4212 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4213 (int) brdp, (int) panelp, (int) portp);
4214 #endif
4216 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
4217 (portp == (stlport_t *) NULL))
4218 return;
4220 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
4221 portp->uartaddr = (portp->portnr & 0x07) << 4;
4222 portp->pagenr = panelp->pagenr;
4223 portp->hwid = 0x1;
4225 BRDENABLE(portp->brdnr, portp->pagenr);
4226 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
4227 BRDDISABLE(portp->brdnr);
4230 /*****************************************************************************/
4233 * Set up the sc26198 registers for a port based on the termios port
4234 * settings.
4237 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
4239 stlbrd_t *brdp;
4240 unsigned long flags;
4241 unsigned int baudrate;
4242 unsigned char mr0, mr1, mr2, clk;
4243 unsigned char imron, imroff, iopr, ipr;
4245 mr0 = 0;
4246 mr1 = 0;
4247 mr2 = 0;
4248 clk = 0;
4249 iopr = 0;
4250 imron = 0;
4251 imroff = 0;
4253 brdp = stl_brds[portp->brdnr];
4254 if (brdp == (stlbrd_t *) NULL)
4255 return;
4258 * Set up the RX char ignore mask with those RX error types we
4259 * can ignore.
4261 portp->rxignoremsk = 0;
4262 if (tiosp->c_iflag & IGNPAR)
4263 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
4264 SR_RXOVERRUN);
4265 if (tiosp->c_iflag & IGNBRK)
4266 portp->rxignoremsk |= SR_RXBREAK;
4268 portp->rxmarkmsk = SR_RXOVERRUN;
4269 if (tiosp->c_iflag & (INPCK | PARMRK))
4270 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
4271 if (tiosp->c_iflag & BRKINT)
4272 portp->rxmarkmsk |= SR_RXBREAK;
4275 * Go through the char size, parity and stop bits and set all the
4276 * option register appropriately.
4278 switch (tiosp->c_cflag & CSIZE) {
4279 case CS5:
4280 mr1 |= MR1_CS5;
4281 break;
4282 case CS6:
4283 mr1 |= MR1_CS6;
4284 break;
4285 case CS7:
4286 mr1 |= MR1_CS7;
4287 break;
4288 default:
4289 mr1 |= MR1_CS8;
4290 break;
4293 if (tiosp->c_cflag & CSTOPB)
4294 mr2 |= MR2_STOP2;
4295 else
4296 mr2 |= MR2_STOP1;
4298 if (tiosp->c_cflag & PARENB) {
4299 if (tiosp->c_cflag & PARODD)
4300 mr1 |= (MR1_PARENB | MR1_PARODD);
4301 else
4302 mr1 |= (MR1_PARENB | MR1_PAREVEN);
4303 } else {
4304 mr1 |= MR1_PARNONE;
4307 mr1 |= MR1_ERRBLOCK;
4310 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4311 * space for hardware flow control and the like. This should be set to
4312 * VMIN.
4314 mr2 |= MR2_RXFIFOHALF;
4317 * Calculate the baud rate timers. For now we will just assume that
4318 * the input and output baud are the same. The sc26198 has a fixed
4319 * baud rate table, so only discrete baud rates possible.
4321 baudrate = tiosp->c_cflag & CBAUD;
4322 if (baudrate & CBAUDEX) {
4323 baudrate &= ~CBAUDEX;
4324 if ((baudrate < 1) || (baudrate > 4))
4325 tiosp->c_cflag &= ~CBAUDEX;
4326 else
4327 baudrate += 15;
4329 baudrate = stl_baudrates[baudrate];
4330 if ((tiosp->c_cflag & CBAUD) == B38400) {
4331 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4332 baudrate = 57600;
4333 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4334 baudrate = 115200;
4335 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4336 baudrate = 230400;
4337 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4338 baudrate = 460800;
4339 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4340 baudrate = (portp->baud_base / portp->custom_divisor);
4342 if (baudrate > STL_SC26198MAXBAUD)
4343 baudrate = STL_SC26198MAXBAUD;
4345 if (baudrate > 0) {
4346 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4347 if (baudrate <= sc26198_baudtable[clk])
4348 break;
4353 * Check what form of modem signaling is required and set it up.
4355 if (tiosp->c_cflag & CLOCAL) {
4356 portp->flags &= ~ASYNC_CHECK_CD;
4357 } else {
4358 iopr |= IOPR_DCDCOS;
4359 imron |= IR_IOPORT;
4360 portp->flags |= ASYNC_CHECK_CD;
4364 * Setup sc26198 enhanced modes if we can. In particular we want to
4365 * handle as much of the flow control as possible automatically. As
4366 * well as saving a few CPU cycles it will also greatly improve flow
4367 * control reliability.
4369 if (tiosp->c_iflag & IXON) {
4370 mr0 |= MR0_SWFTX | MR0_SWFT;
4371 imron |= IR_XONXOFF;
4372 } else {
4373 imroff |= IR_XONXOFF;
4375 if (tiosp->c_iflag & IXOFF)
4376 mr0 |= MR0_SWFRX;
4378 if (tiosp->c_cflag & CRTSCTS) {
4379 mr2 |= MR2_AUTOCTS;
4380 mr1 |= MR1_AUTORTS;
4384 * All sc26198 register values calculated so go through and set
4385 * them all up.
4388 #ifdef DEBUG
4389 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4390 portp->portnr, portp->panelnr, portp->brdnr);
4391 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4392 printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4393 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4394 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4395 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4396 #endif
4398 spin_lock_irqsave(&brd_lock, flags);
4399 BRDENABLE(portp->brdnr, portp->pagenr);
4400 stl_sc26198setreg(portp, IMR, 0);
4401 stl_sc26198updatereg(portp, MR0, mr0);
4402 stl_sc26198updatereg(portp, MR1, mr1);
4403 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4404 stl_sc26198updatereg(portp, MR2, mr2);
4405 stl_sc26198updatereg(portp, IOPIOR,
4406 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4408 if (baudrate > 0) {
4409 stl_sc26198setreg(portp, TXCSR, clk);
4410 stl_sc26198setreg(portp, RXCSR, clk);
4413 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4414 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4416 ipr = stl_sc26198getreg(portp, IPR);
4417 if (ipr & IPR_DCD)
4418 portp->sigs &= ~TIOCM_CD;
4419 else
4420 portp->sigs |= TIOCM_CD;
4422 portp->imr = (portp->imr & ~imroff) | imron;
4423 stl_sc26198setreg(portp, IMR, portp->imr);
4424 BRDDISABLE(portp->brdnr);
4425 spin_unlock_irqrestore(&brd_lock, flags);
4428 /*****************************************************************************/
4431 * Set the state of the DTR and RTS signals.
4434 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
4436 unsigned char iopioron, iopioroff;
4437 unsigned long flags;
4439 #ifdef DEBUG
4440 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4441 (int) portp, dtr, rts);
4442 #endif
4444 iopioron = 0;
4445 iopioroff = 0;
4446 if (dtr == 0)
4447 iopioroff |= IPR_DTR;
4448 else if (dtr > 0)
4449 iopioron |= IPR_DTR;
4450 if (rts == 0)
4451 iopioroff |= IPR_RTS;
4452 else if (rts > 0)
4453 iopioron |= IPR_RTS;
4455 spin_lock_irqsave(&brd_lock, flags);
4456 BRDENABLE(portp->brdnr, portp->pagenr);
4457 stl_sc26198setreg(portp, IOPIOR,
4458 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4459 BRDDISABLE(portp->brdnr);
4460 spin_unlock_irqrestore(&brd_lock, flags);
4463 /*****************************************************************************/
4466 * Return the state of the signals.
4469 static int stl_sc26198getsignals(stlport_t *portp)
4471 unsigned char ipr;
4472 unsigned long flags;
4473 int sigs;
4475 #ifdef DEBUG
4476 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
4477 #endif
4479 spin_lock_irqsave(&brd_lock, flags);
4480 BRDENABLE(portp->brdnr, portp->pagenr);
4481 ipr = stl_sc26198getreg(portp, IPR);
4482 BRDDISABLE(portp->brdnr);
4483 spin_unlock_irqrestore(&brd_lock, flags);
4485 sigs = 0;
4486 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4487 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4488 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4489 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4490 sigs |= TIOCM_DSR;
4491 return sigs;
4494 /*****************************************************************************/
4497 * Enable/Disable the Transmitter and/or Receiver.
4500 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
4502 unsigned char ccr;
4503 unsigned long flags;
4505 #ifdef DEBUG
4506 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4507 (int) portp, rx, tx);
4508 #endif
4510 ccr = portp->crenable;
4511 if (tx == 0)
4512 ccr &= ~CR_TXENABLE;
4513 else if (tx > 0)
4514 ccr |= CR_TXENABLE;
4515 if (rx == 0)
4516 ccr &= ~CR_RXENABLE;
4517 else if (rx > 0)
4518 ccr |= CR_RXENABLE;
4520 spin_lock_irqsave(&brd_lock, flags);
4521 BRDENABLE(portp->brdnr, portp->pagenr);
4522 stl_sc26198setreg(portp, SCCR, ccr);
4523 BRDDISABLE(portp->brdnr);
4524 portp->crenable = ccr;
4525 spin_unlock_irqrestore(&brd_lock, flags);
4528 /*****************************************************************************/
4531 * Start/stop the Transmitter and/or Receiver.
4534 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
4536 unsigned char imr;
4537 unsigned long flags;
4539 #ifdef DEBUG
4540 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4541 (int) portp, rx, tx);
4542 #endif
4544 imr = portp->imr;
4545 if (tx == 0)
4546 imr &= ~IR_TXRDY;
4547 else if (tx == 1)
4548 imr |= IR_TXRDY;
4549 if (rx == 0)
4550 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4551 else if (rx > 0)
4552 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4554 spin_lock_irqsave(&brd_lock, flags);
4555 BRDENABLE(portp->brdnr, portp->pagenr);
4556 stl_sc26198setreg(portp, IMR, imr);
4557 BRDDISABLE(portp->brdnr);
4558 portp->imr = imr;
4559 if (tx > 0)
4560 set_bit(ASYI_TXBUSY, &portp->istate);
4561 spin_unlock_irqrestore(&brd_lock, flags);
4564 /*****************************************************************************/
4567 * Disable all interrupts from this port.
4570 static void stl_sc26198disableintrs(stlport_t *portp)
4572 unsigned long flags;
4574 #ifdef DEBUG
4575 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
4576 #endif
4578 spin_lock_irqsave(&brd_lock, flags);
4579 BRDENABLE(portp->brdnr, portp->pagenr);
4580 portp->imr = 0;
4581 stl_sc26198setreg(portp, IMR, 0);
4582 BRDDISABLE(portp->brdnr);
4583 spin_unlock_irqrestore(&brd_lock, flags);
4586 /*****************************************************************************/
4588 static void stl_sc26198sendbreak(stlport_t *portp, int len)
4590 unsigned long flags;
4592 #ifdef DEBUG
4593 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
4594 #endif
4596 spin_lock_irqsave(&brd_lock, flags);
4597 BRDENABLE(portp->brdnr, portp->pagenr);
4598 if (len == 1) {
4599 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4600 portp->stats.txbreaks++;
4601 } else {
4602 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4604 BRDDISABLE(portp->brdnr);
4605 spin_unlock_irqrestore(&brd_lock, flags);
4608 /*****************************************************************************/
4611 * Take flow control actions...
4614 static void stl_sc26198flowctrl(stlport_t *portp, int state)
4616 struct tty_struct *tty;
4617 unsigned long flags;
4618 unsigned char mr0;
4620 #ifdef DEBUG
4621 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
4622 #endif
4624 if (portp == (stlport_t *) NULL)
4625 return;
4626 tty = portp->tty;
4627 if (tty == (struct tty_struct *) NULL)
4628 return;
4630 spin_lock_irqsave(&brd_lock, flags);
4631 BRDENABLE(portp->brdnr, portp->pagenr);
4633 if (state) {
4634 if (tty->termios->c_iflag & IXOFF) {
4635 mr0 = stl_sc26198getreg(portp, MR0);
4636 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4637 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4638 mr0 |= MR0_SWFRX;
4639 portp->stats.rxxon++;
4640 stl_sc26198wait(portp);
4641 stl_sc26198setreg(portp, MR0, mr0);
4644 * Question: should we return RTS to what it was before? It may
4645 * have been set by an ioctl... Suppose not, since if you have
4646 * hardware flow control set then it is pretty silly to go and
4647 * set the RTS line by hand.
4649 if (tty->termios->c_cflag & CRTSCTS) {
4650 stl_sc26198setreg(portp, MR1,
4651 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4652 stl_sc26198setreg(portp, IOPIOR,
4653 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4654 portp->stats.rxrtson++;
4656 } else {
4657 if (tty->termios->c_iflag & IXOFF) {
4658 mr0 = stl_sc26198getreg(portp, MR0);
4659 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4660 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4661 mr0 &= ~MR0_SWFRX;
4662 portp->stats.rxxoff++;
4663 stl_sc26198wait(portp);
4664 stl_sc26198setreg(portp, MR0, mr0);
4666 if (tty->termios->c_cflag & CRTSCTS) {
4667 stl_sc26198setreg(portp, MR1,
4668 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4669 stl_sc26198setreg(portp, IOPIOR,
4670 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4671 portp->stats.rxrtsoff++;
4675 BRDDISABLE(portp->brdnr);
4676 spin_unlock_irqrestore(&brd_lock, flags);
4679 /*****************************************************************************/
4682 * Send a flow control character.
4685 static void stl_sc26198sendflow(stlport_t *portp, int state)
4687 struct tty_struct *tty;
4688 unsigned long flags;
4689 unsigned char mr0;
4691 #ifdef DEBUG
4692 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
4693 #endif
4695 if (portp == (stlport_t *) NULL)
4696 return;
4697 tty = portp->tty;
4698 if (tty == (struct tty_struct *) NULL)
4699 return;
4701 spin_lock_irqsave(&brd_lock, flags);
4702 BRDENABLE(portp->brdnr, portp->pagenr);
4703 if (state) {
4704 mr0 = stl_sc26198getreg(portp, MR0);
4705 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4706 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4707 mr0 |= MR0_SWFRX;
4708 portp->stats.rxxon++;
4709 stl_sc26198wait(portp);
4710 stl_sc26198setreg(portp, MR0, mr0);
4711 } else {
4712 mr0 = stl_sc26198getreg(portp, MR0);
4713 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4714 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4715 mr0 &= ~MR0_SWFRX;
4716 portp->stats.rxxoff++;
4717 stl_sc26198wait(portp);
4718 stl_sc26198setreg(portp, MR0, mr0);
4720 BRDDISABLE(portp->brdnr);
4721 spin_unlock_irqrestore(&brd_lock, flags);
4724 /*****************************************************************************/
4726 static void stl_sc26198flush(stlport_t *portp)
4728 unsigned long flags;
4730 #ifdef DEBUG
4731 printk("stl_sc26198flush(portp=%x)\n", (int) portp);
4732 #endif
4734 if (portp == (stlport_t *) NULL)
4735 return;
4737 spin_lock_irqsave(&brd_lock, flags);
4738 BRDENABLE(portp->brdnr, portp->pagenr);
4739 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4740 stl_sc26198setreg(portp, SCCR, portp->crenable);
4741 BRDDISABLE(portp->brdnr);
4742 portp->tx.tail = portp->tx.head;
4743 spin_unlock_irqrestore(&brd_lock, flags);
4746 /*****************************************************************************/
4749 * Return the current state of data flow on this port. This is only
4750 * really interresting when determining if data has fully completed
4751 * transmission or not... The sc26198 interrupt scheme cannot
4752 * determine when all data has actually drained, so we need to
4753 * check the port statusy register to be sure.
4756 static int stl_sc26198datastate(stlport_t *portp)
4758 unsigned long flags;
4759 unsigned char sr;
4761 #ifdef DEBUG
4762 printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
4763 #endif
4765 if (portp == (stlport_t *) NULL)
4766 return 0;
4767 if (test_bit(ASYI_TXBUSY, &portp->istate))
4768 return 1;
4770 spin_lock_irqsave(&brd_lock, flags);
4771 BRDENABLE(portp->brdnr, portp->pagenr);
4772 sr = stl_sc26198getreg(portp, SR);
4773 BRDDISABLE(portp->brdnr);
4774 spin_unlock_irqrestore(&brd_lock, flags);
4776 return (sr & SR_TXEMPTY) ? 0 : 1;
4779 /*****************************************************************************/
4782 * Delay for a small amount of time, to give the sc26198 a chance
4783 * to process a command...
4786 static void stl_sc26198wait(stlport_t *portp)
4788 int i;
4790 #ifdef DEBUG
4791 printk("stl_sc26198wait(portp=%x)\n", (int) portp);
4792 #endif
4794 if (portp == (stlport_t *) NULL)
4795 return;
4797 for (i = 0; (i < 20); i++)
4798 stl_sc26198getglobreg(portp, TSTR);
4801 /*****************************************************************************/
4804 * If we are TX flow controlled and in IXANY mode then we may
4805 * need to unflow control here. We gotta do this because of the
4806 * automatic flow control modes of the sc26198.
4809 static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
4811 unsigned char mr0;
4813 mr0 = stl_sc26198getreg(portp, MR0);
4814 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4815 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4816 stl_sc26198wait(portp);
4817 stl_sc26198setreg(portp, MR0, mr0);
4818 clear_bit(ASYI_TXFLOWED, &portp->istate);
4821 /*****************************************************************************/
4824 * Interrupt service routine for sc26198 panels.
4827 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
4829 stlport_t *portp;
4830 unsigned int iack;
4832 spin_lock(&brd_lock);
4835 * Work around bug in sc26198 chip... Cannot have A6 address
4836 * line of UART high, else iack will be returned as 0.
4838 outb(0, (iobase + 1));
4840 iack = inb(iobase + XP_IACK);
4841 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4843 if (iack & IVR_RXDATA)
4844 stl_sc26198rxisr(portp, iack);
4845 else if (iack & IVR_TXDATA)
4846 stl_sc26198txisr(portp);
4847 else
4848 stl_sc26198otherisr(portp, iack);
4850 spin_unlock(&brd_lock);
4853 /*****************************************************************************/
4856 * Transmit interrupt handler. This has gotta be fast! Handling TX
4857 * chars is pretty simple, stuff as many as possible from the TX buffer
4858 * into the sc26198 FIFO.
4859 * In practice it is possible that interrupts are enabled but that the
4860 * port has been hung up. Need to handle not having any TX buffer here,
4861 * this is done by using the side effect that head and tail will also
4862 * be NULL if the buffer has been freed.
4865 static void stl_sc26198txisr(stlport_t *portp)
4867 unsigned int ioaddr;
4868 unsigned char mr0;
4869 int len, stlen;
4870 char *head, *tail;
4872 #ifdef DEBUG
4873 printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
4874 #endif
4876 ioaddr = portp->ioaddr;
4877 head = portp->tx.head;
4878 tail = portp->tx.tail;
4879 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4880 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4881 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4882 set_bit(ASYI_TXLOW, &portp->istate);
4883 schedule_work(&portp->tqueue);
4886 if (len == 0) {
4887 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4888 mr0 = inb(ioaddr + XP_DATA);
4889 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4890 portp->imr &= ~IR_TXRDY;
4891 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4892 outb(portp->imr, (ioaddr + XP_DATA));
4893 clear_bit(ASYI_TXBUSY, &portp->istate);
4894 } else {
4895 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4896 outb(mr0, (ioaddr + XP_DATA));
4898 } else {
4899 len = MIN(len, SC26198_TXFIFOSIZE);
4900 portp->stats.txtotal += len;
4901 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4902 outb(GTXFIFO, (ioaddr + XP_ADDR));
4903 outsb((ioaddr + XP_DATA), tail, stlen);
4904 len -= stlen;
4905 tail += stlen;
4906 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4907 tail = portp->tx.buf;
4908 if (len > 0) {
4909 outsb((ioaddr + XP_DATA), tail, len);
4910 tail += len;
4912 portp->tx.tail = tail;
4916 /*****************************************************************************/
4919 * Receive character interrupt handler. Determine if we have good chars
4920 * or bad chars and then process appropriately. Good chars are easy
4921 * just shove the lot into the RX buffer and set all status byte to 0.
4922 * If a bad RX char then process as required. This routine needs to be
4923 * fast! In practice it is possible that we get an interrupt on a port
4924 * that is closed. This can happen on hangups - since they completely
4925 * shutdown a port not in user context. Need to handle this case.
4928 static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
4930 struct tty_struct *tty;
4931 unsigned int len, buflen, ioaddr;
4933 #ifdef DEBUG
4934 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
4935 #endif
4937 tty = portp->tty;
4938 ioaddr = portp->ioaddr;
4939 outb(GIBCR, (ioaddr + XP_ADDR));
4940 len = inb(ioaddr + XP_DATA) + 1;
4942 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4943 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4944 len = MIN(len, sizeof(stl_unwanted));
4945 outb(GRXFIFO, (ioaddr + XP_ADDR));
4946 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4947 portp->stats.rxlost += len;
4948 portp->stats.rxtotal += len;
4949 } else {
4950 len = MIN(len, buflen);
4951 if (len > 0) {
4952 unsigned char *ptr;
4953 outb(GRXFIFO, (ioaddr + XP_ADDR));
4954 tty_prepare_flip_string(tty, &ptr, len);
4955 insb((ioaddr + XP_DATA), ptr, len);
4956 tty_schedule_flip(tty);
4957 portp->stats.rxtotal += len;
4960 } else {
4961 stl_sc26198rxbadchars(portp);
4965 * If we are TX flow controlled and in IXANY mode then we may need
4966 * to unflow control here. We gotta do this because of the automatic
4967 * flow control modes of the sc26198.
4969 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4970 if ((tty != (struct tty_struct *) NULL) &&
4971 (tty->termios != (struct termios *) NULL) &&
4972 (tty->termios->c_iflag & IXANY)) {
4973 stl_sc26198txunflow(portp, tty);
4978 /*****************************************************************************/
4981 * Process an RX bad character.
4984 static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
4986 struct tty_struct *tty;
4987 unsigned int ioaddr;
4989 tty = portp->tty;
4990 ioaddr = portp->ioaddr;
4992 if (status & SR_RXPARITY)
4993 portp->stats.rxparity++;
4994 if (status & SR_RXFRAMING)
4995 portp->stats.rxframing++;
4996 if (status & SR_RXOVERRUN)
4997 portp->stats.rxoverrun++;
4998 if (status & SR_RXBREAK)
4999 portp->stats.rxbreaks++;
5001 if ((tty != (struct tty_struct *) NULL) &&
5002 ((portp->rxignoremsk & status) == 0)) {
5003 if (portp->rxmarkmsk & status) {
5004 if (status & SR_RXBREAK) {
5005 status = TTY_BREAK;
5006 if (portp->flags & ASYNC_SAK) {
5007 do_SAK(tty);
5008 BRDENABLE(portp->brdnr, portp->pagenr);
5010 } else if (status & SR_RXPARITY) {
5011 status = TTY_PARITY;
5012 } else if (status & SR_RXFRAMING) {
5013 status = TTY_FRAME;
5014 } else if(status & SR_RXOVERRUN) {
5015 status = TTY_OVERRUN;
5016 } else {
5017 status = 0;
5019 } else {
5020 status = 0;
5023 tty_insert_flip_char(tty, ch, status);
5024 tty_schedule_flip(tty);
5026 if (status == 0)
5027 portp->stats.rxtotal++;
5031 /*****************************************************************************/
5034 * Process all characters in the RX FIFO of the UART. Check all char
5035 * status bytes as well, and process as required. We need to check
5036 * all bytes in the FIFO, in case some more enter the FIFO while we
5037 * are here. To get the exact character error type we need to switch
5038 * into CHAR error mode (that is why we need to make sure we empty
5039 * the FIFO).
5042 static void stl_sc26198rxbadchars(stlport_t *portp)
5044 unsigned char status, mr1;
5045 char ch;
5048 * To get the precise error type for each character we must switch
5049 * back into CHAR error mode.
5051 mr1 = stl_sc26198getreg(portp, MR1);
5052 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
5054 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
5055 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
5056 ch = stl_sc26198getreg(portp, RXFIFO);
5057 stl_sc26198rxbadch(portp, status, ch);
5061 * To get correct interrupt class we must switch back into BLOCK
5062 * error mode.
5064 stl_sc26198setreg(portp, MR1, mr1);
5067 /*****************************************************************************/
5070 * Other interrupt handler. This includes modem signals, flow
5071 * control actions, etc. Most stuff is left to off-level interrupt
5072 * processing time.
5075 static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
5077 unsigned char cir, ipr, xisr;
5079 #ifdef DEBUG
5080 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
5081 #endif
5083 cir = stl_sc26198getglobreg(portp, CIR);
5085 switch (cir & CIR_SUBTYPEMASK) {
5086 case CIR_SUBCOS:
5087 ipr = stl_sc26198getreg(portp, IPR);
5088 if (ipr & IPR_DCDCHANGE) {
5089 set_bit(ASYI_DCDCHANGE, &portp->istate);
5090 schedule_work(&portp->tqueue);
5091 portp->stats.modem++;
5093 break;
5094 case CIR_SUBXONXOFF:
5095 xisr = stl_sc26198getreg(portp, XISR);
5096 if (xisr & XISR_RXXONGOT) {
5097 set_bit(ASYI_TXFLOWED, &portp->istate);
5098 portp->stats.txxoff++;
5100 if (xisr & XISR_RXXOFFGOT) {
5101 clear_bit(ASYI_TXFLOWED, &portp->istate);
5102 portp->stats.txxon++;
5104 break;
5105 case CIR_SUBBREAK:
5106 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
5107 stl_sc26198rxbadchars(portp);
5108 break;
5109 default:
5110 break;
5114 /*****************************************************************************/