3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 /* This file implements all the hardware specific functions for the ZD1211
19 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
20 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
28 #include "zd_ieee80211.h"
33 void zd_chip_init(struct zd_chip
*chip
,
34 struct net_device
*netdev
,
35 struct usb_interface
*intf
)
37 memset(chip
, 0, sizeof(*chip
));
38 mutex_init(&chip
->mutex
);
39 zd_usb_init(&chip
->usb
, netdev
, intf
);
40 zd_rf_init(&chip
->rf
);
43 void zd_chip_clear(struct zd_chip
*chip
)
45 ZD_ASSERT(!mutex_is_locked(&chip
->mutex
));
46 zd_usb_clear(&chip
->usb
);
47 zd_rf_clear(&chip
->rf
);
48 mutex_destroy(&chip
->mutex
);
49 ZD_MEMCLEAR(chip
, sizeof(*chip
));
52 static int scnprint_mac_oui(const u8
*addr
, char *buffer
, size_t size
)
54 return scnprintf(buffer
, size
, "%02x-%02x-%02x",
55 addr
[0], addr
[1], addr
[2]);
58 /* Prints an identifier line, which will support debugging. */
59 static int scnprint_id(struct zd_chip
*chip
, char *buffer
, size_t size
)
63 i
= scnprintf(buffer
, size
, "zd1211%s chip ",
64 chip
->is_zd1211b
? "b" : "");
65 i
+= zd_usb_scnprint_id(&chip
->usb
, buffer
+i
, size
-i
);
66 i
+= scnprintf(buffer
+i
, size
-i
, " ");
67 i
+= scnprint_mac_oui(chip
->e2p_mac
, buffer
+i
, size
-i
);
68 i
+= scnprintf(buffer
+i
, size
-i
, " ");
69 i
+= zd_rf_scnprint_id(&chip
->rf
, buffer
+i
, size
-i
);
70 i
+= scnprintf(buffer
+i
, size
-i
, " pa%1x %c%c%c%c", chip
->pa_type
,
71 chip
->patch_cck_gain
? 'g' : '-',
72 chip
->patch_cr157
? '7' : '-',
73 chip
->patch_6m_band_edge
? '6' : '-',
74 chip
->new_phy_layout
? 'N' : '-');
78 static void print_id(struct zd_chip
*chip
)
82 scnprint_id(chip
, buffer
, sizeof(buffer
));
83 buffer
[sizeof(buffer
)-1] = 0;
84 dev_info(zd_chip_dev(chip
), "%s\n", buffer
);
87 /* Read a variable number of 32-bit values. Parameter count is not allowed to
88 * exceed USB_MAX_IOREAD32_COUNT.
90 int zd_ioread32v_locked(struct zd_chip
*chip
, u32
*values
, const zd_addr_t
*addr
,
95 zd_addr_t
*a16
= (zd_addr_t
*)NULL
;
99 if (count
> USB_MAX_IOREAD32_COUNT
)
102 /* Allocate a single memory block for values and addresses. */
104 a16
= (zd_addr_t
*)kmalloc(count16
* (sizeof(zd_addr_t
) + sizeof(u16
)),
107 dev_dbg_f(zd_chip_dev(chip
),
108 "error ENOMEM in allocation of a16\n");
112 v16
= (u16
*)(a16
+ count16
);
114 for (i
= 0; i
< count
; i
++) {
116 /* We read the high word always first. */
117 a16
[j
] = zd_inc_word(addr
[i
]);
121 r
= zd_ioread16v_locked(chip
, v16
, a16
, count16
);
123 dev_dbg_f(zd_chip_dev(chip
),
124 "error: zd_ioread16v_locked. Error number %d\n", r
);
128 for (i
= 0; i
< count
; i
++) {
130 values
[i
] = (v16
[j
] << 16) | v16
[j
+1];
138 int _zd_iowrite32v_locked(struct zd_chip
*chip
, const struct zd_ioreq32
*ioreqs
,
142 struct zd_ioreq16
*ioreqs16
;
143 unsigned int count16
;
145 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
149 if (count
> USB_MAX_IOWRITE32_COUNT
)
152 /* Allocate a single memory block for values and addresses. */
154 ioreqs16
= kmalloc(count16
* sizeof(struct zd_ioreq16
), GFP_NOFS
);
157 dev_dbg_f(zd_chip_dev(chip
),
158 "error %d in ioreqs16 allocation\n", r
);
162 for (i
= 0; i
< count
; i
++) {
164 /* We write the high word always first. */
165 ioreqs16
[j
].value
= ioreqs
[i
].value
>> 16;
166 ioreqs16
[j
].addr
= zd_inc_word(ioreqs
[i
].addr
);
167 ioreqs16
[j
+1].value
= ioreqs
[i
].value
;
168 ioreqs16
[j
+1].addr
= ioreqs
[i
].addr
;
171 r
= zd_usb_iowrite16v(&chip
->usb
, ioreqs16
, count16
);
174 dev_dbg_f(zd_chip_dev(chip
),
175 "error %d in zd_usb_write16v\n", r
);
183 int zd_iowrite16a_locked(struct zd_chip
*chip
,
184 const struct zd_ioreq16
*ioreqs
, unsigned int count
)
187 unsigned int i
, j
, t
, max
;
189 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
190 for (i
= 0; i
< count
; i
+= j
+ t
) {
193 if (max
> USB_MAX_IOWRITE16_COUNT
)
194 max
= USB_MAX_IOWRITE16_COUNT
;
195 for (j
= 0; j
< max
; j
++) {
196 if (!ioreqs
[i
+j
].addr
) {
202 r
= zd_usb_iowrite16v(&chip
->usb
, &ioreqs
[i
], j
);
204 dev_dbg_f(zd_chip_dev(chip
),
205 "error zd_usb_iowrite16v. Error number %d\n",
214 /* Writes a variable number of 32 bit registers. The functions will split
215 * that in several USB requests. A split can be forced by inserting an IO
216 * request with an zero address field.
218 int zd_iowrite32a_locked(struct zd_chip
*chip
,
219 const struct zd_ioreq32
*ioreqs
, unsigned int count
)
222 unsigned int i
, j
, t
, max
;
224 for (i
= 0; i
< count
; i
+= j
+ t
) {
227 if (max
> USB_MAX_IOWRITE32_COUNT
)
228 max
= USB_MAX_IOWRITE32_COUNT
;
229 for (j
= 0; j
< max
; j
++) {
230 if (!ioreqs
[i
+j
].addr
) {
236 r
= _zd_iowrite32v_locked(chip
, &ioreqs
[i
], j
);
238 dev_dbg_f(zd_chip_dev(chip
),
239 "error _zd_iowrite32v_locked."
240 " Error number %d\n", r
);
248 int zd_ioread16(struct zd_chip
*chip
, zd_addr_t addr
, u16
*value
)
252 mutex_lock(&chip
->mutex
);
253 r
= zd_ioread16_locked(chip
, value
, addr
);
254 mutex_unlock(&chip
->mutex
);
258 int zd_ioread32(struct zd_chip
*chip
, zd_addr_t addr
, u32
*value
)
262 mutex_lock(&chip
->mutex
);
263 r
= zd_ioread32_locked(chip
, value
, addr
);
264 mutex_unlock(&chip
->mutex
);
268 int zd_iowrite16(struct zd_chip
*chip
, zd_addr_t addr
, u16 value
)
272 mutex_lock(&chip
->mutex
);
273 r
= zd_iowrite16_locked(chip
, value
, addr
);
274 mutex_unlock(&chip
->mutex
);
278 int zd_iowrite32(struct zd_chip
*chip
, zd_addr_t addr
, u32 value
)
282 mutex_lock(&chip
->mutex
);
283 r
= zd_iowrite32_locked(chip
, value
, addr
);
284 mutex_unlock(&chip
->mutex
);
288 int zd_ioread32v(struct zd_chip
*chip
, const zd_addr_t
*addresses
,
289 u32
*values
, unsigned int count
)
293 mutex_lock(&chip
->mutex
);
294 r
= zd_ioread32v_locked(chip
, values
, addresses
, count
);
295 mutex_unlock(&chip
->mutex
);
299 int zd_iowrite32a(struct zd_chip
*chip
, const struct zd_ioreq32
*ioreqs
,
304 mutex_lock(&chip
->mutex
);
305 r
= zd_iowrite32a_locked(chip
, ioreqs
, count
);
306 mutex_unlock(&chip
->mutex
);
310 static int read_pod(struct zd_chip
*chip
, u8
*rf_type
)
315 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
316 r
= zd_ioread32_locked(chip
, &value
, E2P_POD
);
319 dev_dbg_f(zd_chip_dev(chip
), "E2P_POD %#010x\n", value
);
321 /* FIXME: AL2230 handling (Bit 7 in POD) */
322 *rf_type
= value
& 0x0f;
323 chip
->pa_type
= (value
>> 16) & 0x0f;
324 chip
->patch_cck_gain
= (value
>> 8) & 0x1;
325 chip
->patch_cr157
= (value
>> 13) & 0x1;
326 chip
->patch_6m_band_edge
= (value
>> 21) & 0x1;
327 chip
->new_phy_layout
= (value
>> 31) & 0x1;
328 chip
->link_led
= ((value
>> 4) & 1) ? LED1
: LED2
;
329 chip
->supports_tx_led
= 1;
330 if (value
& (1 << 24)) { /* LED scenario */
331 if (value
& (1 << 29))
332 chip
->supports_tx_led
= 0;
335 dev_dbg_f(zd_chip_dev(chip
),
336 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
337 "patch 6M %d new PHY %d link LED%d tx led %d\n",
338 zd_rf_name(*rf_type
), *rf_type
,
339 chip
->pa_type
, chip
->patch_cck_gain
,
340 chip
->patch_cr157
, chip
->patch_6m_band_edge
,
341 chip
->new_phy_layout
,
342 chip
->link_led
== LED1
? 1 : 2,
343 chip
->supports_tx_led
);
348 chip
->patch_cck_gain
= 0;
349 chip
->patch_cr157
= 0;
350 chip
->patch_6m_band_edge
= 0;
351 chip
->new_phy_layout
= 0;
355 static int _read_mac_addr(struct zd_chip
*chip
, u8
*mac_addr
,
356 const zd_addr_t
*addr
)
361 r
= zd_ioread32v_locked(chip
, parts
, (const zd_addr_t
*)addr
, 2);
363 dev_dbg_f(zd_chip_dev(chip
),
364 "error: couldn't read e2p macs. Error number %d\n", r
);
368 mac_addr
[0] = parts
[0];
369 mac_addr
[1] = parts
[0] >> 8;
370 mac_addr
[2] = parts
[0] >> 16;
371 mac_addr
[3] = parts
[0] >> 24;
372 mac_addr
[4] = parts
[1];
373 mac_addr
[5] = parts
[1] >> 8;
378 static int read_e2p_mac_addr(struct zd_chip
*chip
)
380 static const zd_addr_t addr
[2] = { E2P_MAC_ADDR_P1
, E2P_MAC_ADDR_P2
};
382 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
383 return _read_mac_addr(chip
, chip
->e2p_mac
, (const zd_addr_t
*)addr
);
386 /* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and
387 * CR_MAC_ADDR_P2 must be overwritten
389 void zd_get_e2p_mac_addr(struct zd_chip
*chip
, u8
*mac_addr
)
391 mutex_lock(&chip
->mutex
);
392 memcpy(mac_addr
, chip
->e2p_mac
, ETH_ALEN
);
393 mutex_unlock(&chip
->mutex
);
396 static int read_mac_addr(struct zd_chip
*chip
, u8
*mac_addr
)
398 static const zd_addr_t addr
[2] = { CR_MAC_ADDR_P1
, CR_MAC_ADDR_P2
};
399 return _read_mac_addr(chip
, mac_addr
, (const zd_addr_t
*)addr
);
402 int zd_read_mac_addr(struct zd_chip
*chip
, u8
*mac_addr
)
406 dev_dbg_f(zd_chip_dev(chip
), "\n");
407 mutex_lock(&chip
->mutex
);
408 r
= read_mac_addr(chip
, mac_addr
);
409 mutex_unlock(&chip
->mutex
);
413 int zd_write_mac_addr(struct zd_chip
*chip
, const u8
*mac_addr
)
416 struct zd_ioreq32 reqs
[2] = {
417 [0] = { .addr
= CR_MAC_ADDR_P1
},
418 [1] = { .addr
= CR_MAC_ADDR_P2
},
421 reqs
[0].value
= (mac_addr
[3] << 24)
422 | (mac_addr
[2] << 16)
425 reqs
[1].value
= (mac_addr
[5] << 8)
428 dev_dbg_f(zd_chip_dev(chip
),
429 "mac addr " MAC_FMT
"\n", MAC_ARG(mac_addr
));
431 mutex_lock(&chip
->mutex
);
432 r
= zd_iowrite32a_locked(chip
, reqs
, ARRAY_SIZE(reqs
));
436 read_mac_addr(chip
, tmp
);
439 mutex_unlock(&chip
->mutex
);
443 int zd_read_regdomain(struct zd_chip
*chip
, u8
*regdomain
)
448 mutex_lock(&chip
->mutex
);
449 r
= zd_ioread32_locked(chip
, &value
, E2P_SUBID
);
450 mutex_unlock(&chip
->mutex
);
454 *regdomain
= value
>> 16;
455 dev_dbg_f(zd_chip_dev(chip
), "regdomain: %#04x\n", *regdomain
);
460 static int read_values(struct zd_chip
*chip
, u8
*values
, size_t count
,
461 zd_addr_t e2p_addr
, u32 guard
)
467 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
469 r
= zd_ioread32_locked(chip
, &v
, e2p_addr
+i
/2);
475 values
[i
++] = v
>> 8;
476 values
[i
++] = v
>> 16;
477 values
[i
++] = v
>> 24;
480 for (;i
< count
; i
++)
481 values
[i
] = v
>> (8*(i
%3));
486 static int read_pwr_cal_values(struct zd_chip
*chip
)
488 return read_values(chip
, chip
->pwr_cal_values
,
489 E2P_CHANNEL_COUNT
, E2P_PWR_CAL_VALUE1
,
493 static int read_pwr_int_values(struct zd_chip
*chip
)
495 return read_values(chip
, chip
->pwr_int_values
,
496 E2P_CHANNEL_COUNT
, E2P_PWR_INT_VALUE1
,
500 static int read_ofdm_cal_values(struct zd_chip
*chip
)
504 static const zd_addr_t addresses
[] = {
510 for (i
= 0; i
< 3; i
++) {
511 r
= read_values(chip
, chip
->ofdm_cal_values
[i
],
512 E2P_CHANNEL_COUNT
, addresses
[i
], 0);
519 static int read_cal_int_tables(struct zd_chip
*chip
)
523 r
= read_pwr_cal_values(chip
);
526 r
= read_pwr_int_values(chip
);
529 r
= read_ofdm_cal_values(chip
);
535 /* phy means physical registers */
536 int zd_chip_lock_phy_regs(struct zd_chip
*chip
)
541 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
542 r
= zd_ioread32_locked(chip
, &tmp
, CR_REG1
);
544 dev_err(zd_chip_dev(chip
), "error ioread32(CR_REG1): %d\n", r
);
548 dev_dbg_f(zd_chip_dev(chip
),
549 "CR_REG1: 0x%02x -> 0x%02x\n", tmp
, tmp
& ~UNLOCK_PHY_REGS
);
550 tmp
&= ~UNLOCK_PHY_REGS
;
552 r
= zd_iowrite32_locked(chip
, tmp
, CR_REG1
);
554 dev_err(zd_chip_dev(chip
), "error iowrite32(CR_REG1): %d\n", r
);
558 int zd_chip_unlock_phy_regs(struct zd_chip
*chip
)
563 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
564 r
= zd_ioread32_locked(chip
, &tmp
, CR_REG1
);
566 dev_err(zd_chip_dev(chip
),
567 "error ioread32(CR_REG1): %d\n", r
);
571 dev_dbg_f(zd_chip_dev(chip
),
572 "CR_REG1: 0x%02x -> 0x%02x\n", tmp
, tmp
| UNLOCK_PHY_REGS
);
573 tmp
|= UNLOCK_PHY_REGS
;
575 r
= zd_iowrite32_locked(chip
, tmp
, CR_REG1
);
577 dev_err(zd_chip_dev(chip
), "error iowrite32(CR_REG1): %d\n", r
);
581 /* CR157 can be optionally patched by the EEPROM */
582 static int patch_cr157(struct zd_chip
*chip
)
587 if (!chip
->patch_cr157
)
590 r
= zd_ioread32_locked(chip
, &value
, E2P_PHY_REG
);
594 dev_dbg_f(zd_chip_dev(chip
), "patching value %x\n", value
>> 8);
595 return zd_iowrite32_locked(chip
, value
>> 8, CR157
);
599 * 6M band edge can be optionally overwritten for certain RF's
600 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
601 * bit (for AL2230, AL2230S)
603 static int patch_6m_band_edge(struct zd_chip
*chip
, int channel
)
605 struct zd_ioreq16 ioreqs
[] = {
606 { CR128
, 0x14 }, { CR129
, 0x12 }, { CR130
, 0x10 },
610 if (!chip
->patch_6m_band_edge
|| !chip
->rf
.patch_6m_band_edge
)
613 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
614 if (channel
== 1 || channel
== 11)
615 ioreqs
[0].value
= 0x12;
617 dev_dbg_f(zd_chip_dev(chip
), "patching for channel %d\n", channel
);
618 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
621 static int zd1211_hw_reset_phy(struct zd_chip
*chip
)
623 static const struct zd_ioreq16 ioreqs
[] = {
624 { CR0
, 0x0a }, { CR1
, 0x06 }, { CR2
, 0x26 },
625 { CR3
, 0x38 }, { CR4
, 0x80 }, { CR9
, 0xa0 },
626 { CR10
, 0x81 }, { CR11
, 0x00 }, { CR12
, 0x7f },
627 { CR13
, 0x8c }, { CR14
, 0x80 }, { CR15
, 0x3d },
628 { CR16
, 0x20 }, { CR17
, 0x1e }, { CR18
, 0x0a },
629 { CR19
, 0x48 }, { CR20
, 0x0c }, { CR21
, 0x0c },
630 { CR22
, 0x23 }, { CR23
, 0x90 }, { CR24
, 0x14 },
631 { CR25
, 0x40 }, { CR26
, 0x10 }, { CR27
, 0x19 },
632 { CR28
, 0x7f }, { CR29
, 0x80 }, { CR30
, 0x4b },
633 { CR31
, 0x60 }, { CR32
, 0x43 }, { CR33
, 0x08 },
634 { CR34
, 0x06 }, { CR35
, 0x0a }, { CR36
, 0x00 },
635 { CR37
, 0x00 }, { CR38
, 0x38 }, { CR39
, 0x0c },
636 { CR40
, 0x84 }, { CR41
, 0x2a }, { CR42
, 0x80 },
637 { CR43
, 0x10 }, { CR44
, 0x12 }, { CR46
, 0xff },
638 { CR47
, 0x1E }, { CR48
, 0x26 }, { CR49
, 0x5b },
639 { CR64
, 0xd0 }, { CR65
, 0x04 }, { CR66
, 0x58 },
640 { CR67
, 0xc9 }, { CR68
, 0x88 }, { CR69
, 0x41 },
641 { CR70
, 0x23 }, { CR71
, 0x10 }, { CR72
, 0xff },
642 { CR73
, 0x32 }, { CR74
, 0x30 }, { CR75
, 0x65 },
643 { CR76
, 0x41 }, { CR77
, 0x1b }, { CR78
, 0x30 },
644 { CR79
, 0x68 }, { CR80
, 0x64 }, { CR81
, 0x64 },
645 { CR82
, 0x00 }, { CR83
, 0x00 }, { CR84
, 0x00 },
646 { CR85
, 0x02 }, { CR86
, 0x00 }, { CR87
, 0x00 },
647 { CR88
, 0xff }, { CR89
, 0xfc }, { CR90
, 0x00 },
648 { CR91
, 0x00 }, { CR92
, 0x00 }, { CR93
, 0x08 },
649 { CR94
, 0x00 }, { CR95
, 0x00 }, { CR96
, 0xff },
650 { CR97
, 0xe7 }, { CR98
, 0x00 }, { CR99
, 0x00 },
651 { CR100
, 0x00 }, { CR101
, 0xae }, { CR102
, 0x02 },
652 { CR103
, 0x00 }, { CR104
, 0x03 }, { CR105
, 0x65 },
653 { CR106
, 0x04 }, { CR107
, 0x00 }, { CR108
, 0x0a },
654 { CR109
, 0xaa }, { CR110
, 0xaa }, { CR111
, 0x25 },
655 { CR112
, 0x25 }, { CR113
, 0x00 }, { CR119
, 0x1e },
656 { CR125
, 0x90 }, { CR126
, 0x00 }, { CR127
, 0x00 },
658 { CR5
, 0x00 }, { CR6
, 0x00 }, { CR7
, 0x00 },
659 { CR8
, 0x00 }, { CR9
, 0x20 }, { CR12
, 0xf0 },
660 { CR20
, 0x0e }, { CR21
, 0x0e }, { CR27
, 0x10 },
661 { CR44
, 0x33 }, { CR47
, 0x1E }, { CR83
, 0x24 },
662 { CR84
, 0x04 }, { CR85
, 0x00 }, { CR86
, 0x0C },
663 { CR87
, 0x12 }, { CR88
, 0x0C }, { CR89
, 0x00 },
664 { CR90
, 0x10 }, { CR91
, 0x08 }, { CR93
, 0x00 },
665 { CR94
, 0x01 }, { CR95
, 0x00 }, { CR96
, 0x50 },
666 { CR97
, 0x37 }, { CR98
, 0x35 }, { CR101
, 0x13 },
667 { CR102
, 0x27 }, { CR103
, 0x27 }, { CR104
, 0x18 },
668 { CR105
, 0x12 }, { CR109
, 0x27 }, { CR110
, 0x27 },
669 { CR111
, 0x27 }, { CR112
, 0x27 }, { CR113
, 0x27 },
670 { CR114
, 0x27 }, { CR115
, 0x26 }, { CR116
, 0x24 },
671 { CR117
, 0xfc }, { CR118
, 0xfa }, { CR120
, 0x4f },
672 { CR123
, 0x27 }, { CR125
, 0xaa }, { CR127
, 0x03 },
673 { CR128
, 0x14 }, { CR129
, 0x12 }, { CR130
, 0x10 },
674 { CR131
, 0x0C }, { CR136
, 0xdf }, { CR137
, 0x40 },
675 { CR138
, 0xa0 }, { CR139
, 0xb0 }, { CR140
, 0x99 },
676 { CR141
, 0x82 }, { CR142
, 0x54 }, { CR143
, 0x1c },
677 { CR144
, 0x6c }, { CR147
, 0x07 }, { CR148
, 0x4c },
678 { CR149
, 0x50 }, { CR150
, 0x0e }, { CR151
, 0x18 },
679 { CR160
, 0xfe }, { CR161
, 0xee }, { CR162
, 0xaa },
680 { CR163
, 0xfa }, { CR164
, 0xfa }, { CR165
, 0xea },
681 { CR166
, 0xbe }, { CR167
, 0xbe }, { CR168
, 0x6a },
682 { CR169
, 0xba }, { CR170
, 0xba }, { CR171
, 0xba },
683 /* Note: CR204 must lead the CR203 */
691 dev_dbg_f(zd_chip_dev(chip
), "\n");
693 r
= zd_chip_lock_phy_regs(chip
);
697 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
701 r
= patch_cr157(chip
);
703 t
= zd_chip_unlock_phy_regs(chip
);
710 static int zd1211b_hw_reset_phy(struct zd_chip
*chip
)
712 static const struct zd_ioreq16 ioreqs
[] = {
713 { CR0
, 0x14 }, { CR1
, 0x06 }, { CR2
, 0x26 },
714 { CR3
, 0x38 }, { CR4
, 0x80 }, { CR9
, 0xe0 },
716 /* power control { { CR11, 1 << 6 }, */
718 { CR12
, 0xf0 }, { CR13
, 0x8c }, { CR14
, 0x80 },
719 { CR15
, 0x3d }, { CR16
, 0x20 }, { CR17
, 0x1e },
720 { CR18
, 0x0a }, { CR19
, 0x48 },
721 { CR20
, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
722 { CR21
, 0x0e }, { CR22
, 0x23 }, { CR23
, 0x90 },
723 { CR24
, 0x14 }, { CR25
, 0x40 }, { CR26
, 0x10 },
724 { CR27
, 0x10 }, { CR28
, 0x7f }, { CR29
, 0x80 },
725 { CR30
, 0x4b }, /* ASIC/FWT, no jointly decoder */
726 { CR31
, 0x60 }, { CR32
, 0x43 }, { CR33
, 0x08 },
727 { CR34
, 0x06 }, { CR35
, 0x0a }, { CR36
, 0x00 },
728 { CR37
, 0x00 }, { CR38
, 0x38 }, { CR39
, 0x0c },
729 { CR40
, 0x84 }, { CR41
, 0x2a }, { CR42
, 0x80 },
730 { CR43
, 0x10 }, { CR44
, 0x33 }, { CR46
, 0xff },
731 { CR47
, 0x1E }, { CR48
, 0x26 }, { CR49
, 0x5b },
732 { CR64
, 0xd0 }, { CR65
, 0x04 }, { CR66
, 0x58 },
733 { CR67
, 0xc9 }, { CR68
, 0x88 }, { CR69
, 0x41 },
734 { CR70
, 0x23 }, { CR71
, 0x10 }, { CR72
, 0xff },
735 { CR73
, 0x32 }, { CR74
, 0x30 }, { CR75
, 0x65 },
736 { CR76
, 0x41 }, { CR77
, 0x1b }, { CR78
, 0x30 },
737 { CR79
, 0xf0 }, { CR80
, 0x64 }, { CR81
, 0x64 },
738 { CR82
, 0x00 }, { CR83
, 0x24 }, { CR84
, 0x04 },
739 { CR85
, 0x00 }, { CR86
, 0x0c }, { CR87
, 0x12 },
740 { CR88
, 0x0c }, { CR89
, 0x00 }, { CR90
, 0x58 },
741 { CR91
, 0x04 }, { CR92
, 0x00 }, { CR93
, 0x00 },
743 { CR95
, 0x20 }, /* ZD1211B */
744 { CR96
, 0x50 }, { CR97
, 0x37 }, { CR98
, 0x35 },
745 { CR99
, 0x00 }, { CR100
, 0x01 }, { CR101
, 0x13 },
746 { CR102
, 0x27 }, { CR103
, 0x27 }, { CR104
, 0x18 },
747 { CR105
, 0x12 }, { CR106
, 0x04 }, { CR107
, 0x00 },
748 { CR108
, 0x0a }, { CR109
, 0x27 }, { CR110
, 0x27 },
749 { CR111
, 0x27 }, { CR112
, 0x27 }, { CR113
, 0x27 },
750 { CR114
, 0x27 }, { CR115
, 0x26 }, { CR116
, 0x24 },
751 { CR117
, 0xfc }, { CR118
, 0xfa }, { CR119
, 0x1e },
752 { CR125
, 0x90 }, { CR126
, 0x00 }, { CR127
, 0x00 },
753 { CR128
, 0x14 }, { CR129
, 0x12 }, { CR130
, 0x10 },
754 { CR131
, 0x0c }, { CR136
, 0xdf }, { CR137
, 0xa0 },
755 { CR138
, 0xa8 }, { CR139
, 0xb4 }, { CR140
, 0x98 },
756 { CR141
, 0x82 }, { CR142
, 0x53 }, { CR143
, 0x1c },
757 { CR144
, 0x6c }, { CR147
, 0x07 }, { CR148
, 0x40 },
758 { CR149
, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
759 { CR150
, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
760 { CR151
, 0x18 }, { CR159
, 0x70 }, { CR160
, 0xfe },
761 { CR161
, 0xee }, { CR162
, 0xaa }, { CR163
, 0xfa },
762 { CR164
, 0xfa }, { CR165
, 0xea }, { CR166
, 0xbe },
763 { CR167
, 0xbe }, { CR168
, 0x6a }, { CR169
, 0xba },
764 { CR170
, 0xba }, { CR171
, 0xba },
765 /* Note: CR204 must lead the CR203 */
773 dev_dbg_f(zd_chip_dev(chip
), "\n");
775 r
= zd_chip_lock_phy_regs(chip
);
779 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
783 r
= patch_cr157(chip
);
785 t
= zd_chip_unlock_phy_regs(chip
);
792 static int hw_reset_phy(struct zd_chip
*chip
)
794 return chip
->is_zd1211b
? zd1211b_hw_reset_phy(chip
) :
795 zd1211_hw_reset_phy(chip
);
798 static int zd1211_hw_init_hmac(struct zd_chip
*chip
)
800 static const struct zd_ioreq32 ioreqs
[] = {
801 { CR_ACK_TIMEOUT_EXT
, 0x20 },
802 { CR_ADDA_MBIAS_WARMTIME
, 0x30000808 },
803 { CR_ZD1211_RETRY_MAX
, 0x2 },
804 { CR_SNIFFER_ON
, 0 },
805 { CR_RX_FILTER
, STA_RX_FILTER
},
806 { CR_GROUP_HASH_P1
, 0x00 },
807 { CR_GROUP_HASH_P2
, 0x80000000 },
809 { CR_ADDA_PWR_DWN
, 0x7f },
810 { CR_BCN_PLCP_CFG
, 0x00f00401 },
811 { CR_PHY_DELAY
, 0x00 },
812 { CR_ACK_TIMEOUT_EXT
, 0x80 },
813 { CR_ADDA_PWR_DWN
, 0x00 },
814 { CR_ACK_TIME_80211
, 0x100 },
815 { CR_RX_PE_DELAY
, 0x70 },
816 { CR_PS_CTRL
, 0x10000000 },
817 { CR_RTS_CTS_RATE
, 0x02030203 },
818 { CR_RX_THRESHOLD
, 0x000c0640 },
819 { CR_AFTER_PNP
, 0x1 },
820 { CR_WEP_PROTECT
, 0x114 },
825 dev_dbg_f(zd_chip_dev(chip
), "\n");
826 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
827 r
= zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
830 dev_err(zd_chip_dev(chip
),
831 "error in zd_iowrite32a_locked. Error number %d\n", r
);
837 static int zd1211b_hw_init_hmac(struct zd_chip
*chip
)
839 static const struct zd_ioreq32 ioreqs
[] = {
840 { CR_ACK_TIMEOUT_EXT
, 0x20 },
841 { CR_ADDA_MBIAS_WARMTIME
, 0x30000808 },
842 { CR_ZD1211B_RETRY_MAX
, 0x02020202 },
843 { CR_ZD1211B_TX_PWR_CTL4
, 0x007f003f },
844 { CR_ZD1211B_TX_PWR_CTL3
, 0x007f003f },
845 { CR_ZD1211B_TX_PWR_CTL2
, 0x003f001f },
846 { CR_ZD1211B_TX_PWR_CTL1
, 0x001f000f },
847 { CR_ZD1211B_AIFS_CTL1
, 0x00280028 },
848 { CR_ZD1211B_AIFS_CTL2
, 0x008C003C },
849 { CR_ZD1211B_TXOP
, 0x01800824 },
850 { CR_SNIFFER_ON
, 0 },
851 { CR_RX_FILTER
, STA_RX_FILTER
},
852 { CR_GROUP_HASH_P1
, 0x00 },
853 { CR_GROUP_HASH_P2
, 0x80000000 },
855 { CR_ADDA_PWR_DWN
, 0x7f },
856 { CR_BCN_PLCP_CFG
, 0x00f00401 },
857 { CR_PHY_DELAY
, 0x00 },
858 { CR_ACK_TIMEOUT_EXT
, 0x80 },
859 { CR_ADDA_PWR_DWN
, 0x00 },
860 { CR_ACK_TIME_80211
, 0x100 },
861 { CR_RX_PE_DELAY
, 0x70 },
862 { CR_PS_CTRL
, 0x10000000 },
863 { CR_RTS_CTS_RATE
, 0x02030203 },
864 { CR_RX_THRESHOLD
, 0x000c0eff, },
865 { CR_AFTER_PNP
, 0x1 },
866 { CR_WEP_PROTECT
, 0x114 },
871 dev_dbg_f(zd_chip_dev(chip
), "\n");
872 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
873 r
= zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
875 dev_dbg_f(zd_chip_dev(chip
),
876 "error in zd_iowrite32a_locked. Error number %d\n", r
);
881 static int hw_init_hmac(struct zd_chip
*chip
)
883 return chip
->is_zd1211b
?
884 zd1211b_hw_init_hmac(chip
) : zd1211_hw_init_hmac(chip
);
893 static int get_aw_pt_bi(struct zd_chip
*chip
, struct aw_pt_bi
*s
)
896 static const zd_addr_t aw_pt_bi_addr
[] =
897 { CR_ATIM_WND_PERIOD
, CR_PRE_TBTT
, CR_BCN_INTERVAL
};
900 r
= zd_ioread32v_locked(chip
, values
, (const zd_addr_t
*)aw_pt_bi_addr
,
901 ARRAY_SIZE(aw_pt_bi_addr
));
903 memset(s
, 0, sizeof(*s
));
907 s
->atim_wnd_period
= values
[0];
908 s
->pre_tbtt
= values
[1];
909 s
->beacon_interval
= values
[2];
910 dev_dbg_f(zd_chip_dev(chip
), "aw %u pt %u bi %u\n",
911 s
->atim_wnd_period
, s
->pre_tbtt
, s
->beacon_interval
);
915 static int set_aw_pt_bi(struct zd_chip
*chip
, struct aw_pt_bi
*s
)
917 struct zd_ioreq32 reqs
[3];
919 if (s
->beacon_interval
<= 5)
920 s
->beacon_interval
= 5;
921 if (s
->pre_tbtt
< 4 || s
->pre_tbtt
>= s
->beacon_interval
)
922 s
->pre_tbtt
= s
->beacon_interval
- 1;
923 if (s
->atim_wnd_period
>= s
->pre_tbtt
)
924 s
->atim_wnd_period
= s
->pre_tbtt
- 1;
926 reqs
[0].addr
= CR_ATIM_WND_PERIOD
;
927 reqs
[0].value
= s
->atim_wnd_period
;
928 reqs
[1].addr
= CR_PRE_TBTT
;
929 reqs
[1].value
= s
->pre_tbtt
;
930 reqs
[2].addr
= CR_BCN_INTERVAL
;
931 reqs
[2].value
= s
->beacon_interval
;
933 dev_dbg_f(zd_chip_dev(chip
),
934 "aw %u pt %u bi %u\n", s
->atim_wnd_period
, s
->pre_tbtt
,
936 return zd_iowrite32a_locked(chip
, reqs
, ARRAY_SIZE(reqs
));
940 static int set_beacon_interval(struct zd_chip
*chip
, u32 interval
)
945 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
946 r
= get_aw_pt_bi(chip
, &s
);
949 s
.beacon_interval
= interval
;
950 return set_aw_pt_bi(chip
, &s
);
953 int zd_set_beacon_interval(struct zd_chip
*chip
, u32 interval
)
957 mutex_lock(&chip
->mutex
);
958 r
= set_beacon_interval(chip
, interval
);
959 mutex_unlock(&chip
->mutex
);
963 static int hw_init(struct zd_chip
*chip
)
967 dev_dbg_f(zd_chip_dev(chip
), "\n");
968 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
969 r
= hw_reset_phy(chip
);
973 r
= hw_init_hmac(chip
);
977 /* Although the vendor driver defaults to a different value during
978 * init, it overwrites the IFS value with the following every time
979 * the channel changes. We should aim to be more intelligent... */
980 r
= zd_iowrite32_locked(chip
, IFS_VALUE_DEFAULT
, CR_IFS_VALUE
);
984 return set_beacon_interval(chip
, 100);
988 static int dump_cr(struct zd_chip
*chip
, const zd_addr_t addr
,
989 const char *addr_string
)
994 r
= zd_ioread32_locked(chip
, &value
, addr
);
996 dev_dbg_f(zd_chip_dev(chip
),
997 "error reading %s. Error number %d\n", addr_string
, r
);
1001 dev_dbg_f(zd_chip_dev(chip
), "%s %#010x\n",
1002 addr_string
, (unsigned int)value
);
1006 static int test_init(struct zd_chip
*chip
)
1010 r
= dump_cr(chip
, CR_AFTER_PNP
, "CR_AFTER_PNP");
1013 r
= dump_cr(chip
, CR_GPI_EN
, "CR_GPI_EN");
1016 return dump_cr(chip
, CR_INTERRUPT
, "CR_INTERRUPT");
1019 static void dump_fw_registers(struct zd_chip
*chip
)
1021 static const zd_addr_t addr
[4] = {
1022 FW_FIRMWARE_VER
, FW_USB_SPEED
, FW_FIX_TX_RATE
,
1029 r
= zd_ioread16v_locked(chip
, values
, (const zd_addr_t
*)addr
,
1032 dev_dbg_f(zd_chip_dev(chip
), "error %d zd_ioread16v_locked\n",
1037 dev_dbg_f(zd_chip_dev(chip
), "FW_FIRMWARE_VER %#06hx\n", values
[0]);
1038 dev_dbg_f(zd_chip_dev(chip
), "FW_USB_SPEED %#06hx\n", values
[1]);
1039 dev_dbg_f(zd_chip_dev(chip
), "FW_FIX_TX_RATE %#06hx\n", values
[2]);
1040 dev_dbg_f(zd_chip_dev(chip
), "FW_LINK_STATUS %#06hx\n", values
[3]);
1044 static int print_fw_version(struct zd_chip
*chip
)
1049 r
= zd_ioread16_locked(chip
, &version
, FW_FIRMWARE_VER
);
1053 dev_info(zd_chip_dev(chip
),"firmware version %04hx\n", version
);
1057 static int set_mandatory_rates(struct zd_chip
*chip
, enum ieee80211_std std
)
1060 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1061 /* This sets the mandatory rates, which only depend from the standard
1062 * that the device is supporting. Until further notice we should try
1063 * to support 802.11g also for full speed USB.
1067 rates
= CR_RATE_1M
|CR_RATE_2M
|CR_RATE_5_5M
|CR_RATE_11M
;
1070 rates
= CR_RATE_1M
|CR_RATE_2M
|CR_RATE_5_5M
|CR_RATE_11M
|
1071 CR_RATE_6M
|CR_RATE_12M
|CR_RATE_24M
;
1076 return zd_iowrite32_locked(chip
, rates
, CR_MANDATORY_RATE_TBL
);
1079 int zd_chip_set_rts_cts_rate_locked(struct zd_chip
*chip
,
1080 u8 rts_rate
, int preamble
)
1082 int rts_mod
= ZD_RX_CCK
;
1085 /* Modulation bit */
1086 if (ZD_CS_TYPE(rts_rate
) == ZD_CS_OFDM
)
1087 rts_mod
= ZD_RX_OFDM
;
1089 dev_dbg_f(zd_chip_dev(chip
), "rts_rate=%x preamble=%x\n",
1090 rts_rate
, preamble
);
1092 value
|= rts_rate
<< RTSCTS_SH_RTS_RATE
;
1093 value
|= rts_mod
<< RTSCTS_SH_RTS_MOD_TYPE
;
1094 value
|= preamble
<< RTSCTS_SH_RTS_PMB_TYPE
;
1095 value
|= preamble
<< RTSCTS_SH_CTS_PMB_TYPE
;
1097 /* We always send 11M self-CTS messages, like the vendor driver. */
1098 value
|= ZD_CCK_RATE_11M
<< RTSCTS_SH_CTS_RATE
;
1099 value
|= ZD_RX_CCK
<< RTSCTS_SH_CTS_MOD_TYPE
;
1101 return zd_iowrite32_locked(chip
, value
, CR_RTS_CTS_RATE
);
1104 int zd_chip_enable_hwint(struct zd_chip
*chip
)
1108 mutex_lock(&chip
->mutex
);
1109 r
= zd_iowrite32_locked(chip
, HWINT_ENABLED
, CR_INTERRUPT
);
1110 mutex_unlock(&chip
->mutex
);
1114 static int disable_hwint(struct zd_chip
*chip
)
1116 return zd_iowrite32_locked(chip
, HWINT_DISABLED
, CR_INTERRUPT
);
1119 int zd_chip_disable_hwint(struct zd_chip
*chip
)
1123 mutex_lock(&chip
->mutex
);
1124 r
= disable_hwint(chip
);
1125 mutex_unlock(&chip
->mutex
);
1129 int zd_chip_init_hw(struct zd_chip
*chip
, u8 device_type
)
1134 dev_dbg_f(zd_chip_dev(chip
), "\n");
1136 mutex_lock(&chip
->mutex
);
1137 chip
->is_zd1211b
= (device_type
== DEVICE_ZD1211B
) != 0;
1140 r
= test_init(chip
);
1144 r
= zd_iowrite32_locked(chip
, 1, CR_AFTER_PNP
);
1148 r
= zd_usb_init_hw(&chip
->usb
);
1152 /* GPI is always disabled, also in the other driver.
1154 r
= zd_iowrite32_locked(chip
, 0, CR_GPI_EN
);
1157 r
= zd_iowrite32_locked(chip
, CWIN_SIZE
, CR_CWMIN_CWMAX
);
1160 /* Currently we support IEEE 802.11g for full and high speed USB.
1161 * It might be discussed, whether we should suppport pure b mode for
1164 r
= set_mandatory_rates(chip
, IEEE80211G
);
1167 /* Disabling interrupts is certainly a smart thing here.
1169 r
= disable_hwint(chip
);
1172 r
= read_pod(chip
, &rf_type
);
1178 r
= zd_rf_init_hw(&chip
->rf
, rf_type
);
1182 r
= print_fw_version(chip
);
1187 dump_fw_registers(chip
);
1188 r
= test_init(chip
);
1193 r
= read_e2p_mac_addr(chip
);
1197 r
= read_cal_int_tables(chip
);
1203 mutex_unlock(&chip
->mutex
);
1207 static int update_pwr_int(struct zd_chip
*chip
, u8 channel
)
1209 u8 value
= chip
->pwr_int_values
[channel
- 1];
1210 dev_dbg_f(zd_chip_dev(chip
), "channel %d pwr_int %#04x\n",
1212 return zd_iowrite16_locked(chip
, value
, CR31
);
1215 static int update_pwr_cal(struct zd_chip
*chip
, u8 channel
)
1217 u8 value
= chip
->pwr_cal_values
[channel
-1];
1218 dev_dbg_f(zd_chip_dev(chip
), "channel %d pwr_cal %#04x\n",
1220 return zd_iowrite16_locked(chip
, value
, CR68
);
1223 static int update_ofdm_cal(struct zd_chip
*chip
, u8 channel
)
1225 struct zd_ioreq16 ioreqs
[3];
1227 ioreqs
[0].addr
= CR67
;
1228 ioreqs
[0].value
= chip
->ofdm_cal_values
[OFDM_36M_INDEX
][channel
-1];
1229 ioreqs
[1].addr
= CR66
;
1230 ioreqs
[1].value
= chip
->ofdm_cal_values
[OFDM_48M_INDEX
][channel
-1];
1231 ioreqs
[2].addr
= CR65
;
1232 ioreqs
[2].value
= chip
->ofdm_cal_values
[OFDM_54M_INDEX
][channel
-1];
1234 dev_dbg_f(zd_chip_dev(chip
),
1235 "channel %d ofdm_cal 36M %#04x 48M %#04x 54M %#04x\n",
1236 channel
, ioreqs
[0].value
, ioreqs
[1].value
, ioreqs
[2].value
);
1237 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1240 static int update_channel_integration_and_calibration(struct zd_chip
*chip
,
1245 r
= update_pwr_int(chip
, channel
);
1248 if (chip
->is_zd1211b
) {
1249 static const struct zd_ioreq16 ioreqs
[] = {
1255 r
= update_ofdm_cal(chip
, channel
);
1258 r
= update_pwr_cal(chip
, channel
);
1261 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1269 /* The CCK baseband gain can be optionally patched by the EEPROM */
1270 static int patch_cck_gain(struct zd_chip
*chip
)
1275 if (!chip
->patch_cck_gain
)
1278 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1279 r
= zd_ioread32_locked(chip
, &value
, E2P_PHY_REG
);
1282 dev_dbg_f(zd_chip_dev(chip
), "patching value %x\n", value
& 0xff);
1283 return zd_iowrite16_locked(chip
, value
& 0xff, CR47
);
1286 int zd_chip_set_channel(struct zd_chip
*chip
, u8 channel
)
1290 mutex_lock(&chip
->mutex
);
1291 r
= zd_chip_lock_phy_regs(chip
);
1294 r
= zd_rf_set_channel(&chip
->rf
, channel
);
1297 r
= update_channel_integration_and_calibration(chip
, channel
);
1300 r
= patch_cck_gain(chip
);
1303 r
= patch_6m_band_edge(chip
, channel
);
1306 r
= zd_iowrite32_locked(chip
, 0, CR_CONFIG_PHILIPS
);
1308 t
= zd_chip_unlock_phy_regs(chip
);
1312 mutex_unlock(&chip
->mutex
);
1316 u8
zd_chip_get_channel(struct zd_chip
*chip
)
1320 mutex_lock(&chip
->mutex
);
1321 channel
= chip
->rf
.channel
;
1322 mutex_unlock(&chip
->mutex
);
1326 int zd_chip_control_leds(struct zd_chip
*chip
, enum led_status status
)
1328 static const zd_addr_t a
[] = {
1334 u16 v
[ARRAY_SIZE(a
)];
1335 struct zd_ioreq16 ioreqs
[ARRAY_SIZE(a
)] = {
1336 [0] = { FW_LINK_STATUS
},
1341 mutex_lock(&chip
->mutex
);
1342 r
= zd_ioread16v_locked(chip
, v
, (const zd_addr_t
*)a
, ARRAY_SIZE(a
));
1346 other_led
= chip
->link_led
== LED1
? LED2
: LED1
;
1350 ioreqs
[0].value
= FW_LINK_OFF
;
1351 ioreqs
[1].value
= v
[1] & ~(LED1
|LED2
);
1354 ioreqs
[0].value
= FW_LINK_OFF
;
1355 ioreqs
[1].value
= v
[1] & ~other_led
;
1356 if (get_seconds() % 3 == 0) {
1357 ioreqs
[1].value
&= ~chip
->link_led
;
1359 ioreqs
[1].value
|= chip
->link_led
;
1362 case LED_ASSOCIATED
:
1363 ioreqs
[0].value
= FW_LINK_TX
;
1364 ioreqs
[1].value
= v
[1] & ~other_led
;
1365 ioreqs
[1].value
|= chip
->link_led
;
1372 if (v
[0] != ioreqs
[0].value
|| v
[1] != ioreqs
[1].value
) {
1373 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1379 mutex_unlock(&chip
->mutex
);
1383 int zd_chip_set_basic_rates_locked(struct zd_chip
*chip
, u16 cr_rates
)
1385 ZD_ASSERT((cr_rates
& ~(CR_RATES_80211B
| CR_RATES_80211G
)) == 0);
1386 dev_dbg_f(zd_chip_dev(chip
), "%x\n", cr_rates
);
1388 return zd_iowrite32_locked(chip
, cr_rates
, CR_BASIC_RATE_TBL
);
1391 static int ofdm_qual_db(u8 status_quality
, u8 rate
, unsigned int size
)
1393 static const u16 constants
[] = {
1394 715, 655, 585, 540, 470, 410, 360, 315,
1395 270, 235, 205, 175, 150, 125, 105, 85,
1402 /* It seems that their quality parameter is somehow per signal
1403 * and is now transferred per bit.
1406 case ZD_OFDM_RATE_6M
:
1407 case ZD_OFDM_RATE_12M
:
1408 case ZD_OFDM_RATE_24M
:
1411 case ZD_OFDM_RATE_9M
:
1412 case ZD_OFDM_RATE_18M
:
1413 case ZD_OFDM_RATE_36M
:
1414 case ZD_OFDM_RATE_54M
:
1418 case ZD_OFDM_RATE_48M
:
1426 x
= (10000 * status_quality
)/size
;
1427 for (i
= 0; i
< ARRAY_SIZE(constants
); i
++) {
1428 if (x
> constants
[i
])
1433 case ZD_OFDM_RATE_6M
:
1434 case ZD_OFDM_RATE_9M
:
1437 case ZD_OFDM_RATE_12M
:
1438 case ZD_OFDM_RATE_18M
:
1441 case ZD_OFDM_RATE_24M
:
1442 case ZD_OFDM_RATE_36M
:
1445 case ZD_OFDM_RATE_48M
:
1446 case ZD_OFDM_RATE_54M
:
1456 static int ofdm_qual_percent(u8 status_quality
, u8 rate
, unsigned int size
)
1460 r
= ofdm_qual_db(status_quality
, rate
, size
);
1466 return r
<= 100 ? r
: 100;
1469 static unsigned int log10times100(unsigned int x
)
1471 static const u8 log10
[] = {
1473 0, 30, 47, 60, 69, 77, 84, 90, 95, 100,
1474 104, 107, 111, 114, 117, 120, 123, 125, 127, 130,
1475 132, 134, 136, 138, 139, 141, 143, 144, 146, 147,
1476 149, 150, 151, 153, 154, 155, 156, 157, 159, 160,
1477 161, 162, 163, 164, 165, 166, 167, 168, 169, 169,
1478 170, 171, 172, 173, 174, 174, 175, 176, 177, 177,
1479 178, 179, 179, 180, 181, 181, 182, 183, 183, 184,
1480 185, 185, 186, 186, 187, 188, 188, 189, 189, 190,
1481 190, 191, 191, 192, 192, 193, 193, 194, 194, 195,
1482 195, 196, 196, 197, 197, 198, 198, 199, 199, 200,
1483 200, 200, 201, 201, 202, 202, 202, 203, 203, 204,
1484 204, 204, 205, 205, 206, 206, 206, 207, 207, 207,
1485 208, 208, 208, 209, 209, 210, 210, 210, 211, 211,
1486 211, 212, 212, 212, 213, 213, 213, 213, 214, 214,
1487 214, 215, 215, 215, 216, 216, 216, 217, 217, 217,
1488 217, 218, 218, 218, 219, 219, 219, 219, 220, 220,
1489 220, 220, 221, 221, 221, 222, 222, 222, 222, 223,
1490 223, 223, 223, 224, 224, 224, 224,
1493 return x
< ARRAY_SIZE(log10
) ? log10
[x
] : 225;
1497 MAX_CCK_EVM_DB
= 45,
1500 static int cck_evm_db(u8 status_quality
)
1502 return (20 * log10times100(status_quality
)) / 100;
1505 static int cck_snr_db(u8 status_quality
)
1507 int r
= MAX_CCK_EVM_DB
- cck_evm_db(status_quality
);
1512 static int cck_qual_percent(u8 status_quality
)
1516 r
= cck_snr_db(status_quality
);
1518 return r
<= 100 ? r
: 100;
1521 u8
zd_rx_qual_percent(const void *rx_frame
, unsigned int size
,
1522 const struct rx_status
*status
)
1524 return (status
->frame_status
&ZD_RX_OFDM
) ?
1525 ofdm_qual_percent(status
->signal_quality_ofdm
,
1526 zd_ofdm_plcp_header_rate(rx_frame
),
1528 cck_qual_percent(status
->signal_quality_cck
);
1531 u8
zd_rx_strength_percent(u8 rssi
)
1533 int r
= (rssi
*100) / 41;
1539 u16
zd_rx_rate(const void *rx_frame
, const struct rx_status
*status
)
1541 static const u16 ofdm_rates
[] = {
1542 [ZD_OFDM_RATE_6M
] = 60,
1543 [ZD_OFDM_RATE_9M
] = 90,
1544 [ZD_OFDM_RATE_12M
] = 120,
1545 [ZD_OFDM_RATE_18M
] = 180,
1546 [ZD_OFDM_RATE_24M
] = 240,
1547 [ZD_OFDM_RATE_36M
] = 360,
1548 [ZD_OFDM_RATE_48M
] = 480,
1549 [ZD_OFDM_RATE_54M
] = 540,
1552 if (status
->frame_status
& ZD_RX_OFDM
) {
1553 u8 ofdm_rate
= zd_ofdm_plcp_header_rate(rx_frame
);
1554 rate
= ofdm_rates
[ofdm_rate
& 0xf];
1556 u8 cck_rate
= zd_cck_plcp_header_rate(rx_frame
);
1558 case ZD_CCK_SIGNAL_1M
:
1561 case ZD_CCK_SIGNAL_2M
:
1564 case ZD_CCK_SIGNAL_5M5
:
1567 case ZD_CCK_SIGNAL_11M
:
1578 int zd_chip_switch_radio_on(struct zd_chip
*chip
)
1582 mutex_lock(&chip
->mutex
);
1583 r
= zd_switch_radio_on(&chip
->rf
);
1584 mutex_unlock(&chip
->mutex
);
1588 int zd_chip_switch_radio_off(struct zd_chip
*chip
)
1592 mutex_lock(&chip
->mutex
);
1593 r
= zd_switch_radio_off(&chip
->rf
);
1594 mutex_unlock(&chip
->mutex
);
1598 int zd_chip_enable_int(struct zd_chip
*chip
)
1602 mutex_lock(&chip
->mutex
);
1603 r
= zd_usb_enable_int(&chip
->usb
);
1604 mutex_unlock(&chip
->mutex
);
1608 void zd_chip_disable_int(struct zd_chip
*chip
)
1610 mutex_lock(&chip
->mutex
);
1611 zd_usb_disable_int(&chip
->usb
);
1612 mutex_unlock(&chip
->mutex
);
1615 int zd_chip_enable_rx(struct zd_chip
*chip
)
1619 mutex_lock(&chip
->mutex
);
1620 r
= zd_usb_enable_rx(&chip
->usb
);
1621 mutex_unlock(&chip
->mutex
);
1625 void zd_chip_disable_rx(struct zd_chip
*chip
)
1627 mutex_lock(&chip
->mutex
);
1628 zd_usb_disable_rx(&chip
->usb
);
1629 mutex_unlock(&chip
->mutex
);
1632 int zd_rfwritev_locked(struct zd_chip
*chip
,
1633 const u32
* values
, unsigned int count
, u8 bits
)
1638 for (i
= 0; i
< count
; i
++) {
1639 r
= zd_rfwrite_locked(chip
, values
[i
], bits
);
1648 * We can optionally program the RF directly through CR regs, if supported by
1649 * the hardware. This is much faster than the older method.
1651 int zd_rfwrite_cr_locked(struct zd_chip
*chip
, u32 value
)
1653 struct zd_ioreq16 ioreqs
[] = {
1654 { CR244
, (value
>> 16) & 0xff },
1655 { CR243
, (value
>> 8) & 0xff },
1656 { CR242
, value
& 0xff },
1658 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1659 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1662 int zd_rfwritev_cr_locked(struct zd_chip
*chip
,
1663 const u32
*values
, unsigned int count
)
1668 for (i
= 0; i
< count
; i
++) {
1669 r
= zd_rfwrite_cr_locked(chip
, values
[i
]);