sync hh.org
[hh.org.git] / fs / splice.c
blobda74583a00eecd0144159597b0ba3d329683aa0b
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping;
60 lock_page(page);
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
74 wait_on_page_writeback(page);
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
93 unlock_page(page);
94 return 1;
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
107 struct page *page = buf->page;
108 int err;
110 if (!PageUptodate(page)) {
111 lock_page(page);
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
123 * Uh oh, read-error from disk.
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
131 * Page is ok afterall, we are done.
133 unlock_page(page);
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
142 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
162 static struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
260 return ret;
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
292 * Initiate read-ahead on this page range. however, don't call into
293 * read-ahead if this is a non-zero offset (we are likely doing small
294 * chunk splice and the page is already there) for a single page.
296 if (!loff || nr_pages > 1)
297 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
300 * Now fill in the holes:
302 error = 0;
303 total_len = 0;
306 * Lookup the (hopefully) full range of pages we need.
308 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
311 * If find_get_pages_contig() returned fewer pages than we needed,
312 * allocate the rest.
314 index += spd.nr_pages;
315 while (spd.nr_pages < nr_pages) {
317 * Page could be there, find_get_pages_contig() breaks on
318 * the first hole.
320 page = find_get_page(mapping, index);
321 if (!page) {
323 * Make sure the read-ahead engine is notified
324 * about this failure.
326 handle_ra_miss(mapping, &in->f_ra, index);
329 * page didn't exist, allocate one.
331 page = page_cache_alloc_cold(mapping);
332 if (!page)
333 break;
335 error = add_to_page_cache_lru(page, mapping, index,
336 GFP_KERNEL);
337 if (unlikely(error)) {
338 page_cache_release(page);
339 if (error == -EEXIST)
340 continue;
341 break;
344 * add_to_page_cache() locks the page, unlock it
345 * to avoid convoluting the logic below even more.
347 unlock_page(page);
350 pages[spd.nr_pages++] = page;
351 index++;
355 * Now loop over the map and see if we need to start IO on any
356 * pages, fill in the partial map, etc.
358 index = *ppos >> PAGE_CACHE_SHIFT;
359 nr_pages = spd.nr_pages;
360 spd.nr_pages = 0;
361 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 unsigned int this_len;
364 if (!len)
365 break;
368 * this_len is the max we'll use from this page
370 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 page = pages[page_nr];
374 * If the page isn't uptodate, we may need to start io on it
376 if (!PageUptodate(page)) {
378 * If in nonblock mode then dont block on waiting
379 * for an in-flight io page
381 if (flags & SPLICE_F_NONBLOCK)
382 break;
384 lock_page(page);
387 * page was truncated, stop here. if this isn't the
388 * first page, we'll just complete what we already
389 * added
391 if (!page->mapping) {
392 unlock_page(page);
393 break;
396 * page was already under io and is now done, great
398 if (PageUptodate(page)) {
399 unlock_page(page);
400 goto fill_it;
404 * need to read in the page
406 error = mapping->a_ops->readpage(in, page);
407 if (unlikely(error)) {
409 * We really should re-lookup the page here,
410 * but it complicates things a lot. Instead
411 * lets just do what we already stored, and
412 * we'll get it the next time we are called.
414 if (error == AOP_TRUNCATED_PAGE)
415 error = 0;
417 break;
421 * i_size must be checked after ->readpage().
423 isize = i_size_read(mapping->host);
424 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 if (unlikely(!isize || index > end_index))
426 break;
429 * if this is the last page, see if we need to shrink
430 * the length and stop
432 if (end_index == index) {
433 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434 if (total_len + loff > isize)
435 break;
437 * force quit after adding this page
439 len = this_len;
440 this_len = min(this_len, loff);
441 loff = 0;
444 fill_it:
445 partial[page_nr].offset = loff;
446 partial[page_nr].len = this_len;
447 len -= this_len;
448 total_len += this_len;
449 loff = 0;
450 spd.nr_pages++;
451 index++;
455 * Release any pages at the end, if we quit early. 'i' is how far
456 * we got, 'nr_pages' is how many pages are in the map.
458 while (page_nr < nr_pages)
459 page_cache_release(pages[page_nr++]);
461 if (spd.nr_pages)
462 return splice_to_pipe(pipe, &spd);
464 return error;
468 * generic_file_splice_read - splice data from file to a pipe
469 * @in: file to splice from
470 * @pipe: pipe to splice to
471 * @len: number of bytes to splice
472 * @flags: splice modifier flags
474 * Will read pages from given file and fill them into a pipe.
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 struct pipe_inode_info *pipe, size_t len,
478 unsigned int flags)
480 ssize_t spliced;
481 int ret;
483 ret = 0;
484 spliced = 0;
486 while (len) {
487 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
489 if (ret < 0)
490 break;
491 else if (!ret) {
492 if (spliced)
493 break;
494 if (flags & SPLICE_F_NONBLOCK) {
495 ret = -EAGAIN;
496 break;
500 *ppos += ret;
501 len -= ret;
502 spliced += ret;
505 if (spliced)
506 return spliced;
508 return ret;
511 EXPORT_SYMBOL(generic_file_splice_read);
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 struct pipe_buffer *buf, struct splice_desc *sd)
520 struct file *file = sd->file;
521 loff_t pos = sd->pos;
522 int ret, more;
524 ret = buf->ops->pin(pipe, buf);
525 if (!ret) {
526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 sd->len, &pos, more);
532 return ret;
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 struct splice_desc *sd)
558 struct file *file = sd->file;
559 struct address_space *mapping = file->f_mapping;
560 unsigned int offset, this_len;
561 struct page *page;
562 pgoff_t index;
563 int ret;
566 * make sure the data in this buffer is uptodate
568 ret = buf->ops->pin(pipe, buf);
569 if (unlikely(ret))
570 return ret;
572 index = sd->pos >> PAGE_CACHE_SHIFT;
573 offset = sd->pos & ~PAGE_CACHE_MASK;
575 this_len = sd->len;
576 if (this_len + offset > PAGE_CACHE_SIZE)
577 this_len = PAGE_CACHE_SIZE - offset;
580 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
581 * page.
583 if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
585 * If steal succeeds, buf->page is now pruned from the
586 * pagecache and we can reuse it. The page will also be
587 * locked on successful return.
589 if (buf->ops->steal(pipe, buf))
590 goto find_page;
592 page = buf->page;
593 if (add_to_page_cache(page, mapping, index, GFP_KERNEL)) {
594 unlock_page(page);
595 goto find_page;
598 page_cache_get(page);
600 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
601 lru_cache_add(page);
602 } else {
603 find_page:
604 page = find_lock_page(mapping, index);
605 if (!page) {
606 ret = -ENOMEM;
607 page = page_cache_alloc_cold(mapping);
608 if (unlikely(!page))
609 goto out_ret;
612 * This will also lock the page
614 ret = add_to_page_cache_lru(page, mapping, index,
615 GFP_KERNEL);
616 if (unlikely(ret))
617 goto out;
621 * We get here with the page locked. If the page is also
622 * uptodate, we don't need to do more. If it isn't, we
623 * may need to bring it in if we are not going to overwrite
624 * the full page.
626 if (!PageUptodate(page)) {
627 if (this_len < PAGE_CACHE_SIZE) {
628 ret = mapping->a_ops->readpage(file, page);
629 if (unlikely(ret))
630 goto out;
632 lock_page(page);
634 if (!PageUptodate(page)) {
636 * Page got invalidated, repeat.
638 if (!page->mapping) {
639 unlock_page(page);
640 page_cache_release(page);
641 goto find_page;
643 ret = -EIO;
644 goto out;
646 } else
647 SetPageUptodate(page);
651 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
652 if (unlikely(ret)) {
653 loff_t isize = i_size_read(mapping->host);
655 if (ret != AOP_TRUNCATED_PAGE)
656 unlock_page(page);
657 page_cache_release(page);
658 if (ret == AOP_TRUNCATED_PAGE)
659 goto find_page;
662 * prepare_write() may have instantiated a few blocks
663 * outside i_size. Trim these off again.
665 if (sd->pos + this_len > isize)
666 vmtruncate(mapping->host, isize);
668 goto out_ret;
671 if (buf->page != page) {
673 * Careful, ->map() uses KM_USER0!
675 char *src = buf->ops->map(pipe, buf, 1);
676 char *dst = kmap_atomic(page, KM_USER1);
678 memcpy(dst + offset, src + buf->offset, this_len);
679 flush_dcache_page(page);
680 kunmap_atomic(dst, KM_USER1);
681 buf->ops->unmap(pipe, buf, src);
684 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
685 if (!ret) {
687 * Return the number of bytes written and mark page as
688 * accessed, we are now done!
690 ret = this_len;
691 mark_page_accessed(page);
692 balance_dirty_pages_ratelimited(mapping);
693 } else if (ret == AOP_TRUNCATED_PAGE) {
694 page_cache_release(page);
695 goto find_page;
697 out:
698 page_cache_release(page);
699 unlock_page(page);
700 out_ret:
701 return ret;
705 * Pipe input worker. Most of this logic works like a regular pipe, the
706 * key here is the 'actor' worker passed in that actually moves the data
707 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
709 static ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
710 struct file *out, loff_t *ppos, size_t len,
711 unsigned int flags, splice_actor *actor)
713 int ret, do_wakeup, err;
714 struct splice_desc sd;
716 ret = 0;
717 do_wakeup = 0;
719 sd.total_len = len;
720 sd.flags = flags;
721 sd.file = out;
722 sd.pos = *ppos;
724 for (;;) {
725 if (pipe->nrbufs) {
726 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
727 struct pipe_buf_operations *ops = buf->ops;
729 sd.len = buf->len;
730 if (sd.len > sd.total_len)
731 sd.len = sd.total_len;
733 err = actor(pipe, buf, &sd);
734 if (err <= 0) {
735 if (!ret && err != -ENODATA)
736 ret = err;
738 break;
741 ret += err;
742 buf->offset += err;
743 buf->len -= err;
745 sd.len -= err;
746 sd.pos += err;
747 sd.total_len -= err;
748 if (sd.len)
749 continue;
751 if (!buf->len) {
752 buf->ops = NULL;
753 ops->release(pipe, buf);
754 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
755 pipe->nrbufs--;
756 if (pipe->inode)
757 do_wakeup = 1;
760 if (!sd.total_len)
761 break;
764 if (pipe->nrbufs)
765 continue;
766 if (!pipe->writers)
767 break;
768 if (!pipe->waiting_writers) {
769 if (ret)
770 break;
773 if (flags & SPLICE_F_NONBLOCK) {
774 if (!ret)
775 ret = -EAGAIN;
776 break;
779 if (signal_pending(current)) {
780 if (!ret)
781 ret = -ERESTARTSYS;
782 break;
785 if (do_wakeup) {
786 smp_mb();
787 if (waitqueue_active(&pipe->wait))
788 wake_up_interruptible_sync(&pipe->wait);
789 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
790 do_wakeup = 0;
793 pipe_wait(pipe);
796 if (do_wakeup) {
797 smp_mb();
798 if (waitqueue_active(&pipe->wait))
799 wake_up_interruptible(&pipe->wait);
800 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
803 return ret;
806 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
807 loff_t *ppos, size_t len, unsigned int flags,
808 splice_actor *actor)
810 ssize_t ret;
811 struct inode *inode = out->f_mapping->host;
814 * The actor worker might be calling ->prepare_write and
815 * ->commit_write. Most of the time, these expect i_mutex to
816 * be held. Since this may result in an ABBA deadlock with
817 * pipe->inode, we have to order lock acquiry here.
819 inode_double_lock(inode, pipe->inode);
820 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
821 inode_double_unlock(inode, pipe->inode);
823 return ret;
827 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
828 * @pipe: pipe info
829 * @out: file to write to
830 * @len: number of bytes to splice
831 * @flags: splice modifier flags
833 * Will either move or copy pages (determined by @flags options) from
834 * the given pipe inode to the given file. The caller is responsible
835 * for acquiring i_mutex on both inodes.
838 ssize_t
839 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
840 loff_t *ppos, size_t len, unsigned int flags)
842 struct address_space *mapping = out->f_mapping;
843 struct inode *inode = mapping->host;
844 ssize_t ret;
845 int err;
847 err = remove_suid(out->f_dentry);
848 if (unlikely(err))
849 return err;
851 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
852 if (ret > 0) {
853 *ppos += ret;
856 * If file or inode is SYNC and we actually wrote some data,
857 * sync it.
859 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
860 err = generic_osync_inode(inode, mapping,
861 OSYNC_METADATA|OSYNC_DATA);
863 if (err)
864 ret = err;
868 return ret;
871 EXPORT_SYMBOL(generic_file_splice_write_nolock);
874 * generic_file_splice_write - splice data from a pipe to a file
875 * @pipe: pipe info
876 * @out: file to write to
877 * @len: number of bytes to splice
878 * @flags: splice modifier flags
880 * Will either move or copy pages (determined by @flags options) from
881 * the given pipe inode to the given file.
884 ssize_t
885 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
886 loff_t *ppos, size_t len, unsigned int flags)
888 struct address_space *mapping = out->f_mapping;
889 struct inode *inode = mapping->host;
890 ssize_t ret;
891 int err;
893 err = should_remove_suid(out->f_dentry);
894 if (unlikely(err)) {
895 mutex_lock(&inode->i_mutex);
896 err = __remove_suid(out->f_dentry, err);
897 mutex_unlock(&inode->i_mutex);
898 if (err)
899 return err;
902 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
903 if (ret > 0) {
904 *ppos += ret;
907 * If file or inode is SYNC and we actually wrote some data,
908 * sync it.
910 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
911 mutex_lock(&inode->i_mutex);
912 err = generic_osync_inode(inode, mapping,
913 OSYNC_METADATA|OSYNC_DATA);
914 mutex_unlock(&inode->i_mutex);
916 if (err)
917 ret = err;
921 return ret;
924 EXPORT_SYMBOL(generic_file_splice_write);
927 * generic_splice_sendpage - splice data from a pipe to a socket
928 * @inode: pipe inode
929 * @out: socket to write to
930 * @len: number of bytes to splice
931 * @flags: splice modifier flags
933 * Will send @len bytes from the pipe to a network socket. No data copying
934 * is involved.
937 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
938 loff_t *ppos, size_t len, unsigned int flags)
940 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
943 EXPORT_SYMBOL(generic_splice_sendpage);
946 * Attempt to initiate a splice from pipe to file.
948 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
949 loff_t *ppos, size_t len, unsigned int flags)
951 int ret;
953 if (unlikely(!out->f_op || !out->f_op->splice_write))
954 return -EINVAL;
956 if (unlikely(!(out->f_mode & FMODE_WRITE)))
957 return -EBADF;
959 ret = rw_verify_area(WRITE, out, ppos, len);
960 if (unlikely(ret < 0))
961 return ret;
963 return out->f_op->splice_write(pipe, out, ppos, len, flags);
967 * Attempt to initiate a splice from a file to a pipe.
969 static long do_splice_to(struct file *in, loff_t *ppos,
970 struct pipe_inode_info *pipe, size_t len,
971 unsigned int flags)
973 loff_t isize, left;
974 int ret;
976 if (unlikely(!in->f_op || !in->f_op->splice_read))
977 return -EINVAL;
979 if (unlikely(!(in->f_mode & FMODE_READ)))
980 return -EBADF;
982 ret = rw_verify_area(READ, in, ppos, len);
983 if (unlikely(ret < 0))
984 return ret;
986 isize = i_size_read(in->f_mapping->host);
987 if (unlikely(*ppos >= isize))
988 return 0;
990 left = isize - *ppos;
991 if (unlikely(left < len))
992 len = left;
994 return in->f_op->splice_read(in, ppos, pipe, len, flags);
997 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
998 size_t len, unsigned int flags)
1000 struct pipe_inode_info *pipe;
1001 long ret, bytes;
1002 loff_t out_off;
1003 umode_t i_mode;
1004 int i;
1007 * We require the input being a regular file, as we don't want to
1008 * randomly drop data for eg socket -> socket splicing. Use the
1009 * piped splicing for that!
1011 i_mode = in->f_dentry->d_inode->i_mode;
1012 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1013 return -EINVAL;
1016 * neither in nor out is a pipe, setup an internal pipe attached to
1017 * 'out' and transfer the wanted data from 'in' to 'out' through that
1019 pipe = current->splice_pipe;
1020 if (unlikely(!pipe)) {
1021 pipe = alloc_pipe_info(NULL);
1022 if (!pipe)
1023 return -ENOMEM;
1026 * We don't have an immediate reader, but we'll read the stuff
1027 * out of the pipe right after the splice_to_pipe(). So set
1028 * PIPE_READERS appropriately.
1030 pipe->readers = 1;
1032 current->splice_pipe = pipe;
1036 * Do the splice.
1038 ret = 0;
1039 bytes = 0;
1040 out_off = 0;
1042 while (len) {
1043 size_t read_len, max_read_len;
1046 * Do at most PIPE_BUFFERS pages worth of transfer:
1048 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1050 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1051 if (unlikely(ret < 0))
1052 goto out_release;
1054 read_len = ret;
1057 * NOTE: nonblocking mode only applies to the input. We
1058 * must not do the output in nonblocking mode as then we
1059 * could get stuck data in the internal pipe:
1061 ret = do_splice_from(pipe, out, &out_off, read_len,
1062 flags & ~SPLICE_F_NONBLOCK);
1063 if (unlikely(ret < 0))
1064 goto out_release;
1066 bytes += ret;
1067 len -= ret;
1070 * In nonblocking mode, if we got back a short read then
1071 * that was due to either an IO error or due to the
1072 * pagecache entry not being there. In the IO error case
1073 * the _next_ splice attempt will produce a clean IO error
1074 * return value (not a short read), so in both cases it's
1075 * correct to break out of the loop here:
1077 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1078 break;
1081 pipe->nrbufs = pipe->curbuf = 0;
1083 return bytes;
1085 out_release:
1087 * If we did an incomplete transfer we must release
1088 * the pipe buffers in question:
1090 for (i = 0; i < PIPE_BUFFERS; i++) {
1091 struct pipe_buffer *buf = pipe->bufs + i;
1093 if (buf->ops) {
1094 buf->ops->release(pipe, buf);
1095 buf->ops = NULL;
1098 pipe->nrbufs = pipe->curbuf = 0;
1101 * If we transferred some data, return the number of bytes:
1103 if (bytes > 0)
1104 return bytes;
1106 return ret;
1109 EXPORT_SYMBOL(do_splice_direct);
1112 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1113 * location, so checking ->i_pipe is not enough to verify that this is a
1114 * pipe.
1116 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1118 if (S_ISFIFO(inode->i_mode))
1119 return inode->i_pipe;
1121 return NULL;
1125 * Determine where to splice to/from.
1127 static long do_splice(struct file *in, loff_t __user *off_in,
1128 struct file *out, loff_t __user *off_out,
1129 size_t len, unsigned int flags)
1131 struct pipe_inode_info *pipe;
1132 loff_t offset, *off;
1133 long ret;
1135 pipe = pipe_info(in->f_dentry->d_inode);
1136 if (pipe) {
1137 if (off_in)
1138 return -ESPIPE;
1139 if (off_out) {
1140 if (out->f_op->llseek == no_llseek)
1141 return -EINVAL;
1142 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1143 return -EFAULT;
1144 off = &offset;
1145 } else
1146 off = &out->f_pos;
1148 ret = do_splice_from(pipe, out, off, len, flags);
1150 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1151 ret = -EFAULT;
1153 return ret;
1156 pipe = pipe_info(out->f_dentry->d_inode);
1157 if (pipe) {
1158 if (off_out)
1159 return -ESPIPE;
1160 if (off_in) {
1161 if (in->f_op->llseek == no_llseek)
1162 return -EINVAL;
1163 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1164 return -EFAULT;
1165 off = &offset;
1166 } else
1167 off = &in->f_pos;
1169 ret = do_splice_to(in, off, pipe, len, flags);
1171 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1172 ret = -EFAULT;
1174 return ret;
1177 return -EINVAL;
1181 * Map an iov into an array of pages and offset/length tupples. With the
1182 * partial_page structure, we can map several non-contiguous ranges into
1183 * our ones pages[] map instead of splitting that operation into pieces.
1184 * Could easily be exported as a generic helper for other users, in which
1185 * case one would probably want to add a 'max_nr_pages' parameter as well.
1187 static int get_iovec_page_array(const struct iovec __user *iov,
1188 unsigned int nr_vecs, struct page **pages,
1189 struct partial_page *partial, int aligned)
1191 int buffers = 0, error = 0;
1194 * It's ok to take the mmap_sem for reading, even
1195 * across a "get_user()".
1197 down_read(&current->mm->mmap_sem);
1199 while (nr_vecs) {
1200 unsigned long off, npages;
1201 void __user *base;
1202 size_t len;
1203 int i;
1206 * Get user address base and length for this iovec.
1208 error = get_user(base, &iov->iov_base);
1209 if (unlikely(error))
1210 break;
1211 error = get_user(len, &iov->iov_len);
1212 if (unlikely(error))
1213 break;
1216 * Sanity check this iovec. 0 read succeeds.
1218 if (unlikely(!len))
1219 break;
1220 error = -EFAULT;
1221 if (unlikely(!base))
1222 break;
1225 * Get this base offset and number of pages, then map
1226 * in the user pages.
1228 off = (unsigned long) base & ~PAGE_MASK;
1231 * If asked for alignment, the offset must be zero and the
1232 * length a multiple of the PAGE_SIZE.
1234 error = -EINVAL;
1235 if (aligned && (off || len & ~PAGE_MASK))
1236 break;
1238 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239 if (npages > PIPE_BUFFERS - buffers)
1240 npages = PIPE_BUFFERS - buffers;
1242 error = get_user_pages(current, current->mm,
1243 (unsigned long) base, npages, 0, 0,
1244 &pages[buffers], NULL);
1246 if (unlikely(error <= 0))
1247 break;
1250 * Fill this contiguous range into the partial page map.
1252 for (i = 0; i < error; i++) {
1253 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1255 partial[buffers].offset = off;
1256 partial[buffers].len = plen;
1258 off = 0;
1259 len -= plen;
1260 buffers++;
1264 * We didn't complete this iov, stop here since it probably
1265 * means we have to move some of this into a pipe to
1266 * be able to continue.
1268 if (len)
1269 break;
1272 * Don't continue if we mapped fewer pages than we asked for,
1273 * or if we mapped the max number of pages that we have
1274 * room for.
1276 if (error < npages || buffers == PIPE_BUFFERS)
1277 break;
1279 nr_vecs--;
1280 iov++;
1283 up_read(&current->mm->mmap_sem);
1285 if (buffers)
1286 return buffers;
1288 return error;
1292 * vmsplice splices a user address range into a pipe. It can be thought of
1293 * as splice-from-memory, where the regular splice is splice-from-file (or
1294 * to file). In both cases the output is a pipe, naturally.
1296 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1297 * not the other way around. Splicing from user memory is a simple operation
1298 * that can be supported without any funky alignment restrictions or nasty
1299 * vm tricks. We simply map in the user memory and fill them into a pipe.
1300 * The reverse isn't quite as easy, though. There are two possible solutions
1301 * for that:
1303 * - memcpy() the data internally, at which point we might as well just
1304 * do a regular read() on the buffer anyway.
1305 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1306 * has restriction limitations on both ends of the pipe).
1308 * Alas, it isn't here.
1311 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1312 unsigned long nr_segs, unsigned int flags)
1314 struct pipe_inode_info *pipe;
1315 struct page *pages[PIPE_BUFFERS];
1316 struct partial_page partial[PIPE_BUFFERS];
1317 struct splice_pipe_desc spd = {
1318 .pages = pages,
1319 .partial = partial,
1320 .flags = flags,
1321 .ops = &user_page_pipe_buf_ops,
1324 pipe = pipe_info(file->f_dentry->d_inode);
1325 if (!pipe)
1326 return -EBADF;
1327 if (unlikely(nr_segs > UIO_MAXIOV))
1328 return -EINVAL;
1329 else if (unlikely(!nr_segs))
1330 return 0;
1332 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1333 flags & SPLICE_F_GIFT);
1334 if (spd.nr_pages <= 0)
1335 return spd.nr_pages;
1337 return splice_to_pipe(pipe, &spd);
1340 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1341 unsigned long nr_segs, unsigned int flags)
1343 struct file *file;
1344 long error;
1345 int fput;
1347 error = -EBADF;
1348 file = fget_light(fd, &fput);
1349 if (file) {
1350 if (file->f_mode & FMODE_WRITE)
1351 error = do_vmsplice(file, iov, nr_segs, flags);
1353 fput_light(file, fput);
1356 return error;
1359 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1360 int fd_out, loff_t __user *off_out,
1361 size_t len, unsigned int flags)
1363 long error;
1364 struct file *in, *out;
1365 int fput_in, fput_out;
1367 if (unlikely(!len))
1368 return 0;
1370 error = -EBADF;
1371 in = fget_light(fd_in, &fput_in);
1372 if (in) {
1373 if (in->f_mode & FMODE_READ) {
1374 out = fget_light(fd_out, &fput_out);
1375 if (out) {
1376 if (out->f_mode & FMODE_WRITE)
1377 error = do_splice(in, off_in,
1378 out, off_out,
1379 len, flags);
1380 fput_light(out, fput_out);
1384 fput_light(in, fput_in);
1387 return error;
1391 * Make sure there's data to read. Wait for input if we can, otherwise
1392 * return an appropriate error.
1394 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1396 int ret;
1399 * Check ->nrbufs without the inode lock first. This function
1400 * is speculative anyways, so missing one is ok.
1402 if (pipe->nrbufs)
1403 return 0;
1405 ret = 0;
1406 mutex_lock(&pipe->inode->i_mutex);
1408 while (!pipe->nrbufs) {
1409 if (signal_pending(current)) {
1410 ret = -ERESTARTSYS;
1411 break;
1413 if (!pipe->writers)
1414 break;
1415 if (!pipe->waiting_writers) {
1416 if (flags & SPLICE_F_NONBLOCK) {
1417 ret = -EAGAIN;
1418 break;
1421 pipe_wait(pipe);
1424 mutex_unlock(&pipe->inode->i_mutex);
1425 return ret;
1429 * Make sure there's writeable room. Wait for room if we can, otherwise
1430 * return an appropriate error.
1432 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1434 int ret;
1437 * Check ->nrbufs without the inode lock first. This function
1438 * is speculative anyways, so missing one is ok.
1440 if (pipe->nrbufs < PIPE_BUFFERS)
1441 return 0;
1443 ret = 0;
1444 mutex_lock(&pipe->inode->i_mutex);
1446 while (pipe->nrbufs >= PIPE_BUFFERS) {
1447 if (!pipe->readers) {
1448 send_sig(SIGPIPE, current, 0);
1449 ret = -EPIPE;
1450 break;
1452 if (flags & SPLICE_F_NONBLOCK) {
1453 ret = -EAGAIN;
1454 break;
1456 if (signal_pending(current)) {
1457 ret = -ERESTARTSYS;
1458 break;
1460 pipe->waiting_writers++;
1461 pipe_wait(pipe);
1462 pipe->waiting_writers--;
1465 mutex_unlock(&pipe->inode->i_mutex);
1466 return ret;
1470 * Link contents of ipipe to opipe.
1472 static int link_pipe(struct pipe_inode_info *ipipe,
1473 struct pipe_inode_info *opipe,
1474 size_t len, unsigned int flags)
1476 struct pipe_buffer *ibuf, *obuf;
1477 int ret = 0, i = 0, nbuf;
1480 * Potential ABBA deadlock, work around it by ordering lock
1481 * grabbing by inode address. Otherwise two different processes
1482 * could deadlock (one doing tee from A -> B, the other from B -> A).
1484 inode_double_lock(ipipe->inode, opipe->inode);
1486 do {
1487 if (!opipe->readers) {
1488 send_sig(SIGPIPE, current, 0);
1489 if (!ret)
1490 ret = -EPIPE;
1491 break;
1495 * If we have iterated all input buffers or ran out of
1496 * output room, break.
1498 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1499 break;
1501 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1502 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1505 * Get a reference to this pipe buffer,
1506 * so we can copy the contents over.
1508 ibuf->ops->get(ipipe, ibuf);
1510 obuf = opipe->bufs + nbuf;
1511 *obuf = *ibuf;
1514 * Don't inherit the gift flag, we need to
1515 * prevent multiple steals of this page.
1517 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1519 if (obuf->len > len)
1520 obuf->len = len;
1522 opipe->nrbufs++;
1523 ret += obuf->len;
1524 len -= obuf->len;
1525 i++;
1526 } while (len);
1528 inode_double_unlock(ipipe->inode, opipe->inode);
1531 * If we put data in the output pipe, wakeup any potential readers.
1533 if (ret > 0) {
1534 smp_mb();
1535 if (waitqueue_active(&opipe->wait))
1536 wake_up_interruptible(&opipe->wait);
1537 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1540 return ret;
1544 * This is a tee(1) implementation that works on pipes. It doesn't copy
1545 * any data, it simply references the 'in' pages on the 'out' pipe.
1546 * The 'flags' used are the SPLICE_F_* variants, currently the only
1547 * applicable one is SPLICE_F_NONBLOCK.
1549 static long do_tee(struct file *in, struct file *out, size_t len,
1550 unsigned int flags)
1552 struct pipe_inode_info *ipipe = pipe_info(in->f_dentry->d_inode);
1553 struct pipe_inode_info *opipe = pipe_info(out->f_dentry->d_inode);
1554 int ret = -EINVAL;
1557 * Duplicate the contents of ipipe to opipe without actually
1558 * copying the data.
1560 if (ipipe && opipe && ipipe != opipe) {
1562 * Keep going, unless we encounter an error. The ipipe/opipe
1563 * ordering doesn't really matter.
1565 ret = link_ipipe_prep(ipipe, flags);
1566 if (!ret) {
1567 ret = link_opipe_prep(opipe, flags);
1568 if (!ret) {
1569 ret = link_pipe(ipipe, opipe, len, flags);
1570 if (!ret && (flags & SPLICE_F_NONBLOCK))
1571 ret = -EAGAIN;
1576 return ret;
1579 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1581 struct file *in;
1582 int error, fput_in;
1584 if (unlikely(!len))
1585 return 0;
1587 error = -EBADF;
1588 in = fget_light(fdin, &fput_in);
1589 if (in) {
1590 if (in->f_mode & FMODE_READ) {
1591 int fput_out;
1592 struct file *out = fget_light(fdout, &fput_out);
1594 if (out) {
1595 if (out->f_mode & FMODE_WRITE)
1596 error = do_tee(in, out, len, flags);
1597 fput_light(out, fput_out);
1600 fput_light(in, fput_in);
1603 return error;