sync hh.org
[hh.org.git] / include / asm-um / pgtable.h
blob188f726217766f8e45bc7dce5a130e509d9b2f68
1 /*
2 * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
11 #include "linux/sched.h"
12 #include "linux/linkage.h"
13 #include "asm/processor.h"
14 #include "asm/page.h"
15 #include "asm/fixmap.h"
17 #define _PAGE_PRESENT 0x001
18 #define _PAGE_NEWPAGE 0x002
19 #define _PAGE_NEWPROT 0x004
20 #define _PAGE_RW 0x020
21 #define _PAGE_USER 0x040
22 #define _PAGE_ACCESSED 0x080
23 #define _PAGE_DIRTY 0x100
24 /* If _PAGE_PRESENT is clear, we use these: */
25 #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
26 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
27 pte_present gives true */
29 #ifdef CONFIG_3_LEVEL_PGTABLES
30 #include "asm/pgtable-3level.h"
31 #else
32 #include "asm/pgtable-2level.h"
33 #endif
35 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
37 extern void *um_virt_to_phys(struct task_struct *task, unsigned long virt,
38 pte_t *pte_out);
40 /* zero page used for uninitialized stuff */
41 extern unsigned long *empty_zero_page;
43 #define pgtable_cache_init() do ; while (0)
46 * pgd entries used up by user/kernel:
49 #define USER_PGD_PTRS (TASK_SIZE >> PGDIR_SHIFT)
50 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
52 #ifndef __ASSEMBLY__
53 /* Just any arbitrary offset to the start of the vmalloc VM area: the
54 * current 8MB value just means that there will be a 8MB "hole" after the
55 * physical memory until the kernel virtual memory starts. That means that
56 * any out-of-bounds memory accesses will hopefully be caught.
57 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
58 * area for the same reason. ;)
61 extern unsigned long end_iomem;
63 #define VMALLOC_OFFSET (__va_space)
64 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
66 #ifdef CONFIG_HIGHMEM
67 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
68 #else
69 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
70 #endif
72 #define REGION_SHIFT (sizeof(pte_t) * 8 - 4)
73 #define REGION_MASK (((unsigned long) 0xf) << REGION_SHIFT)
75 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
76 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
77 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
79 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
80 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
81 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
82 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
83 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
84 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
87 * The i386 can't do page protection for execute, and considers that the same are read.
88 * Also, write permissions imply read permissions. This is the closest we can get..
90 #define __P000 PAGE_NONE
91 #define __P001 PAGE_READONLY
92 #define __P010 PAGE_COPY
93 #define __P011 PAGE_COPY
94 #define __P100 PAGE_READONLY
95 #define __P101 PAGE_READONLY
96 #define __P110 PAGE_COPY
97 #define __P111 PAGE_COPY
99 #define __S000 PAGE_NONE
100 #define __S001 PAGE_READONLY
101 #define __S010 PAGE_SHARED
102 #define __S011 PAGE_SHARED
103 #define __S100 PAGE_READONLY
104 #define __S101 PAGE_READONLY
105 #define __S110 PAGE_SHARED
106 #define __S111 PAGE_SHARED
109 * Define this if things work differently on an i386 and an i486:
110 * it will (on an i486) warn about kernel memory accesses that are
111 * done without a 'access_ok(VERIFY_WRITE,..)'
113 #undef TEST_VERIFY_AREA
115 /* page table for 0-4MB for everybody */
116 extern unsigned long pg0[1024];
119 * ZERO_PAGE is a global shared page that is always zero: used
120 * for zero-mapped memory areas etc..
123 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
125 /* number of bits that fit into a memory pointer */
126 #define BITS_PER_PTR (8*sizeof(unsigned long))
128 /* to align the pointer to a pointer address */
129 #define PTR_MASK (~(sizeof(void*)-1))
131 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
132 /* 64-bit machines, beware! SRB. */
133 #define SIZEOF_PTR_LOG2 3
135 /* to find an entry in a page-table */
136 #define PAGE_PTR(address) \
137 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
139 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
141 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
142 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
143 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
144 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
146 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
147 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
149 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
150 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
152 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
154 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
156 #define pte_page(x) pfn_to_page(pte_pfn(x))
157 #define pte_address(x) (__va(pte_val(x) & PAGE_MASK))
158 #define mk_phys(a, r) ((a) + (((unsigned long) r) << REGION_SHIFT))
159 #define phys_addr(p) ((p) & ~REGION_MASK)
161 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
164 * =================================
165 * Flags checking section.
166 * =================================
169 static inline int pte_none(pte_t pte)
171 return pte_is_zero(pte);
175 * The following only work if pte_present() is true.
176 * Undefined behaviour if not..
178 static inline int pte_user(pte_t pte)
180 return((pte_get_bits(pte, _PAGE_USER)) &&
181 !(pte_get_bits(pte, _PAGE_PROTNONE)));
184 static inline int pte_read(pte_t pte)
186 return((pte_get_bits(pte, _PAGE_USER)) &&
187 !(pte_get_bits(pte, _PAGE_PROTNONE)));
190 static inline int pte_exec(pte_t pte){
191 return((pte_get_bits(pte, _PAGE_USER)) &&
192 !(pte_get_bits(pte, _PAGE_PROTNONE)));
195 static inline int pte_write(pte_t pte)
197 return((pte_get_bits(pte, _PAGE_RW)) &&
198 !(pte_get_bits(pte, _PAGE_PROTNONE)));
202 * The following only works if pte_present() is not true.
204 static inline int pte_file(pte_t pte)
206 return pte_get_bits(pte, _PAGE_FILE);
209 static inline int pte_dirty(pte_t pte)
211 return pte_get_bits(pte, _PAGE_DIRTY);
214 static inline int pte_young(pte_t pte)
216 return pte_get_bits(pte, _PAGE_ACCESSED);
219 static inline int pte_newpage(pte_t pte)
221 return pte_get_bits(pte, _PAGE_NEWPAGE);
224 static inline int pte_newprot(pte_t pte)
226 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
230 * =================================
231 * Flags setting section.
232 * =================================
235 static inline pte_t pte_mknewprot(pte_t pte)
237 pte_set_bits(pte, _PAGE_NEWPROT);
238 return(pte);
241 static inline pte_t pte_rdprotect(pte_t pte)
243 pte_clear_bits(pte, _PAGE_USER);
244 return(pte_mknewprot(pte));
247 static inline pte_t pte_exprotect(pte_t pte)
249 pte_clear_bits(pte, _PAGE_USER);
250 return(pte_mknewprot(pte));
253 static inline pte_t pte_mkclean(pte_t pte)
255 pte_clear_bits(pte, _PAGE_DIRTY);
256 return(pte);
259 static inline pte_t pte_mkold(pte_t pte)
261 pte_clear_bits(pte, _PAGE_ACCESSED);
262 return(pte);
265 static inline pte_t pte_wrprotect(pte_t pte)
267 pte_clear_bits(pte, _PAGE_RW);
268 return(pte_mknewprot(pte));
271 static inline pte_t pte_mkread(pte_t pte)
273 pte_set_bits(pte, _PAGE_RW);
274 return(pte_mknewprot(pte));
277 static inline pte_t pte_mkdirty(pte_t pte)
279 pte_set_bits(pte, _PAGE_DIRTY);
280 return(pte);
283 static inline pte_t pte_mkyoung(pte_t pte)
285 pte_set_bits(pte, _PAGE_ACCESSED);
286 return(pte);
289 static inline pte_t pte_mkwrite(pte_t pte)
291 pte_set_bits(pte, _PAGE_RW);
292 return(pte_mknewprot(pte));
295 static inline pte_t pte_mkuptodate(pte_t pte)
297 pte_clear_bits(pte, _PAGE_NEWPAGE);
298 if(pte_present(pte))
299 pte_clear_bits(pte, _PAGE_NEWPROT);
300 return(pte);
303 static inline pte_t pte_mknewpage(pte_t pte)
305 pte_set_bits(pte, _PAGE_NEWPAGE);
306 return(pte);
309 static inline void set_pte(pte_t *pteptr, pte_t pteval)
311 pte_copy(*pteptr, pteval);
313 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
314 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
315 * mapped pages.
318 *pteptr = pte_mknewpage(*pteptr);
319 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
321 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
324 * Conversion functions: convert a page and protection to a page entry,
325 * and a page entry and page directory to the page they refer to.
328 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
329 #define __virt_to_page(virt) phys_to_page(__pa(virt))
330 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
332 #define mk_pte(page, pgprot) \
333 ({ pte_t pte; \
335 pte_set_val(pte, page_to_phys(page), (pgprot)); \
336 if (pte_present(pte)) \
337 pte_mknewprot(pte_mknewpage(pte)); \
338 pte;})
340 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
342 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
343 return pte;
346 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
349 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
351 * this macro returns the index of the entry in the pgd page which would
352 * control the given virtual address
354 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
356 #define pgd_index_k(addr) pgd_index(addr)
359 * pgd_offset() returns a (pgd_t *)
360 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
362 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
365 * a shortcut which implies the use of the kernel's pgd, instead
366 * of a process's
368 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
371 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
373 * this macro returns the index of the entry in the pmd page which would
374 * control the given virtual address
376 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
379 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
381 * this macro returns the index of the entry in the pte page which would
382 * control the given virtual address
384 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
385 #define pte_offset_kernel(dir, address) \
386 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
387 #define pte_offset_map(dir, address) \
388 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
389 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
390 #define pte_unmap(pte) do { } while (0)
391 #define pte_unmap_nested(pte) do { } while (0)
393 #define update_mmu_cache(vma,address,pte) do ; while (0)
395 /* Encode and de-code a swap entry */
396 #define __swp_type(x) (((x).val >> 4) & 0x3f)
397 #define __swp_offset(x) ((x).val >> 11)
399 #define __swp_entry(type, offset) \
400 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
401 #define __pte_to_swp_entry(pte) \
402 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
403 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
405 #define kern_addr_valid(addr) (1)
407 #include <asm-generic/pgtable.h>
409 #include <asm-generic/pgtable-nopud.h>
411 #endif
412 #endif
414 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
417 * Overrides for Emacs so that we follow Linus's tabbing style.
418 * Emacs will notice this stuff at the end of the file and automatically
419 * adjust the settings for this buffer only. This must remain at the end
420 * of the file.
421 * ---------------------------------------------------------------------------
422 * Local variables:
423 * c-file-style: "linux"
424 * End: