3 * Alchemy Au1x00 ethernet driver
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
18 * ########################################################################
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
33 * ########################################################################
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/sched.h>
41 #include <linux/string.h>
42 #include <linux/timer.h>
43 #include <linux/errno.h>
45 #include <linux/ioport.h>
46 #include <linux/bitops.h>
47 #include <linux/slab.h>
48 #include <linux/interrupt.h>
49 #include <linux/pci.h>
50 #include <linux/init.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/ethtool.h>
54 #include <linux/mii.h>
55 #include <linux/skbuff.h>
56 #include <linux/delay.h>
57 #include <linux/crc32.h>
58 #include <linux/phy.h>
59 #include <asm/mipsregs.h>
62 #include <asm/processor.h>
64 #include <asm/mach-au1x00/au1000.h>
66 #include "au1000_eth.h"
68 #ifdef AU1000_ETH_DEBUG
69 static int au1000_debug
= 5;
71 static int au1000_debug
= 3;
74 #define DRV_NAME "au1000_eth"
75 #define DRV_VERSION "1.5"
76 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
77 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
79 MODULE_AUTHOR(DRV_AUTHOR
);
80 MODULE_DESCRIPTION(DRV_DESC
);
81 MODULE_LICENSE("GPL");
84 static void hard_stop(struct net_device
*);
85 static void enable_rx_tx(struct net_device
*dev
);
86 static struct net_device
* au1000_probe(int port_num
);
87 static int au1000_init(struct net_device
*);
88 static int au1000_open(struct net_device
*);
89 static int au1000_close(struct net_device
*);
90 static int au1000_tx(struct sk_buff
*, struct net_device
*);
91 static int au1000_rx(struct net_device
*);
92 static irqreturn_t
au1000_interrupt(int, void *, struct pt_regs
*);
93 static void au1000_tx_timeout(struct net_device
*);
94 static void set_rx_mode(struct net_device
*);
95 static struct net_device_stats
*au1000_get_stats(struct net_device
*);
96 static int au1000_ioctl(struct net_device
*, struct ifreq
*, int);
97 static int mdio_read(struct net_device
*, int, int);
98 static void mdio_write(struct net_device
*, int, int, u16
);
99 static void au1000_adjust_link(struct net_device
*);
100 static void enable_mac(struct net_device
*, int);
103 extern int get_ethernet_addr(char *ethernet_addr
);
104 extern void str2eaddr(unsigned char *ea
, unsigned char *str
);
105 extern char * __init
prom_getcmdline(void);
108 * Theory of operation
110 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
111 * There are four receive and four transmit descriptors. These
112 * descriptors are not in memory; rather, they are just a set of
113 * hardware registers.
115 * Since the Au1000 has a coherent data cache, the receive and
116 * transmit buffers are allocated from the KSEG0 segment. The
117 * hardware registers, however, are still mapped at KSEG1 to
118 * make sure there's no out-of-order writes, and that all writes
119 * complete immediately.
122 /* These addresses are only used if yamon doesn't tell us what
123 * the mac address is, and the mac address is not passed on the
126 static unsigned char au1000_mac_addr
[6] __devinitdata
= {
127 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
130 struct au1000_private
*au_macs
[NUM_ETH_INTERFACES
];
133 * board-specific configurations
135 * PHY detection algorithm
137 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
140 * mii_probe() first searches the current MAC's MII bus for a PHY,
141 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
142 * defined) PHY address not already claimed by another netdev.
144 * If nothing was found that way when searching for the 2nd ethernet
145 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
146 * the first MII bus is searched as well for an unclaimed PHY; this is
147 * needed in case of a dual-PHY accessible only through the MAC0's MII
150 * Finally, if no PHY is found, then the corresponding ethernet
151 * controller is not registered to the network subsystem.
154 /* autodetection defaults */
155 #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
156 #define AU1XXX_PHY1_SEARCH_ON_MAC0
160 * most boards PHY setup should be detectable properly with the
161 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
162 * you have a switch attached, or want to use the PHY's interrupt
163 * notification capabilities) you can provide a static PHY
166 * IRQs may only be set, if a PHY address was configured
167 * If a PHY address is given, also a bus id is required to be set
169 * ps: make sure the used irqs are configured properly in the board
173 #if defined(CONFIG_MIPS_BOSPORUS)
175 * Micrel/Kendin 5 port switch attached to MAC0,
176 * MAC0 is associated with PHY address 5 (== WAN port)
177 * MAC1 is not associated with any PHY, since it's connected directly
179 * no interrupts are used
181 # define AU1XXX_PHY_STATIC_CONFIG
183 # define AU1XXX_PHY0_ADDR 5
184 # define AU1XXX_PHY0_BUSID 0
185 # undef AU1XXX_PHY0_IRQ
187 # undef AU1XXX_PHY1_ADDR
188 # undef AU1XXX_PHY1_BUSID
189 # undef AU1XXX_PHY1_IRQ
192 #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
193 # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
199 static int mdio_read(struct net_device
*dev
, int phy_addr
, int reg
)
201 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
202 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
203 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
207 while (*mii_control_reg
& MAC_MII_BUSY
) {
209 if (--timedout
== 0) {
210 printk(KERN_ERR
"%s: read_MII busy timeout!!\n",
216 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
217 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_READ
;
219 *mii_control_reg
= mii_control
;
222 while (*mii_control_reg
& MAC_MII_BUSY
) {
224 if (--timedout
== 0) {
225 printk(KERN_ERR
"%s: mdio_read busy timeout!!\n",
230 return (int)*mii_data_reg
;
233 static void mdio_write(struct net_device
*dev
, int phy_addr
, int reg
, u16 value
)
235 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
236 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
237 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
241 while (*mii_control_reg
& MAC_MII_BUSY
) {
243 if (--timedout
== 0) {
244 printk(KERN_ERR
"%s: mdio_write busy timeout!!\n",
250 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
251 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_WRITE
;
253 *mii_data_reg
= value
;
254 *mii_control_reg
= mii_control
;
257 static int mdiobus_read(struct mii_bus
*bus
, int phy_addr
, int regnum
)
259 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
260 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
261 struct net_device
*const dev
= bus
->priv
;
263 enable_mac(dev
, 0); /* make sure the MAC associated with this
264 * mii_bus is enabled */
265 return mdio_read(dev
, phy_addr
, regnum
);
268 static int mdiobus_write(struct mii_bus
*bus
, int phy_addr
, int regnum
,
271 struct net_device
*const dev
= bus
->priv
;
273 enable_mac(dev
, 0); /* make sure the MAC associated with this
274 * mii_bus is enabled */
275 mdio_write(dev
, phy_addr
, regnum
, value
);
279 static int mdiobus_reset(struct mii_bus
*bus
)
281 struct net_device
*const dev
= bus
->priv
;
283 enable_mac(dev
, 0); /* make sure the MAC associated with this
284 * mii_bus is enabled */
288 static int mii_probe (struct net_device
*dev
)
290 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
291 struct phy_device
*phydev
= NULL
;
293 #if defined(AU1XXX_PHY_STATIC_CONFIG)
294 BUG_ON(aup
->mac_id
< 0 || aup
->mac_id
> 1);
296 if(aup
->mac_id
== 0) { /* get PHY0 */
297 # if defined(AU1XXX_PHY0_ADDR)
298 phydev
= au_macs
[AU1XXX_PHY0_BUSID
]->mii_bus
.phy_map
[AU1XXX_PHY0_ADDR
];
300 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
303 # endif /* defined(AU1XXX_PHY0_ADDR) */
304 } else if (aup
->mac_id
== 1) { /* get PHY1 */
305 # if defined(AU1XXX_PHY1_ADDR)
306 phydev
= au_macs
[AU1XXX_PHY1_BUSID
]->mii_bus
.phy_map
[AU1XXX_PHY1_ADDR
];
308 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
311 # endif /* defined(AU1XXX_PHY1_ADDR) */
314 #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
317 /* find the first (lowest address) PHY on the current MAC's MII bus */
318 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++)
319 if (aup
->mii_bus
.phy_map
[phy_addr
]) {
320 phydev
= aup
->mii_bus
.phy_map
[phy_addr
];
321 # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
322 break; /* break out with first one found */
326 # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
327 /* try harder to find a PHY */
328 if (!phydev
&& (aup
->mac_id
== 1)) {
329 /* no PHY found, maybe we have a dual PHY? */
330 printk (KERN_INFO DRV_NAME
": no PHY found on MAC1, "
331 "let's see if it's attached to MAC0...\n");
335 /* find the first (lowest address) non-attached PHY on
336 * the MAC0 MII bus */
337 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++) {
338 struct phy_device
*const tmp_phydev
=
339 au_macs
[0]->mii_bus
.phy_map
[phy_addr
];
342 continue; /* no PHY here... */
344 if (tmp_phydev
->attached_dev
)
345 continue; /* already claimed by MAC0 */
348 break; /* found it */
351 # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
353 #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
355 printk (KERN_ERR DRV_NAME
":%s: no PHY found\n", dev
->name
);
359 /* now we are supposed to have a proper phydev, to attach to... */
361 BUG_ON(phydev
->attached_dev
);
363 phydev
= phy_connect(dev
, phydev
->dev
.bus_id
, &au1000_adjust_link
, 0);
365 if (IS_ERR(phydev
)) {
366 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
367 return PTR_ERR(phydev
);
370 /* mask with MAC supported features */
371 phydev
->supported
&= (SUPPORTED_10baseT_Half
372 | SUPPORTED_10baseT_Full
373 | SUPPORTED_100baseT_Half
374 | SUPPORTED_100baseT_Full
376 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
380 phydev
->advertising
= phydev
->supported
;
384 aup
->old_duplex
= -1;
385 aup
->phy_dev
= phydev
;
387 printk(KERN_INFO
"%s: attached PHY driver [%s] "
388 "(mii_bus:phy_addr=%s, irq=%d)\n",
389 dev
->name
, phydev
->drv
->name
, phydev
->dev
.bus_id
, phydev
->irq
);
396 * Buffer allocation/deallocation routines. The buffer descriptor returned
397 * has the virtual and dma address of a buffer suitable for
398 * both, receive and transmit operations.
400 static db_dest_t
*GetFreeDB(struct au1000_private
*aup
)
406 aup
->pDBfree
= pDB
->pnext
;
411 void ReleaseDB(struct au1000_private
*aup
, db_dest_t
*pDB
)
413 db_dest_t
*pDBfree
= aup
->pDBfree
;
415 pDBfree
->pnext
= pDB
;
419 static void enable_rx_tx(struct net_device
*dev
)
421 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
423 if (au1000_debug
> 4)
424 printk(KERN_INFO
"%s: enable_rx_tx\n", dev
->name
);
426 aup
->mac
->control
|= (MAC_RX_ENABLE
| MAC_TX_ENABLE
);
430 static void hard_stop(struct net_device
*dev
)
432 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
434 if (au1000_debug
> 4)
435 printk(KERN_INFO
"%s: hard stop\n", dev
->name
);
437 aup
->mac
->control
&= ~(MAC_RX_ENABLE
| MAC_TX_ENABLE
);
441 static void enable_mac(struct net_device
*dev
, int force_reset
)
444 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
446 spin_lock_irqsave(&aup
->lock
, flags
);
448 if(force_reset
|| (!aup
->mac_enabled
)) {
449 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
451 *aup
->enable
= (MAC_EN_RESET0
| MAC_EN_RESET1
| MAC_EN_RESET2
452 | MAC_EN_CLOCK_ENABLE
);
455 aup
->mac_enabled
= 1;
458 spin_unlock_irqrestore(&aup
->lock
, flags
);
461 static void reset_mac_unlocked(struct net_device
*dev
)
463 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
468 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
474 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
475 /* reset control bits */
476 aup
->rx_dma_ring
[i
]->buff_stat
&= ~0xf;
478 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
479 /* reset control bits */
480 aup
->tx_dma_ring
[i
]->buff_stat
&= ~0xf;
483 aup
->mac_enabled
= 0;
487 static void reset_mac(struct net_device
*dev
)
489 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
492 if (au1000_debug
> 4)
493 printk(KERN_INFO
"%s: reset mac, aup %x\n",
494 dev
->name
, (unsigned)aup
);
496 spin_lock_irqsave(&aup
->lock
, flags
);
498 reset_mac_unlocked (dev
);
500 spin_unlock_irqrestore(&aup
->lock
, flags
);
504 * Setup the receive and transmit "rings". These pointers are the addresses
505 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
506 * these are not descriptors sitting in memory.
509 setup_hw_rings(struct au1000_private
*aup
, u32 rx_base
, u32 tx_base
)
513 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
514 aup
->rx_dma_ring
[i
] =
515 (volatile rx_dma_t
*) (rx_base
+ sizeof(rx_dma_t
)*i
);
517 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
518 aup
->tx_dma_ring
[i
] =
519 (volatile tx_dma_t
*) (tx_base
+ sizeof(tx_dma_t
)*i
);
527 struct net_device
*dev
;
529 #ifdef CONFIG_SOC_AU1000
530 {AU1000_ETH0_BASE
, AU1000_MAC0_ENABLE
, AU1000_MAC0_DMA_INT
},
531 {AU1000_ETH1_BASE
, AU1000_MAC1_ENABLE
, AU1000_MAC1_DMA_INT
}
533 #ifdef CONFIG_SOC_AU1100
534 {AU1100_ETH0_BASE
, AU1100_MAC0_ENABLE
, AU1100_MAC0_DMA_INT
}
536 #ifdef CONFIG_SOC_AU1500
537 {AU1500_ETH0_BASE
, AU1500_MAC0_ENABLE
, AU1500_MAC0_DMA_INT
},
538 {AU1500_ETH1_BASE
, AU1500_MAC1_ENABLE
, AU1500_MAC1_DMA_INT
}
540 #ifdef CONFIG_SOC_AU1550
541 {AU1550_ETH0_BASE
, AU1550_MAC0_ENABLE
, AU1550_MAC0_DMA_INT
},
542 {AU1550_ETH1_BASE
, AU1550_MAC1_ENABLE
, AU1550_MAC1_DMA_INT
}
549 * Setup the base address and interupt of the Au1xxx ethernet macs
550 * based on cpu type and whether the interface is enabled in sys_pinfunc
551 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
553 static int __init
au1000_init_module(void)
555 int ni
= (int)((au_readl(SYS_PINFUNC
) & (u32
)(SYS_PF_NI2
)) >> 4);
556 struct net_device
*dev
;
557 int i
, found_one
= 0;
559 num_ifs
= NUM_ETH_INTERFACES
- ni
;
561 for(i
= 0; i
< num_ifs
; i
++) {
562 dev
= au1000_probe(i
);
576 static int au1000_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
578 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
581 return phy_ethtool_gset(aup
->phy_dev
, cmd
);
586 static int au1000_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
588 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
590 if (!capable(CAP_NET_ADMIN
))
594 return phy_ethtool_sset(aup
->phy_dev
, cmd
);
600 au1000_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
602 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
604 strcpy(info
->driver
, DRV_NAME
);
605 strcpy(info
->version
, DRV_VERSION
);
606 info
->fw_version
[0] = '\0';
607 sprintf(info
->bus_info
, "%s %d", DRV_NAME
, aup
->mac_id
);
608 info
->regdump_len
= 0;
611 static struct ethtool_ops au1000_ethtool_ops
= {
612 .get_settings
= au1000_get_settings
,
613 .set_settings
= au1000_set_settings
,
614 .get_drvinfo
= au1000_get_drvinfo
,
615 .get_link
= ethtool_op_get_link
,
618 static struct net_device
* au1000_probe(int port_num
)
620 static unsigned version_printed
= 0;
621 struct au1000_private
*aup
= NULL
;
622 struct net_device
*dev
= NULL
;
623 db_dest_t
*pDB
, *pDBfree
;
629 if (port_num
>= NUM_ETH_INTERFACES
)
632 base
= CPHYSADDR(iflist
[port_num
].base_addr
);
633 macen
= CPHYSADDR(iflist
[port_num
].macen_addr
);
634 irq
= iflist
[port_num
].irq
;
636 if (!request_mem_region( base
, MAC_IOSIZE
, "Au1x00 ENET") ||
637 !request_mem_region(macen
, 4, "Au1x00 ENET"))
640 if (version_printed
++ == 0)
641 printk("%s version %s %s\n", DRV_NAME
, DRV_VERSION
, DRV_AUTHOR
);
643 dev
= alloc_etherdev(sizeof(struct au1000_private
));
645 printk(KERN_ERR
"%s: alloc_etherdev failed\n", DRV_NAME
);
649 if ((err
= register_netdev(dev
)) != 0) {
650 printk(KERN_ERR
"%s: Cannot register net device, error %d\n",
656 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
657 dev
->name
, base
, irq
);
661 /* Allocate the data buffers */
662 /* Snooping works fine with eth on all au1xxx */
663 aup
->vaddr
= (u32
)dma_alloc_noncoherent(NULL
, MAX_BUF_SIZE
*
664 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
668 release_mem_region( base
, MAC_IOSIZE
);
669 release_mem_region(macen
, 4);
673 /* aup->mac is the base address of the MAC's registers */
674 aup
->mac
= (volatile mac_reg_t
*)iflist
[port_num
].base_addr
;
676 /* Setup some variables for quick register address access */
677 aup
->enable
= (volatile u32
*)iflist
[port_num
].macen_addr
;
678 aup
->mac_id
= port_num
;
679 au_macs
[port_num
] = aup
;
682 /* Check the environment variables first */
683 if (get_ethernet_addr(ethaddr
) == 0)
684 memcpy(au1000_mac_addr
, ethaddr
, sizeof(au1000_mac_addr
));
686 /* Check command line */
687 argptr
= prom_getcmdline();
688 if ((pmac
= strstr(argptr
, "ethaddr=")) == NULL
)
689 printk(KERN_INFO
"%s: No MAC address found\n",
691 /* Use the hard coded MAC addresses */
693 str2eaddr(ethaddr
, pmac
+ strlen("ethaddr="));
694 memcpy(au1000_mac_addr
, ethaddr
,
695 sizeof(au1000_mac_addr
));
699 setup_hw_rings(aup
, MAC0_RX_DMA_ADDR
, MAC0_TX_DMA_ADDR
);
700 } else if (port_num
== 1)
701 setup_hw_rings(aup
, MAC1_RX_DMA_ADDR
, MAC1_TX_DMA_ADDR
);
704 * Assign to the Ethernet ports two consecutive MAC addresses
705 * to match those that are printed on their stickers
707 memcpy(dev
->dev_addr
, au1000_mac_addr
, sizeof(au1000_mac_addr
));
708 dev
->dev_addr
[5] += port_num
;
711 aup
->mac_enabled
= 0;
713 aup
->mii_bus
.priv
= dev
;
714 aup
->mii_bus
.read
= mdiobus_read
;
715 aup
->mii_bus
.write
= mdiobus_write
;
716 aup
->mii_bus
.reset
= mdiobus_reset
;
717 aup
->mii_bus
.name
= "au1000_eth_mii";
718 aup
->mii_bus
.id
= aup
->mac_id
;
719 aup
->mii_bus
.irq
= kmalloc(sizeof(int)*PHY_MAX_ADDR
, GFP_KERNEL
);
720 for(i
= 0; i
< PHY_MAX_ADDR
; ++i
)
721 aup
->mii_bus
.irq
[i
] = PHY_POLL
;
723 /* if known, set corresponding PHY IRQs */
724 #if defined(AU1XXX_PHY_STATIC_CONFIG)
725 # if defined(AU1XXX_PHY0_IRQ)
726 if (AU1XXX_PHY0_BUSID
== aup
->mii_bus
.id
)
727 aup
->mii_bus
.irq
[AU1XXX_PHY0_ADDR
] = AU1XXX_PHY0_IRQ
;
729 # if defined(AU1XXX_PHY1_IRQ)
730 if (AU1XXX_PHY1_BUSID
== aup
->mii_bus
.id
)
731 aup
->mii_bus
.irq
[AU1XXX_PHY1_ADDR
] = AU1XXX_PHY1_IRQ
;
734 mdiobus_register(&aup
->mii_bus
);
736 if (mii_probe(dev
) != 0) {
741 /* setup the data buffer descriptors and attach a buffer to each one */
743 for (i
= 0; i
< (NUM_TX_BUFFS
+NUM_RX_BUFFS
); i
++) {
744 pDB
->pnext
= pDBfree
;
746 pDB
->vaddr
= (u32
*)((unsigned)aup
->vaddr
+ MAX_BUF_SIZE
*i
);
747 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
750 aup
->pDBfree
= pDBfree
;
752 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
753 pDB
= GetFreeDB(aup
);
757 aup
->rx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
758 aup
->rx_db_inuse
[i
] = pDB
;
760 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
761 pDB
= GetFreeDB(aup
);
765 aup
->tx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
766 aup
->tx_dma_ring
[i
]->len
= 0;
767 aup
->tx_db_inuse
[i
] = pDB
;
770 spin_lock_init(&aup
->lock
);
771 dev
->base_addr
= base
;
773 dev
->open
= au1000_open
;
774 dev
->hard_start_xmit
= au1000_tx
;
775 dev
->stop
= au1000_close
;
776 dev
->get_stats
= au1000_get_stats
;
777 dev
->set_multicast_list
= &set_rx_mode
;
778 dev
->do_ioctl
= &au1000_ioctl
;
779 SET_ETHTOOL_OPS(dev
, &au1000_ethtool_ops
);
780 dev
->tx_timeout
= au1000_tx_timeout
;
781 dev
->watchdog_timeo
= ETH_TX_TIMEOUT
;
784 * The boot code uses the ethernet controller, so reset it to start
785 * fresh. au1000_init() expects that the device is in reset state.
792 /* here we should have a valid dev plus aup-> register addresses
793 * so we can reset the mac properly.*/
796 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
797 if (aup
->rx_db_inuse
[i
])
798 ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
800 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
801 if (aup
->tx_db_inuse
[i
])
802 ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
804 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
805 (void *)aup
->vaddr
, aup
->dma_addr
);
806 unregister_netdev(dev
);
808 release_mem_region( base
, MAC_IOSIZE
);
809 release_mem_region(macen
, 4);
814 * Initialize the interface.
816 * When the device powers up, the clocks are disabled and the
817 * mac is in reset state. When the interface is closed, we
818 * do the same -- reset the device and disable the clocks to
819 * conserve power. Thus, whenever au1000_init() is called,
820 * the device should already be in reset state.
822 static int au1000_init(struct net_device
*dev
)
824 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
829 if (au1000_debug
> 4)
830 printk("%s: au1000_init\n", dev
->name
);
832 /* bring the device out of reset */
835 spin_lock_irqsave(&aup
->lock
, flags
);
837 aup
->mac
->control
= 0;
838 aup
->tx_head
= (aup
->tx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
839 aup
->tx_tail
= aup
->tx_head
;
840 aup
->rx_head
= (aup
->rx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
842 aup
->mac
->mac_addr_high
= dev
->dev_addr
[5]<<8 | dev
->dev_addr
[4];
843 aup
->mac
->mac_addr_low
= dev
->dev_addr
[3]<<24 | dev
->dev_addr
[2]<<16 |
844 dev
->dev_addr
[1]<<8 | dev
->dev_addr
[0];
846 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
847 aup
->rx_dma_ring
[i
]->buff_stat
|= RX_DMA_ENABLE
;
851 control
= MAC_RX_ENABLE
| MAC_TX_ENABLE
;
852 #ifndef CONFIG_CPU_LITTLE_ENDIAN
853 control
|= MAC_BIG_ENDIAN
;
856 if (aup
->phy_dev
->link
&& (DUPLEX_FULL
== aup
->phy_dev
->duplex
))
857 control
|= MAC_FULL_DUPLEX
;
859 control
|= MAC_DISABLE_RX_OWN
;
860 } else { /* PHY-less op, assume full-duplex */
861 control
|= MAC_FULL_DUPLEX
;
864 aup
->mac
->control
= control
;
865 aup
->mac
->vlan1_tag
= 0x8100; /* activate vlan support */
868 spin_unlock_irqrestore(&aup
->lock
, flags
);
873 au1000_adjust_link(struct net_device
*dev
)
875 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
876 struct phy_device
*phydev
= aup
->phy_dev
;
879 int status_change
= 0;
881 BUG_ON(!aup
->phy_dev
);
883 spin_lock_irqsave(&aup
->lock
, flags
);
885 if (phydev
->link
&& (aup
->old_speed
!= phydev
->speed
)) {
888 switch(phydev
->speed
) {
894 "%s: Speed (%d) is not 10/100 ???\n",
895 dev
->name
, phydev
->speed
);
899 aup
->old_speed
= phydev
->speed
;
904 if (phydev
->link
&& (aup
->old_duplex
!= phydev
->duplex
)) {
905 // duplex mode changed
907 /* switching duplex mode requires to disable rx and tx! */
910 if (DUPLEX_FULL
== phydev
->duplex
)
911 aup
->mac
->control
= ((aup
->mac
->control
913 & ~MAC_DISABLE_RX_OWN
);
915 aup
->mac
->control
= ((aup
->mac
->control
917 | MAC_DISABLE_RX_OWN
);
921 aup
->old_duplex
= phydev
->duplex
;
926 if(phydev
->link
!= aup
->old_link
) {
927 // link state changed
929 if (phydev
->link
) // link went up
931 else { // link went down
933 aup
->old_duplex
= -1;
936 aup
->old_link
= phydev
->link
;
940 spin_unlock_irqrestore(&aup
->lock
, flags
);
944 printk(KERN_INFO
"%s: link up (%d/%s)\n",
945 dev
->name
, phydev
->speed
,
946 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
948 printk(KERN_INFO
"%s: link down\n", dev
->name
);
952 static int au1000_open(struct net_device
*dev
)
955 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
957 if (au1000_debug
> 4)
958 printk("%s: open: dev=%p\n", dev
->name
, dev
);
960 if ((retval
= request_irq(dev
->irq
, &au1000_interrupt
, 0,
962 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
963 dev
->name
, dev
->irq
);
967 if ((retval
= au1000_init(dev
))) {
968 printk(KERN_ERR
"%s: error in au1000_init\n", dev
->name
);
969 free_irq(dev
->irq
, dev
);
974 /* cause the PHY state machine to schedule a link state check */
975 aup
->phy_dev
->state
= PHY_CHANGELINK
;
976 phy_start(aup
->phy_dev
);
979 netif_start_queue(dev
);
981 if (au1000_debug
> 4)
982 printk("%s: open: Initialization done.\n", dev
->name
);
987 static int au1000_close(struct net_device
*dev
)
990 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
992 if (au1000_debug
> 4)
993 printk("%s: close: dev=%p\n", dev
->name
, dev
);
996 phy_stop(aup
->phy_dev
);
998 spin_lock_irqsave(&aup
->lock
, flags
);
1000 reset_mac_unlocked (dev
);
1002 /* stop the device */
1003 netif_stop_queue(dev
);
1005 /* disable the interrupt */
1006 free_irq(dev
->irq
, dev
);
1007 spin_unlock_irqrestore(&aup
->lock
, flags
);
1012 static void __exit
au1000_cleanup_module(void)
1015 struct net_device
*dev
;
1016 struct au1000_private
*aup
;
1018 for (i
= 0; i
< num_ifs
; i
++) {
1019 dev
= iflist
[i
].dev
;
1021 aup
= (struct au1000_private
*) dev
->priv
;
1022 unregister_netdev(dev
);
1023 for (j
= 0; j
< NUM_RX_DMA
; j
++)
1024 if (aup
->rx_db_inuse
[j
])
1025 ReleaseDB(aup
, aup
->rx_db_inuse
[j
]);
1026 for (j
= 0; j
< NUM_TX_DMA
; j
++)
1027 if (aup
->tx_db_inuse
[j
])
1028 ReleaseDB(aup
, aup
->tx_db_inuse
[j
]);
1029 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
*
1030 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1031 (void *)aup
->vaddr
, aup
->dma_addr
);
1032 release_mem_region(dev
->base_addr
, MAC_IOSIZE
);
1033 release_mem_region(CPHYSADDR(iflist
[i
].macen_addr
), 4);
1039 static void update_tx_stats(struct net_device
*dev
, u32 status
)
1041 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1042 struct net_device_stats
*ps
= &aup
->stats
;
1044 if (status
& TX_FRAME_ABORTED
) {
1045 if (!aup
->phy_dev
|| (DUPLEX_FULL
== aup
->phy_dev
->duplex
)) {
1046 if (status
& (TX_JAB_TIMEOUT
| TX_UNDERRUN
)) {
1047 /* any other tx errors are only valid
1048 * in half duplex mode */
1050 ps
->tx_aborted_errors
++;
1055 ps
->tx_aborted_errors
++;
1056 if (status
& (TX_NO_CARRIER
| TX_LOSS_CARRIER
))
1057 ps
->tx_carrier_errors
++;
1064 * Called from the interrupt service routine to acknowledge
1065 * the TX DONE bits. This is a must if the irq is setup as
1068 static void au1000_tx_ack(struct net_device
*dev
)
1070 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1071 volatile tx_dma_t
*ptxd
;
1073 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
1075 while (ptxd
->buff_stat
& TX_T_DONE
) {
1076 update_tx_stats(dev
, ptxd
->status
);
1077 ptxd
->buff_stat
&= ~TX_T_DONE
;
1081 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_TX_DMA
- 1);
1082 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
1086 netif_wake_queue(dev
);
1093 * Au1000 transmit routine.
1095 static int au1000_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1097 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1098 struct net_device_stats
*ps
= &aup
->stats
;
1099 volatile tx_dma_t
*ptxd
;
1104 if (au1000_debug
> 5)
1105 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1106 dev
->name
, (unsigned)aup
, skb
->len
,
1107 skb
->data
, aup
->tx_head
);
1109 ptxd
= aup
->tx_dma_ring
[aup
->tx_head
];
1110 buff_stat
= ptxd
->buff_stat
;
1111 if (buff_stat
& TX_DMA_ENABLE
) {
1112 /* We've wrapped around and the transmitter is still busy */
1113 netif_stop_queue(dev
);
1117 else if (buff_stat
& TX_T_DONE
) {
1118 update_tx_stats(dev
, ptxd
->status
);
1124 netif_wake_queue(dev
);
1127 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
1128 memcpy((void *)pDB
->vaddr
, skb
->data
, skb
->len
);
1129 if (skb
->len
< ETH_ZLEN
) {
1130 for (i
=skb
->len
; i
<ETH_ZLEN
; i
++) {
1131 ((char *)pDB
->vaddr
)[i
] = 0;
1133 ptxd
->len
= ETH_ZLEN
;
1136 ptxd
->len
= skb
->len
;
1139 ps
->tx_bytes
+= ptxd
->len
;
1141 ptxd
->buff_stat
= pDB
->dma_addr
| TX_DMA_ENABLE
;
1144 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_TX_DMA
- 1);
1145 dev
->trans_start
= jiffies
;
1149 static inline void update_rx_stats(struct net_device
*dev
, u32 status
)
1151 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1152 struct net_device_stats
*ps
= &aup
->stats
;
1155 if (status
& RX_MCAST_FRAME
)
1158 if (status
& RX_ERROR
) {
1160 if (status
& RX_MISSED_FRAME
)
1161 ps
->rx_missed_errors
++;
1162 if (status
& (RX_OVERLEN
| RX_OVERLEN
| RX_LEN_ERROR
))
1163 ps
->rx_length_errors
++;
1164 if (status
& RX_CRC_ERROR
)
1165 ps
->rx_crc_errors
++;
1166 if (status
& RX_COLL
)
1170 ps
->rx_bytes
+= status
& RX_FRAME_LEN_MASK
;
1175 * Au1000 receive routine.
1177 static int au1000_rx(struct net_device
*dev
)
1179 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1180 struct sk_buff
*skb
;
1181 volatile rx_dma_t
*prxd
;
1182 u32 buff_stat
, status
;
1186 if (au1000_debug
> 5)
1187 printk("%s: au1000_rx head %d\n", dev
->name
, aup
->rx_head
);
1189 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
1190 buff_stat
= prxd
->buff_stat
;
1191 while (buff_stat
& RX_T_DONE
) {
1192 status
= prxd
->status
;
1193 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
1194 update_rx_stats(dev
, status
);
1195 if (!(status
& RX_ERROR
)) {
1198 frmlen
= (status
& RX_FRAME_LEN_MASK
);
1199 frmlen
-= 4; /* Remove FCS */
1200 skb
= dev_alloc_skb(frmlen
+ 2);
1203 "%s: Memory squeeze, dropping packet.\n",
1205 aup
->stats
.rx_dropped
++;
1209 skb_reserve(skb
, 2); /* 16 byte IP header align */
1210 eth_copy_and_sum(skb
,
1211 (unsigned char *)pDB
->vaddr
, frmlen
, 0);
1212 skb_put(skb
, frmlen
);
1213 skb
->protocol
= eth_type_trans(skb
, dev
);
1214 netif_rx(skb
); /* pass the packet to upper layers */
1217 if (au1000_debug
> 4) {
1218 if (status
& RX_MISSED_FRAME
)
1219 printk("rx miss\n");
1220 if (status
& RX_WDOG_TIMER
)
1221 printk("rx wdog\n");
1222 if (status
& RX_RUNT
)
1223 printk("rx runt\n");
1224 if (status
& RX_OVERLEN
)
1225 printk("rx overlen\n");
1226 if (status
& RX_COLL
)
1227 printk("rx coll\n");
1228 if (status
& RX_MII_ERROR
)
1229 printk("rx mii error\n");
1230 if (status
& RX_CRC_ERROR
)
1231 printk("rx crc error\n");
1232 if (status
& RX_LEN_ERROR
)
1233 printk("rx len error\n");
1234 if (status
& RX_U_CNTRL_FRAME
)
1235 printk("rx u control frame\n");
1236 if (status
& RX_MISSED_FRAME
)
1237 printk("rx miss\n");
1240 prxd
->buff_stat
= (u32
)(pDB
->dma_addr
| RX_DMA_ENABLE
);
1241 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_RX_DMA
- 1);
1244 /* next descriptor */
1245 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
1246 buff_stat
= prxd
->buff_stat
;
1247 dev
->last_rx
= jiffies
;
1254 * Au1000 interrupt service routine.
1256 static irqreturn_t
au1000_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1258 struct net_device
*dev
= (struct net_device
*) dev_id
;
1261 printk(KERN_ERR
"%s: isr: null dev ptr\n", dev
->name
);
1262 return IRQ_RETVAL(1);
1265 /* Handle RX interrupts first to minimize chance of overrun */
1269 return IRQ_RETVAL(1);
1274 * The Tx ring has been full longer than the watchdog timeout
1275 * value. The transmitter must be hung?
1277 static void au1000_tx_timeout(struct net_device
*dev
)
1279 printk(KERN_ERR
"%s: au1000_tx_timeout: dev=%p\n", dev
->name
, dev
);
1282 dev
->trans_start
= jiffies
;
1283 netif_wake_queue(dev
);
1286 static void set_rx_mode(struct net_device
*dev
)
1288 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1290 if (au1000_debug
> 4)
1291 printk("%s: set_rx_mode: flags=%x\n", dev
->name
, dev
->flags
);
1293 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1294 aup
->mac
->control
|= MAC_PROMISCUOUS
;
1295 printk(KERN_INFO
"%s: Promiscuous mode enabled.\n", dev
->name
);
1296 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1297 dev
->mc_count
> MULTICAST_FILTER_LIMIT
) {
1298 aup
->mac
->control
|= MAC_PASS_ALL_MULTI
;
1299 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1300 printk(KERN_INFO
"%s: Pass all multicast\n", dev
->name
);
1303 struct dev_mc_list
*mclist
;
1304 u32 mc_filter
[2]; /* Multicast hash filter */
1306 mc_filter
[1] = mc_filter
[0] = 0;
1307 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1308 i
++, mclist
= mclist
->next
) {
1309 set_bit(ether_crc(ETH_ALEN
, mclist
->dmi_addr
)>>26,
1312 aup
->mac
->multi_hash_high
= mc_filter
[1];
1313 aup
->mac
->multi_hash_low
= mc_filter
[0];
1314 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1315 aup
->mac
->control
|= MAC_HASH_MODE
;
1319 static int au1000_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1321 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
1323 if (!netif_running(dev
)) return -EINVAL
;
1325 if (!aup
->phy_dev
) return -EINVAL
; // PHY not controllable
1327 return phy_mii_ioctl(aup
->phy_dev
, if_mii(rq
), cmd
);
1330 static struct net_device_stats
*au1000_get_stats(struct net_device
*dev
)
1332 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1334 if (au1000_debug
> 4)
1335 printk("%s: au1000_get_stats: dev=%p\n", dev
->name
, dev
);
1337 if (netif_device_present(dev
)) {
1343 module_init(au1000_init_module
);
1344 module_exit(au1000_cleanup_module
);