2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
40 #define PRINTK(x...) printk(x)
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
51 static void unplug_slaves(mddev_t
*mddev
);
53 static void allow_barrier(conf_t
*conf
);
54 static void lower_barrier(conf_t
*conf
);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
58 struct pool_info
*pi
= data
;
60 int size
= offsetof(r1bio_t
, bios
[pi
->raid_disks
]);
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
63 r1_bio
= kzalloc(size
, gfp_flags
);
65 unplug_slaves(pi
->mddev
);
70 static void r1bio_pool_free(void *r1_bio
, void *data
)
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
81 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
83 struct pool_info
*pi
= data
;
89 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
91 unplug_slaves(pi
->mddev
);
96 * Allocate bios : 1 for reading, n-1 for writing
98 for (j
= pi
->raid_disks
; j
-- ; ) {
99 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
102 r1_bio
->bios
[j
] = bio
;
105 * Allocate RESYNC_PAGES data pages and attach them to
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
110 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
115 bio
= r1_bio
->bios
[j
];
116 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
117 page
= alloc_page(gfp_flags
);
121 bio
->bi_io_vec
[i
].bv_page
= page
;
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
126 for (i
=0; i
<RESYNC_PAGES
; i
++)
127 for (j
=1; j
<pi
->raid_disks
; j
++)
128 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
129 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
132 r1_bio
->master_bio
= NULL
;
137 for (i
=0; i
< RESYNC_PAGES
; i
++)
138 for (j
=0 ; j
< pi
->raid_disks
; j
++)
139 safe_put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
142 while ( ++j
< pi
->raid_disks
)
143 bio_put(r1_bio
->bios
[j
]);
144 r1bio_pool_free(r1_bio
, data
);
148 static void r1buf_pool_free(void *__r1_bio
, void *data
)
150 struct pool_info
*pi
= data
;
152 r1bio_t
*r1bio
= __r1_bio
;
154 for (i
= 0; i
< RESYNC_PAGES
; i
++)
155 for (j
= pi
->raid_disks
; j
-- ;) {
157 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
158 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
159 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
161 for (i
=0 ; i
< pi
->raid_disks
; i
++)
162 bio_put(r1bio
->bios
[i
]);
164 r1bio_pool_free(r1bio
, data
);
167 static void put_all_bios(conf_t
*conf
, r1bio_t
*r1_bio
)
171 for (i
= 0; i
< conf
->raid_disks
; i
++) {
172 struct bio
**bio
= r1_bio
->bios
+ i
;
173 if (*bio
&& *bio
!= IO_BLOCKED
)
179 static void free_r1bio(r1bio_t
*r1_bio
)
181 conf_t
*conf
= mddev_to_conf(r1_bio
->mddev
);
184 * Wake up any possible resync thread that waits for the device
189 put_all_bios(conf
, r1_bio
);
190 mempool_free(r1_bio
, conf
->r1bio_pool
);
193 static void put_buf(r1bio_t
*r1_bio
)
195 conf_t
*conf
= mddev_to_conf(r1_bio
->mddev
);
198 for (i
=0; i
<conf
->raid_disks
; i
++) {
199 struct bio
*bio
= r1_bio
->bios
[i
];
201 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
204 mempool_free(r1_bio
, conf
->r1buf_pool
);
209 static void reschedule_retry(r1bio_t
*r1_bio
)
212 mddev_t
*mddev
= r1_bio
->mddev
;
213 conf_t
*conf
= mddev_to_conf(mddev
);
215 spin_lock_irqsave(&conf
->device_lock
, flags
);
216 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
218 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
220 wake_up(&conf
->wait_barrier
);
221 md_wakeup_thread(mddev
->thread
);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
229 static void raid_end_bio_io(r1bio_t
*r1_bio
)
231 struct bio
*bio
= r1_bio
->master_bio
;
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
235 PRINTK(KERN_DEBUG
"raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
237 (unsigned long long) bio
->bi_sector
,
238 (unsigned long long) bio
->bi_sector
+
239 (bio
->bi_size
>> 9) - 1);
241 bio_endio(bio
, bio
->bi_size
,
242 test_bit(R1BIO_Uptodate
, &r1_bio
->state
) ? 0 : -EIO
);
248 * Update disk head position estimator based on IRQ completion info.
250 static inline void update_head_pos(int disk
, r1bio_t
*r1_bio
)
252 conf_t
*conf
= mddev_to_conf(r1_bio
->mddev
);
254 conf
->mirrors
[disk
].head_position
=
255 r1_bio
->sector
+ (r1_bio
->sectors
);
258 static int raid1_end_read_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
260 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
261 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
263 conf_t
*conf
= mddev_to_conf(r1_bio
->mddev
);
268 mirror
= r1_bio
->read_disk
;
270 * this branch is our 'one mirror IO has finished' event handler:
272 update_head_pos(mirror
, r1_bio
);
274 if (uptodate
|| conf
->working_disks
<= 1) {
276 * Set R1BIO_Uptodate in our master bio, so that
277 * we will return a good error code for to the higher
278 * levels even if IO on some other mirrored buffer fails.
280 * The 'master' represents the composite IO operation to
281 * user-side. So if something waits for IO, then it will
282 * wait for the 'master' bio.
285 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
287 raid_end_bio_io(r1_bio
);
292 char b
[BDEVNAME_SIZE
];
293 if (printk_ratelimit())
294 printk(KERN_ERR
"raid1: %s: rescheduling sector %llu\n",
295 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,b
), (unsigned long long)r1_bio
->sector
);
296 reschedule_retry(r1_bio
);
299 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
303 static int raid1_end_write_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
305 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
306 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
307 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
308 conf_t
*conf
= mddev_to_conf(r1_bio
->mddev
);
309 struct bio
*to_put
= NULL
;
314 for (mirror
= 0; mirror
< conf
->raid_disks
; mirror
++)
315 if (r1_bio
->bios
[mirror
] == bio
)
318 if (error
== -EOPNOTSUPP
&& test_bit(R1BIO_Barrier
, &r1_bio
->state
)) {
319 set_bit(BarriersNotsupp
, &conf
->mirrors
[mirror
].rdev
->flags
);
320 set_bit(R1BIO_BarrierRetry
, &r1_bio
->state
);
321 r1_bio
->mddev
->barriers_work
= 0;
322 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325 * this branch is our 'one mirror IO has finished' event handler:
327 r1_bio
->bios
[mirror
] = NULL
;
330 md_error(r1_bio
->mddev
, conf
->mirrors
[mirror
].rdev
);
331 /* an I/O failed, we can't clear the bitmap */
332 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
335 * Set R1BIO_Uptodate in our master bio, so that
336 * we will return a good error code for to the higher
337 * levels even if IO on some other mirrored buffer fails.
339 * The 'master' represents the composite IO operation to
340 * user-side. So if something waits for IO, then it will
341 * wait for the 'master' bio.
343 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
345 update_head_pos(mirror
, r1_bio
);
348 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
349 atomic_dec(&r1_bio
->behind_remaining
);
351 /* In behind mode, we ACK the master bio once the I/O has safely
352 * reached all non-writemostly disks. Setting the Returned bit
353 * ensures that this gets done only once -- we don't ever want to
354 * return -EIO here, instead we'll wait */
356 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
357 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
358 /* Maybe we can return now */
359 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
360 struct bio
*mbio
= r1_bio
->master_bio
;
361 PRINTK(KERN_DEBUG
"raid1: behind end write sectors %llu-%llu\n",
362 (unsigned long long) mbio
->bi_sector
,
363 (unsigned long long) mbio
->bi_sector
+
364 (mbio
->bi_size
>> 9) - 1);
365 bio_endio(mbio
, mbio
->bi_size
, 0);
369 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
373 * Let's see if all mirrored write operations have finished
376 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
377 if (test_bit(R1BIO_BarrierRetry
, &r1_bio
->state
))
378 reschedule_retry(r1_bio
);
380 /* it really is the end of this request */
381 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
382 /* free extra copy of the data pages */
383 int i
= bio
->bi_vcnt
;
385 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
390 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
392 md_write_end(r1_bio
->mddev
);
393 raid_end_bio_io(r1_bio
);
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
416 * The rdev for the device selected will have nr_pending incremented.
418 static int read_balance(conf_t
*conf
, r1bio_t
*r1_bio
)
420 const unsigned long this_sector
= r1_bio
->sector
;
421 int new_disk
= conf
->last_used
, disk
= new_disk
;
423 const int sectors
= r1_bio
->sectors
;
424 sector_t new_distance
, current_distance
;
429 * Check if we can balance. We can balance on the whole
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
434 if (conf
->mddev
->recovery_cp
< MaxSector
&&
435 (this_sector
+ sectors
>= conf
->next_resync
)) {
436 /* Choose the first operation device, for consistancy */
439 for (rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
440 r1_bio
->bios
[new_disk
] == IO_BLOCKED
||
441 !rdev
|| !test_bit(In_sync
, &rdev
->flags
)
442 || test_bit(WriteMostly
, &rdev
->flags
);
443 rdev
= rcu_dereference(conf
->mirrors
[++new_disk
].rdev
)) {
445 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
446 r1_bio
->bios
[new_disk
] != IO_BLOCKED
)
447 wonly_disk
= new_disk
;
449 if (new_disk
== conf
->raid_disks
- 1) {
450 new_disk
= wonly_disk
;
458 /* make sure the disk is operational */
459 for (rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
460 r1_bio
->bios
[new_disk
] == IO_BLOCKED
||
461 !rdev
|| !test_bit(In_sync
, &rdev
->flags
) ||
462 test_bit(WriteMostly
, &rdev
->flags
);
463 rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
)) {
465 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
466 r1_bio
->bios
[new_disk
] != IO_BLOCKED
)
467 wonly_disk
= new_disk
;
470 new_disk
= conf
->raid_disks
;
472 if (new_disk
== disk
) {
473 new_disk
= wonly_disk
;
482 /* now disk == new_disk == starting point for search */
485 * Don't change to another disk for sequential reads:
487 if (conf
->next_seq_sect
== this_sector
)
489 if (this_sector
== conf
->mirrors
[new_disk
].head_position
)
492 current_distance
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
494 /* Find the disk whose head is closest */
498 disk
= conf
->raid_disks
;
501 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
503 if (!rdev
|| r1_bio
->bios
[disk
] == IO_BLOCKED
||
504 !test_bit(In_sync
, &rdev
->flags
) ||
505 test_bit(WriteMostly
, &rdev
->flags
))
508 if (!atomic_read(&rdev
->nr_pending
)) {
512 new_distance
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
513 if (new_distance
< current_distance
) {
514 current_distance
= new_distance
;
517 } while (disk
!= conf
->last_used
);
523 rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
526 atomic_inc(&rdev
->nr_pending
);
527 if (!test_bit(In_sync
, &rdev
->flags
)) {
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
531 rdev_dec_pending(rdev
, conf
->mddev
);
534 conf
->next_seq_sect
= this_sector
+ sectors
;
535 conf
->last_used
= new_disk
;
542 static void unplug_slaves(mddev_t
*mddev
)
544 conf_t
*conf
= mddev_to_conf(mddev
);
548 for (i
=0; i
<mddev
->raid_disks
; i
++) {
549 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
550 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
551 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
553 atomic_inc(&rdev
->nr_pending
);
556 if (r_queue
->unplug_fn
)
557 r_queue
->unplug_fn(r_queue
);
559 rdev_dec_pending(rdev
, mddev
);
566 static void raid1_unplug(request_queue_t
*q
)
568 mddev_t
*mddev
= q
->queuedata
;
570 unplug_slaves(mddev
);
571 md_wakeup_thread(mddev
->thread
);
574 static int raid1_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
575 sector_t
*error_sector
)
577 mddev_t
*mddev
= q
->queuedata
;
578 conf_t
*conf
= mddev_to_conf(mddev
);
582 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
583 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
584 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
585 struct block_device
*bdev
= rdev
->bdev
;
586 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
588 if (!r_queue
->issue_flush_fn
)
591 atomic_inc(&rdev
->nr_pending
);
593 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
595 rdev_dec_pending(rdev
, mddev
);
605 * Sometimes we need to suspend IO while we do something else,
606 * either some resync/recovery, or reconfigure the array.
607 * To do this we raise a 'barrier'.
608 * The 'barrier' is a counter that can be raised multiple times
609 * to count how many activities are happening which preclude
611 * We can only raise the barrier if there is no pending IO.
612 * i.e. if nr_pending == 0.
613 * We choose only to raise the barrier if no-one is waiting for the
614 * barrier to go down. This means that as soon as an IO request
615 * is ready, no other operations which require a barrier will start
616 * until the IO request has had a chance.
618 * So: regular IO calls 'wait_barrier'. When that returns there
619 * is no backgroup IO happening, It must arrange to call
620 * allow_barrier when it has finished its IO.
621 * backgroup IO calls must call raise_barrier. Once that returns
622 * there is no normal IO happeing. It must arrange to call
623 * lower_barrier when the particular background IO completes.
625 #define RESYNC_DEPTH 32
627 static void raise_barrier(conf_t
*conf
)
629 spin_lock_irq(&conf
->resync_lock
);
631 /* Wait until no block IO is waiting */
632 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
634 raid1_unplug(conf
->mddev
->queue
));
636 /* block any new IO from starting */
639 /* No wait for all pending IO to complete */
640 wait_event_lock_irq(conf
->wait_barrier
,
641 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
643 raid1_unplug(conf
->mddev
->queue
));
645 spin_unlock_irq(&conf
->resync_lock
);
648 static void lower_barrier(conf_t
*conf
)
651 spin_lock_irqsave(&conf
->resync_lock
, flags
);
653 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
654 wake_up(&conf
->wait_barrier
);
657 static void wait_barrier(conf_t
*conf
)
659 spin_lock_irq(&conf
->resync_lock
);
662 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
664 raid1_unplug(conf
->mddev
->queue
));
668 spin_unlock_irq(&conf
->resync_lock
);
671 static void allow_barrier(conf_t
*conf
)
674 spin_lock_irqsave(&conf
->resync_lock
, flags
);
676 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
677 wake_up(&conf
->wait_barrier
);
680 static void freeze_array(conf_t
*conf
)
682 /* stop syncio and normal IO and wait for everything to
684 * We increment barrier and nr_waiting, and then
685 * wait until barrier+nr_pending match nr_queued+2
687 spin_lock_irq(&conf
->resync_lock
);
690 wait_event_lock_irq(conf
->wait_barrier
,
691 conf
->barrier
+conf
->nr_pending
== conf
->nr_queued
+2,
693 raid1_unplug(conf
->mddev
->queue
));
694 spin_unlock_irq(&conf
->resync_lock
);
696 static void unfreeze_array(conf_t
*conf
)
698 /* reverse the effect of the freeze */
699 spin_lock_irq(&conf
->resync_lock
);
702 wake_up(&conf
->wait_barrier
);
703 spin_unlock_irq(&conf
->resync_lock
);
707 /* duplicate the data pages for behind I/O */
708 static struct page
**alloc_behind_pages(struct bio
*bio
)
711 struct bio_vec
*bvec
;
712 struct page
**pages
= kzalloc(bio
->bi_vcnt
* sizeof(struct page
*),
714 if (unlikely(!pages
))
717 bio_for_each_segment(bvec
, bio
, i
) {
718 pages
[i
] = alloc_page(GFP_NOIO
);
719 if (unlikely(!pages
[i
]))
721 memcpy(kmap(pages
[i
]) + bvec
->bv_offset
,
722 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
724 kunmap(bvec
->bv_page
);
731 for (i
= 0; i
< bio
->bi_vcnt
&& pages
[i
]; i
++)
734 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
738 static int make_request(request_queue_t
*q
, struct bio
* bio
)
740 mddev_t
*mddev
= q
->queuedata
;
741 conf_t
*conf
= mddev_to_conf(mddev
);
742 mirror_info_t
*mirror
;
744 struct bio
*read_bio
;
745 int i
, targets
= 0, disks
;
747 struct bitmap
*bitmap
= mddev
->bitmap
;
750 struct page
**behind_pages
= NULL
;
751 const int rw
= bio_data_dir(bio
);
755 * Register the new request and wait if the reconstruction
756 * thread has put up a bar for new requests.
757 * Continue immediately if no resync is active currently.
758 * We test barriers_work *after* md_write_start as md_write_start
759 * may cause the first superblock write, and that will check out
763 md_write_start(mddev
, bio
); /* wait on superblock update early */
765 if (unlikely(!mddev
->barriers_work
&& bio_barrier(bio
))) {
768 bio_endio(bio
, bio
->bi_size
, -EOPNOTSUPP
);
774 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
775 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bio
));
778 * make_request() can abort the operation when READA is being
779 * used and no empty request is available.
782 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
784 r1_bio
->master_bio
= bio
;
785 r1_bio
->sectors
= bio
->bi_size
>> 9;
787 r1_bio
->mddev
= mddev
;
788 r1_bio
->sector
= bio
->bi_sector
;
792 * read balancing logic:
794 int rdisk
= read_balance(conf
, r1_bio
);
797 /* couldn't find anywhere to read from */
798 raid_end_bio_io(r1_bio
);
801 mirror
= conf
->mirrors
+ rdisk
;
803 r1_bio
->read_disk
= rdisk
;
805 read_bio
= bio_clone(bio
, GFP_NOIO
);
807 r1_bio
->bios
[rdisk
] = read_bio
;
809 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
810 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
811 read_bio
->bi_end_io
= raid1_end_read_request
;
812 read_bio
->bi_rw
= READ
;
813 read_bio
->bi_private
= r1_bio
;
815 generic_make_request(read_bio
);
822 /* first select target devices under spinlock and
823 * inc refcount on their rdev. Record them by setting
826 disks
= conf
->raid_disks
;
828 { static int first
=1;
829 if (first
) printk("First Write sector %llu disks %d\n",
830 (unsigned long long)r1_bio
->sector
, disks
);
835 for (i
= 0; i
< disks
; i
++) {
836 if ((rdev
=rcu_dereference(conf
->mirrors
[i
].rdev
)) != NULL
&&
837 !test_bit(Faulty
, &rdev
->flags
)) {
838 atomic_inc(&rdev
->nr_pending
);
839 if (test_bit(Faulty
, &rdev
->flags
)) {
840 rdev_dec_pending(rdev
, mddev
);
841 r1_bio
->bios
[i
] = NULL
;
843 r1_bio
->bios
[i
] = bio
;
846 r1_bio
->bios
[i
] = NULL
;
850 BUG_ON(targets
== 0); /* we never fail the last device */
852 if (targets
< conf
->raid_disks
) {
853 /* array is degraded, we will not clear the bitmap
854 * on I/O completion (see raid1_end_write_request) */
855 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
858 /* do behind I/O ? */
860 atomic_read(&bitmap
->behind_writes
) < bitmap
->max_write_behind
&&
861 (behind_pages
= alloc_behind_pages(bio
)) != NULL
)
862 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
864 atomic_set(&r1_bio
->remaining
, 0);
865 atomic_set(&r1_bio
->behind_remaining
, 0);
867 do_barriers
= bio_barrier(bio
);
869 set_bit(R1BIO_Barrier
, &r1_bio
->state
);
872 for (i
= 0; i
< disks
; i
++) {
874 if (!r1_bio
->bios
[i
])
877 mbio
= bio_clone(bio
, GFP_NOIO
);
878 r1_bio
->bios
[i
] = mbio
;
880 mbio
->bi_sector
= r1_bio
->sector
+ conf
->mirrors
[i
].rdev
->data_offset
;
881 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
882 mbio
->bi_end_io
= raid1_end_write_request
;
883 mbio
->bi_rw
= WRITE
| do_barriers
;
884 mbio
->bi_private
= r1_bio
;
887 struct bio_vec
*bvec
;
890 /* Yes, I really want the '__' version so that
891 * we clear any unused pointer in the io_vec, rather
892 * than leave them unchanged. This is important
893 * because when we come to free the pages, we won't
894 * know the originial bi_idx, so we just free
897 __bio_for_each_segment(bvec
, mbio
, j
, 0)
898 bvec
->bv_page
= behind_pages
[j
];
899 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
900 atomic_inc(&r1_bio
->behind_remaining
);
903 atomic_inc(&r1_bio
->remaining
);
905 bio_list_add(&bl
, mbio
);
907 kfree(behind_pages
); /* the behind pages are attached to the bios now */
909 bitmap_startwrite(bitmap
, bio
->bi_sector
, r1_bio
->sectors
,
910 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
911 spin_lock_irqsave(&conf
->device_lock
, flags
);
912 bio_list_merge(&conf
->pending_bio_list
, &bl
);
915 blk_plug_device(mddev
->queue
);
916 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
919 while ((bio
= bio_list_pop(&bl
)) != NULL
)
920 generic_make_request(bio
);
926 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
928 conf_t
*conf
= mddev_to_conf(mddev
);
931 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
932 conf
->working_disks
);
934 for (i
= 0; i
< conf
->raid_disks
; i
++) {
935 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
936 seq_printf(seq
, "%s",
937 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
940 seq_printf(seq
, "]");
944 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
946 char b
[BDEVNAME_SIZE
];
947 conf_t
*conf
= mddev_to_conf(mddev
);
950 * If it is not operational, then we have already marked it as dead
951 * else if it is the last working disks, ignore the error, let the
952 * next level up know.
953 * else mark the drive as failed
955 if (test_bit(In_sync
, &rdev
->flags
)
956 && conf
->working_disks
== 1)
958 * Don't fail the drive, act as though we were just a
959 * normal single drive
962 if (test_bit(In_sync
, &rdev
->flags
)) {
964 conf
->working_disks
--;
966 * if recovery is running, make sure it aborts.
968 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
970 clear_bit(In_sync
, &rdev
->flags
);
971 set_bit(Faulty
, &rdev
->flags
);
973 printk(KERN_ALERT
"raid1: Disk failure on %s, disabling device. \n"
974 " Operation continuing on %d devices\n",
975 bdevname(rdev
->bdev
,b
), conf
->working_disks
);
978 static void print_conf(conf_t
*conf
)
982 printk("RAID1 conf printout:\n");
987 printk(" --- wd:%d rd:%d\n", conf
->working_disks
,
991 for (i
= 0; i
< conf
->raid_disks
; i
++) {
992 char b
[BDEVNAME_SIZE
];
993 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
995 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
996 i
, !test_bit(In_sync
, &rdev
->flags
),
997 !test_bit(Faulty
, &rdev
->flags
),
998 bdevname(rdev
->bdev
,b
));
1003 static void close_sync(conf_t
*conf
)
1006 allow_barrier(conf
);
1008 mempool_destroy(conf
->r1buf_pool
);
1009 conf
->r1buf_pool
= NULL
;
1012 static int raid1_spare_active(mddev_t
*mddev
)
1015 conf_t
*conf
= mddev
->private;
1018 * Find all failed disks within the RAID1 configuration
1019 * and mark them readable.
1020 * Called under mddev lock, so rcu protection not needed.
1022 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1023 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1025 && !test_bit(Faulty
, &rdev
->flags
)
1026 && !test_bit(In_sync
, &rdev
->flags
)) {
1027 conf
->working_disks
++;
1029 set_bit(In_sync
, &rdev
->flags
);
1038 static int raid1_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1040 conf_t
*conf
= mddev
->private;
1045 for (mirror
=0; mirror
< mddev
->raid_disks
; mirror
++)
1046 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1048 blk_queue_stack_limits(mddev
->queue
,
1049 rdev
->bdev
->bd_disk
->queue
);
1050 /* as we don't honour merge_bvec_fn, we must never risk
1051 * violating it, so limit ->max_sector to one PAGE, as
1052 * a one page request is never in violation.
1054 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1055 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1056 blk_queue_max_sectors(mddev
->queue
, PAGE_SIZE
>>9);
1058 p
->head_position
= 0;
1059 rdev
->raid_disk
= mirror
;
1061 /* As all devices are equivalent, we don't need a full recovery
1062 * if this was recently any drive of the array
1064 if (rdev
->saved_raid_disk
< 0)
1066 rcu_assign_pointer(p
->rdev
, rdev
);
1074 static int raid1_remove_disk(mddev_t
*mddev
, int number
)
1076 conf_t
*conf
= mddev
->private;
1079 mirror_info_t
*p
= conf
->mirrors
+ number
;
1084 if (test_bit(In_sync
, &rdev
->flags
) ||
1085 atomic_read(&rdev
->nr_pending
)) {
1091 if (atomic_read(&rdev
->nr_pending
)) {
1092 /* lost the race, try later */
1104 static int end_sync_read(struct bio
*bio
, unsigned int bytes_done
, int error
)
1106 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
1112 for (i
=r1_bio
->mddev
->raid_disks
; i
--; )
1113 if (r1_bio
->bios
[i
] == bio
)
1116 update_head_pos(i
, r1_bio
);
1118 * we have read a block, now it needs to be re-written,
1119 * or re-read if the read failed.
1120 * We don't do much here, just schedule handling by raid1d
1122 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1123 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1125 if (atomic_dec_and_test(&r1_bio
->remaining
))
1126 reschedule_retry(r1_bio
);
1130 static int end_sync_write(struct bio
*bio
, unsigned int bytes_done
, int error
)
1132 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1133 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
1134 mddev_t
*mddev
= r1_bio
->mddev
;
1135 conf_t
*conf
= mddev_to_conf(mddev
);
1142 for (i
= 0; i
< conf
->raid_disks
; i
++)
1143 if (r1_bio
->bios
[i
] == bio
) {
1148 int sync_blocks
= 0;
1149 sector_t s
= r1_bio
->sector
;
1150 long sectors_to_go
= r1_bio
->sectors
;
1151 /* make sure these bits doesn't get cleared. */
1153 bitmap_end_sync(mddev
->bitmap
, s
,
1156 sectors_to_go
-= sync_blocks
;
1157 } while (sectors_to_go
> 0);
1158 md_error(mddev
, conf
->mirrors
[mirror
].rdev
);
1161 update_head_pos(mirror
, r1_bio
);
1163 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1164 md_done_sync(mddev
, r1_bio
->sectors
, uptodate
);
1170 static void sync_request_write(mddev_t
*mddev
, r1bio_t
*r1_bio
)
1172 conf_t
*conf
= mddev_to_conf(mddev
);
1174 int disks
= conf
->raid_disks
;
1175 struct bio
*bio
, *wbio
;
1177 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1180 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1181 /* We have read all readable devices. If we haven't
1182 * got the block, then there is no hope left.
1183 * If we have, then we want to do a comparison
1184 * and skip the write if everything is the same.
1185 * If any blocks failed to read, then we need to
1186 * attempt an over-write
1189 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1190 for (i
=0; i
<mddev
->raid_disks
; i
++)
1191 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
)
1192 md_error(mddev
, conf
->mirrors
[i
].rdev
);
1194 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1198 for (primary
=0; primary
<mddev
->raid_disks
; primary
++)
1199 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1200 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1201 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1202 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1205 r1_bio
->read_disk
= primary
;
1206 for (i
=0; i
<mddev
->raid_disks
; i
++)
1207 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
&&
1208 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[i
]->bi_flags
)) {
1210 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1211 struct bio
*pbio
= r1_bio
->bios
[primary
];
1212 struct bio
*sbio
= r1_bio
->bios
[i
];
1213 for (j
= vcnt
; j
-- ; )
1214 if (memcmp(page_address(pbio
->bi_io_vec
[j
].bv_page
),
1215 page_address(sbio
->bi_io_vec
[j
].bv_page
),
1219 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1220 if (j
< 0 || test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
1221 sbio
->bi_end_io
= NULL
;
1222 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1224 /* fixup the bio for reuse */
1225 sbio
->bi_vcnt
= vcnt
;
1226 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1228 sbio
->bi_phys_segments
= 0;
1229 sbio
->bi_hw_segments
= 0;
1230 sbio
->bi_hw_front_size
= 0;
1231 sbio
->bi_hw_back_size
= 0;
1232 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1233 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1234 sbio
->bi_next
= NULL
;
1235 sbio
->bi_sector
= r1_bio
->sector
+
1236 conf
->mirrors
[i
].rdev
->data_offset
;
1237 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1241 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1242 /* ouch - failed to read all of that.
1243 * Try some synchronous reads of other devices to get
1244 * good data, much like with normal read errors. Only
1245 * read into the pages we already have so we don't
1246 * need to re-issue the read request.
1247 * We don't need to freeze the array, because being in an
1248 * active sync request, there is no normal IO, and
1249 * no overlapping syncs.
1251 sector_t sect
= r1_bio
->sector
;
1252 int sectors
= r1_bio
->sectors
;
1257 int d
= r1_bio
->read_disk
;
1261 if (s
> (PAGE_SIZE
>>9))
1264 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1265 /* No rcu protection needed here devices
1266 * can only be removed when no resync is
1267 * active, and resync is currently active
1269 rdev
= conf
->mirrors
[d
].rdev
;
1270 if (sync_page_io(rdev
->bdev
,
1271 sect
+ rdev
->data_offset
,
1273 bio
->bi_io_vec
[idx
].bv_page
,
1280 if (d
== conf
->raid_disks
)
1282 } while (!success
&& d
!= r1_bio
->read_disk
);
1286 /* write it back and re-read */
1287 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1288 while (d
!= r1_bio
->read_disk
) {
1290 d
= conf
->raid_disks
;
1292 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1294 rdev
= conf
->mirrors
[d
].rdev
;
1295 atomic_add(s
, &rdev
->corrected_errors
);
1296 if (sync_page_io(rdev
->bdev
,
1297 sect
+ rdev
->data_offset
,
1299 bio
->bi_io_vec
[idx
].bv_page
,
1301 md_error(mddev
, rdev
);
1304 while (d
!= r1_bio
->read_disk
) {
1306 d
= conf
->raid_disks
;
1308 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1310 rdev
= conf
->mirrors
[d
].rdev
;
1311 if (sync_page_io(rdev
->bdev
,
1312 sect
+ rdev
->data_offset
,
1314 bio
->bi_io_vec
[idx
].bv_page
,
1316 md_error(mddev
, rdev
);
1319 char b
[BDEVNAME_SIZE
];
1320 /* Cannot read from anywhere, array is toast */
1321 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1322 printk(KERN_ALERT
"raid1: %s: unrecoverable I/O read error"
1323 " for block %llu\n",
1324 bdevname(bio
->bi_bdev
,b
),
1325 (unsigned long long)r1_bio
->sector
);
1326 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1339 atomic_set(&r1_bio
->remaining
, 1);
1340 for (i
= 0; i
< disks
; i
++) {
1341 wbio
= r1_bio
->bios
[i
];
1342 if (wbio
->bi_end_io
== NULL
||
1343 (wbio
->bi_end_io
== end_sync_read
&&
1344 (i
== r1_bio
->read_disk
||
1345 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1348 wbio
->bi_rw
= WRITE
;
1349 wbio
->bi_end_io
= end_sync_write
;
1350 atomic_inc(&r1_bio
->remaining
);
1351 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1353 generic_make_request(wbio
);
1356 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1357 /* if we're here, all write(s) have completed, so clean up */
1358 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1364 * This is a kernel thread which:
1366 * 1. Retries failed read operations on working mirrors.
1367 * 2. Updates the raid superblock when problems encounter.
1368 * 3. Performs writes following reads for array syncronising.
1371 static void raid1d(mddev_t
*mddev
)
1375 unsigned long flags
;
1376 conf_t
*conf
= mddev_to_conf(mddev
);
1377 struct list_head
*head
= &conf
->retry_list
;
1381 md_check_recovery(mddev
);
1384 char b
[BDEVNAME_SIZE
];
1385 spin_lock_irqsave(&conf
->device_lock
, flags
);
1387 if (conf
->pending_bio_list
.head
) {
1388 bio
= bio_list_get(&conf
->pending_bio_list
);
1389 blk_remove_plug(mddev
->queue
);
1390 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1391 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1392 if (bitmap_unplug(mddev
->bitmap
) != 0)
1393 printk("%s: bitmap file write failed!\n", mdname(mddev
));
1395 while (bio
) { /* submit pending writes */
1396 struct bio
*next
= bio
->bi_next
;
1397 bio
->bi_next
= NULL
;
1398 generic_make_request(bio
);
1406 if (list_empty(head
))
1408 r1_bio
= list_entry(head
->prev
, r1bio_t
, retry_list
);
1409 list_del(head
->prev
);
1411 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1413 mddev
= r1_bio
->mddev
;
1414 conf
= mddev_to_conf(mddev
);
1415 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
1416 sync_request_write(mddev
, r1_bio
);
1418 } else if (test_bit(R1BIO_BarrierRetry
, &r1_bio
->state
)) {
1419 /* some requests in the r1bio were BIO_RW_BARRIER
1420 * requests which failed with -EOPNOTSUPP. Hohumm..
1421 * Better resubmit without the barrier.
1422 * We know which devices to resubmit for, because
1423 * all others have had their bios[] entry cleared.
1424 * We already have a nr_pending reference on these rdevs.
1427 clear_bit(R1BIO_BarrierRetry
, &r1_bio
->state
);
1428 clear_bit(R1BIO_Barrier
, &r1_bio
->state
);
1429 for (i
=0; i
< conf
->raid_disks
; i
++)
1430 if (r1_bio
->bios
[i
])
1431 atomic_inc(&r1_bio
->remaining
);
1432 for (i
=0; i
< conf
->raid_disks
; i
++)
1433 if (r1_bio
->bios
[i
]) {
1434 struct bio_vec
*bvec
;
1437 bio
= bio_clone(r1_bio
->master_bio
, GFP_NOIO
);
1438 /* copy pages from the failed bio, as
1439 * this might be a write-behind device */
1440 __bio_for_each_segment(bvec
, bio
, j
, 0)
1441 bvec
->bv_page
= bio_iovec_idx(r1_bio
->bios
[i
], j
)->bv_page
;
1442 bio_put(r1_bio
->bios
[i
]);
1443 bio
->bi_sector
= r1_bio
->sector
+
1444 conf
->mirrors
[i
].rdev
->data_offset
;
1445 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1446 bio
->bi_end_io
= raid1_end_write_request
;
1448 bio
->bi_private
= r1_bio
;
1449 r1_bio
->bios
[i
] = bio
;
1450 generic_make_request(bio
);
1455 /* we got a read error. Maybe the drive is bad. Maybe just
1456 * the block and we can fix it.
1457 * We freeze all other IO, and try reading the block from
1458 * other devices. When we find one, we re-write
1459 * and check it that fixes the read error.
1460 * This is all done synchronously while the array is
1463 sector_t sect
= r1_bio
->sector
;
1464 int sectors
= r1_bio
->sectors
;
1466 if (mddev
->ro
== 0) while(sectors
) {
1468 int d
= r1_bio
->read_disk
;
1471 if (s
> (PAGE_SIZE
>>9))
1475 /* Note: no rcu protection needed here
1476 * as this is synchronous in the raid1d thread
1477 * which is the thread that might remove
1478 * a device. If raid1d ever becomes multi-threaded....
1480 rdev
= conf
->mirrors
[d
].rdev
;
1482 test_bit(In_sync
, &rdev
->flags
) &&
1483 sync_page_io(rdev
->bdev
,
1484 sect
+ rdev
->data_offset
,
1486 conf
->tmppage
, READ
))
1490 if (d
== conf
->raid_disks
)
1493 } while (!success
&& d
!= r1_bio
->read_disk
);
1496 /* write it back and re-read */
1498 while (d
!= r1_bio
->read_disk
) {
1500 d
= conf
->raid_disks
;
1502 rdev
= conf
->mirrors
[d
].rdev
;
1504 test_bit(In_sync
, &rdev
->flags
)) {
1505 if (sync_page_io(rdev
->bdev
,
1506 sect
+ rdev
->data_offset
,
1507 s
<<9, conf
->tmppage
, WRITE
) == 0)
1508 /* Well, this device is dead */
1509 md_error(mddev
, rdev
);
1513 while (d
!= r1_bio
->read_disk
) {
1515 d
= conf
->raid_disks
;
1517 rdev
= conf
->mirrors
[d
].rdev
;
1519 test_bit(In_sync
, &rdev
->flags
)) {
1520 if (sync_page_io(rdev
->bdev
,
1521 sect
+ rdev
->data_offset
,
1522 s
<<9, conf
->tmppage
, READ
) == 0)
1523 /* Well, this device is dead */
1524 md_error(mddev
, rdev
);
1526 atomic_add(s
, &rdev
->corrected_errors
);
1527 printk(KERN_INFO
"raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
1528 mdname(mddev
), s
, (unsigned long long)(sect
+ rdev
->data_offset
), bdevname(rdev
->bdev
, b
));
1533 /* Cannot read from anywhere -- bye bye array */
1534 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1541 unfreeze_array(conf
);
1543 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1544 if ((disk
=read_balance(conf
, r1_bio
)) == -1) {
1545 printk(KERN_ALERT
"raid1: %s: unrecoverable I/O"
1546 " read error for block %llu\n",
1547 bdevname(bio
->bi_bdev
,b
),
1548 (unsigned long long)r1_bio
->sector
);
1549 raid_end_bio_io(r1_bio
);
1551 r1_bio
->bios
[r1_bio
->read_disk
] =
1552 mddev
->ro
? IO_BLOCKED
: NULL
;
1553 r1_bio
->read_disk
= disk
;
1555 bio
= bio_clone(r1_bio
->master_bio
, GFP_NOIO
);
1556 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1557 rdev
= conf
->mirrors
[disk
].rdev
;
1558 if (printk_ratelimit())
1559 printk(KERN_ERR
"raid1: %s: redirecting sector %llu to"
1560 " another mirror\n",
1561 bdevname(rdev
->bdev
,b
),
1562 (unsigned long long)r1_bio
->sector
);
1563 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1564 bio
->bi_bdev
= rdev
->bdev
;
1565 bio
->bi_end_io
= raid1_end_read_request
;
1567 bio
->bi_private
= r1_bio
;
1569 generic_make_request(bio
);
1573 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1575 unplug_slaves(mddev
);
1579 static int init_resync(conf_t
*conf
)
1583 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1584 BUG_ON(conf
->r1buf_pool
);
1585 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
1587 if (!conf
->r1buf_pool
)
1589 conf
->next_resync
= 0;
1594 * perform a "sync" on one "block"
1596 * We need to make sure that no normal I/O request - particularly write
1597 * requests - conflict with active sync requests.
1599 * This is achieved by tracking pending requests and a 'barrier' concept
1600 * that can be installed to exclude normal IO requests.
1603 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1605 conf_t
*conf
= mddev_to_conf(mddev
);
1608 sector_t max_sector
, nr_sectors
;
1612 int write_targets
= 0, read_targets
= 0;
1614 int still_degraded
= 0;
1616 if (!conf
->r1buf_pool
)
1619 printk("sync start - bitmap %p\n", mddev->bitmap);
1621 if (init_resync(conf
))
1625 max_sector
= mddev
->size
<< 1;
1626 if (sector_nr
>= max_sector
) {
1627 /* If we aborted, we need to abort the
1628 * sync on the 'current' bitmap chunk (there will
1629 * only be one in raid1 resync.
1630 * We can find the current addess in mddev->curr_resync
1632 if (mddev
->curr_resync
< max_sector
) /* aborted */
1633 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1635 else /* completed sync */
1638 bitmap_close_sync(mddev
->bitmap
);
1643 if (mddev
->bitmap
== NULL
&&
1644 mddev
->recovery_cp
== MaxSector
&&
1645 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
1646 conf
->fullsync
== 0) {
1648 return max_sector
- sector_nr
;
1650 /* before building a request, check if we can skip these blocks..
1651 * This call the bitmap_start_sync doesn't actually record anything
1653 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
1654 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1655 /* We can skip this block, and probably several more */
1660 * If there is non-resync activity waiting for a turn,
1661 * and resync is going fast enough,
1662 * then let it though before starting on this new sync request.
1664 if (!go_faster
&& conf
->nr_waiting
)
1665 msleep_interruptible(1000);
1667 raise_barrier(conf
);
1669 conf
->next_resync
= sector_nr
;
1671 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
1674 * If we get a correctably read error during resync or recovery,
1675 * we might want to read from a different device. So we
1676 * flag all drives that could conceivably be read from for READ,
1677 * and any others (which will be non-In_sync devices) for WRITE.
1678 * If a read fails, we try reading from something else for which READ
1682 r1_bio
->mddev
= mddev
;
1683 r1_bio
->sector
= sector_nr
;
1685 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
1687 for (i
=0; i
< conf
->raid_disks
; i
++) {
1689 bio
= r1_bio
->bios
[i
];
1691 /* take from bio_init */
1692 bio
->bi_next
= NULL
;
1693 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1697 bio
->bi_phys_segments
= 0;
1698 bio
->bi_hw_segments
= 0;
1700 bio
->bi_end_io
= NULL
;
1701 bio
->bi_private
= NULL
;
1703 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1705 test_bit(Faulty
, &rdev
->flags
)) {
1708 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
1710 bio
->bi_end_io
= end_sync_write
;
1713 /* may need to read from here */
1715 bio
->bi_end_io
= end_sync_read
;
1716 if (test_bit(WriteMostly
, &rdev
->flags
)) {
1725 atomic_inc(&rdev
->nr_pending
);
1726 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
1727 bio
->bi_bdev
= rdev
->bdev
;
1728 bio
->bi_private
= r1_bio
;
1733 r1_bio
->read_disk
= disk
;
1735 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
1736 /* extra read targets are also write targets */
1737 write_targets
+= read_targets
-1;
1739 if (write_targets
== 0 || read_targets
== 0) {
1740 /* There is nowhere to write, so all non-sync
1741 * drives must be failed - so we are finished
1743 sector_t rv
= max_sector
- sector_nr
;
1753 int len
= PAGE_SIZE
;
1754 if (sector_nr
+ (len
>>9) > max_sector
)
1755 len
= (max_sector
- sector_nr
) << 9;
1758 if (sync_blocks
== 0) {
1759 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1760 &sync_blocks
, still_degraded
) &&
1762 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1764 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
1765 if (len
> (sync_blocks
<<9))
1766 len
= sync_blocks
<<9;
1769 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
1770 bio
= r1_bio
->bios
[i
];
1771 if (bio
->bi_end_io
) {
1772 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1773 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1775 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1778 bio
= r1_bio
->bios
[i
];
1779 if (bio
->bi_end_io
==NULL
)
1781 /* remove last page from this bio */
1783 bio
->bi_size
-= len
;
1784 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1790 nr_sectors
+= len
>>9;
1791 sector_nr
+= len
>>9;
1792 sync_blocks
-= (len
>>9);
1793 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
1795 r1_bio
->sectors
= nr_sectors
;
1797 /* For a user-requested sync, we read all readable devices and do a
1800 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1801 atomic_set(&r1_bio
->remaining
, read_targets
);
1802 for (i
=0; i
<conf
->raid_disks
; i
++) {
1803 bio
= r1_bio
->bios
[i
];
1804 if (bio
->bi_end_io
== end_sync_read
) {
1805 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1806 generic_make_request(bio
);
1810 atomic_set(&r1_bio
->remaining
, 1);
1811 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1812 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1813 generic_make_request(bio
);
1819 static int run(mddev_t
*mddev
)
1823 mirror_info_t
*disk
;
1825 struct list_head
*tmp
;
1827 if (mddev
->level
!= 1) {
1828 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1829 mdname(mddev
), mddev
->level
);
1832 if (mddev
->reshape_position
!= MaxSector
) {
1833 printk("raid1: %s: reshape_position set but not supported\n",
1838 * copy the already verified devices into our private RAID1
1839 * bookkeeping area. [whatever we allocate in run(),
1840 * should be freed in stop()]
1842 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
1843 mddev
->private = conf
;
1847 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
1852 conf
->tmppage
= alloc_page(GFP_KERNEL
);
1856 conf
->poolinfo
= kmalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
1857 if (!conf
->poolinfo
)
1859 conf
->poolinfo
->mddev
= mddev
;
1860 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
1861 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
1864 if (!conf
->r1bio_pool
)
1867 ITERATE_RDEV(mddev
, rdev
, tmp
) {
1868 disk_idx
= rdev
->raid_disk
;
1869 if (disk_idx
>= mddev
->raid_disks
1872 disk
= conf
->mirrors
+ disk_idx
;
1876 blk_queue_stack_limits(mddev
->queue
,
1877 rdev
->bdev
->bd_disk
->queue
);
1878 /* as we don't honour merge_bvec_fn, we must never risk
1879 * violating it, so limit ->max_sector to one PAGE, as
1880 * a one page request is never in violation.
1882 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1883 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1884 blk_queue_max_sectors(mddev
->queue
, PAGE_SIZE
>>9);
1886 disk
->head_position
= 0;
1887 if (!test_bit(Faulty
, &rdev
->flags
) && test_bit(In_sync
, &rdev
->flags
))
1888 conf
->working_disks
++;
1890 conf
->raid_disks
= mddev
->raid_disks
;
1891 conf
->mddev
= mddev
;
1892 spin_lock_init(&conf
->device_lock
);
1893 INIT_LIST_HEAD(&conf
->retry_list
);
1894 if (conf
->working_disks
== 1)
1895 mddev
->recovery_cp
= MaxSector
;
1897 spin_lock_init(&conf
->resync_lock
);
1898 init_waitqueue_head(&conf
->wait_barrier
);
1900 bio_list_init(&conf
->pending_bio_list
);
1901 bio_list_init(&conf
->flushing_bio_list
);
1903 if (!conf
->working_disks
) {
1904 printk(KERN_ERR
"raid1: no operational mirrors for %s\n",
1909 mddev
->degraded
= 0;
1910 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1912 disk
= conf
->mirrors
+ i
;
1915 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
1916 disk
->head_position
= 0;
1922 * find the first working one and use it as a starting point
1923 * to read balancing.
1925 for (j
= 0; j
< conf
->raid_disks
&&
1926 (!conf
->mirrors
[j
].rdev
||
1927 !test_bit(In_sync
, &conf
->mirrors
[j
].rdev
->flags
)) ; j
++)
1929 conf
->last_used
= j
;
1932 mddev
->thread
= md_register_thread(raid1d
, mddev
, "%s_raid1");
1933 if (!mddev
->thread
) {
1935 "raid1: couldn't allocate thread for %s\n",
1941 "raid1: raid set %s active with %d out of %d mirrors\n",
1942 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
1945 * Ok, everything is just fine now
1947 mddev
->array_size
= mddev
->size
;
1949 mddev
->queue
->unplug_fn
= raid1_unplug
;
1950 mddev
->queue
->issue_flush_fn
= raid1_issue_flush
;
1955 printk(KERN_ERR
"raid1: couldn't allocate memory for %s\n",
1960 if (conf
->r1bio_pool
)
1961 mempool_destroy(conf
->r1bio_pool
);
1962 kfree(conf
->mirrors
);
1963 safe_put_page(conf
->tmppage
);
1964 kfree(conf
->poolinfo
);
1966 mddev
->private = NULL
;
1972 static int stop(mddev_t
*mddev
)
1974 conf_t
*conf
= mddev_to_conf(mddev
);
1975 struct bitmap
*bitmap
= mddev
->bitmap
;
1976 int behind_wait
= 0;
1978 /* wait for behind writes to complete */
1979 while (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
1981 printk(KERN_INFO
"raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev
), behind_wait
);
1982 set_current_state(TASK_UNINTERRUPTIBLE
);
1983 schedule_timeout(HZ
); /* wait a second */
1984 /* need to kick something here to make sure I/O goes? */
1987 md_unregister_thread(mddev
->thread
);
1988 mddev
->thread
= NULL
;
1989 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
1990 if (conf
->r1bio_pool
)
1991 mempool_destroy(conf
->r1bio_pool
);
1992 kfree(conf
->mirrors
);
1993 kfree(conf
->poolinfo
);
1995 mddev
->private = NULL
;
1999 static int raid1_resize(mddev_t
*mddev
, sector_t sectors
)
2001 /* no resync is happening, and there is enough space
2002 * on all devices, so we can resize.
2003 * We need to make sure resync covers any new space.
2004 * If the array is shrinking we should possibly wait until
2005 * any io in the removed space completes, but it hardly seems
2008 mddev
->array_size
= sectors
>>1;
2009 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
2011 if (mddev
->array_size
> mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
2012 mddev
->recovery_cp
= mddev
->size
<< 1;
2013 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2015 mddev
->size
= mddev
->array_size
;
2016 mddev
->resync_max_sectors
= sectors
;
2020 static int raid1_reshape(mddev_t
*mddev
)
2023 * 1/ resize the r1bio_pool
2024 * 2/ resize conf->mirrors
2026 * We allocate a new r1bio_pool if we can.
2027 * Then raise a device barrier and wait until all IO stops.
2028 * Then resize conf->mirrors and swap in the new r1bio pool.
2030 * At the same time, we "pack" the devices so that all the missing
2031 * devices have the higher raid_disk numbers.
2033 mempool_t
*newpool
, *oldpool
;
2034 struct pool_info
*newpoolinfo
;
2035 mirror_info_t
*newmirrors
;
2036 conf_t
*conf
= mddev_to_conf(mddev
);
2037 int cnt
, raid_disks
;
2041 /* Cannot change chunk_size, layout, or level */
2042 if (mddev
->chunk_size
!= mddev
->new_chunk
||
2043 mddev
->layout
!= mddev
->new_layout
||
2044 mddev
->level
!= mddev
->new_level
) {
2045 mddev
->new_chunk
= mddev
->chunk_size
;
2046 mddev
->new_layout
= mddev
->layout
;
2047 mddev
->new_level
= mddev
->level
;
2051 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2053 if (raid_disks
< conf
->raid_disks
) {
2055 for (d
= 0; d
< conf
->raid_disks
; d
++)
2056 if (conf
->mirrors
[d
].rdev
)
2058 if (cnt
> raid_disks
)
2062 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2065 newpoolinfo
->mddev
= mddev
;
2066 newpoolinfo
->raid_disks
= raid_disks
;
2068 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2069 r1bio_pool_free
, newpoolinfo
);
2074 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2077 mempool_destroy(newpool
);
2081 raise_barrier(conf
);
2083 /* ok, everything is stopped */
2084 oldpool
= conf
->r1bio_pool
;
2085 conf
->r1bio_pool
= newpool
;
2087 for (d
=d2
=0; d
< conf
->raid_disks
; d
++)
2088 if (conf
->mirrors
[d
].rdev
) {
2089 conf
->mirrors
[d
].rdev
->raid_disk
= d2
;
2090 newmirrors
[d2
++].rdev
= conf
->mirrors
[d
].rdev
;
2092 kfree(conf
->mirrors
);
2093 conf
->mirrors
= newmirrors
;
2094 kfree(conf
->poolinfo
);
2095 conf
->poolinfo
= newpoolinfo
;
2097 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2098 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2099 mddev
->delta_disks
= 0;
2101 conf
->last_used
= 0; /* just make sure it is in-range */
2102 lower_barrier(conf
);
2104 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2105 md_wakeup_thread(mddev
->thread
);
2107 mempool_destroy(oldpool
);
2111 static void raid1_quiesce(mddev_t
*mddev
, int state
)
2113 conf_t
*conf
= mddev_to_conf(mddev
);
2117 raise_barrier(conf
);
2120 lower_barrier(conf
);
2126 static struct mdk_personality raid1_personality
=
2130 .owner
= THIS_MODULE
,
2131 .make_request
= make_request
,
2135 .error_handler
= error
,
2136 .hot_add_disk
= raid1_add_disk
,
2137 .hot_remove_disk
= raid1_remove_disk
,
2138 .spare_active
= raid1_spare_active
,
2139 .sync_request
= sync_request
,
2140 .resize
= raid1_resize
,
2141 .check_reshape
= raid1_reshape
,
2142 .quiesce
= raid1_quiesce
,
2145 static int __init
raid_init(void)
2147 return register_md_personality(&raid1_personality
);
2150 static void raid_exit(void)
2152 unregister_md_personality(&raid1_personality
);
2155 module_init(raid_init
);
2156 module_exit(raid_exit
);
2157 MODULE_LICENSE("GPL");
2158 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2159 MODULE_ALIAS("md-raid1");
2160 MODULE_ALIAS("md-level-1");