1 #ifndef _ASM_IA64_SN_SN_SAL_H
2 #define _ASM_IA64_SN_SN_SAL_H
5 * System Abstraction Layer definitions for IA64
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
11 * Copyright (c) 2000-2006 Silicon Graphics, Inc. All rights reserved.
16 #include <asm/sn/sn_cpuid.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/geo.h>
19 #include <asm/sn/nodepda.h>
20 #include <asm/sn/shub_mmr.h>
23 #define SN_SAL_POD_MODE 0x02000001
24 #define SN_SAL_SYSTEM_RESET 0x02000002
25 #define SN_SAL_PROBE 0x02000003
26 #define SN_SAL_GET_MASTER_NASID 0x02000004
27 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
28 #define SN_SAL_LOG_CE 0x02000006
29 #define SN_SAL_REGISTER_CE 0x02000007
30 #define SN_SAL_GET_PARTITION_ADDR 0x02000009
31 #define SN_SAL_XP_ADDR_REGION 0x0200000f
32 #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
33 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
34 #define SN_SAL_PRINT_ERROR 0x02000012
35 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
36 #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
37 #define SN_SAL_GET_SAPIC_INFO 0x0200001d
38 #define SN_SAL_GET_SN_INFO 0x0200001e
39 #define SN_SAL_CONSOLE_PUTC 0x02000021
40 #define SN_SAL_CONSOLE_GETC 0x02000022
41 #define SN_SAL_CONSOLE_PUTS 0x02000023
42 #define SN_SAL_CONSOLE_GETS 0x02000024
43 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
44 #define SN_SAL_CONSOLE_POLL 0x02000026
45 #define SN_SAL_CONSOLE_INTR 0x02000027
46 #define SN_SAL_CONSOLE_PUTB 0x02000028
47 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
48 #define SN_SAL_CONSOLE_READC 0x0200002b
49 #define SN_SAL_SYSCTL_OP 0x02000030
50 #define SN_SAL_SYSCTL_MODID_GET 0x02000031
51 #define SN_SAL_SYSCTL_GET 0x02000032
52 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
53 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
54 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036
55 #define SN_SAL_BUS_CONFIG 0x02000037
56 #define SN_SAL_SYS_SERIAL_GET 0x02000038
57 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039
58 #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
59 #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
60 #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
61 #define SN_SAL_COHERENCE 0x0200003d
62 #define SN_SAL_MEMPROTECT 0x0200003e
63 #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
65 #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
66 #define SN_SAL_IROUTER_OP 0x02000043
67 #define SN_SAL_SYSCTL_EVENT 0x02000044
68 #define SN_SAL_IOIF_INTERRUPT 0x0200004a
69 #define SN_SAL_HWPERF_OP 0x02000050 // lock
70 #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
71 #define SN_SAL_IOIF_PCI_SAFE 0x02000052
72 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
73 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
74 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
75 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
76 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
77 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated
78 #define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a
80 #define SN_SAL_IOIF_INIT 0x0200005f
81 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
82 #define SN_SAL_BTE_RECOVER 0x02000061
83 #define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
84 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
86 #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
87 #define SN_SAL_SET_OS_FEATURE_SET 0x02000066
88 #define SN_SAL_INJECT_ERROR 0x02000067
89 #define SN_SAL_SET_CPU_NUMBER 0x02000068
92 * Service-specific constants
95 /* Console interrupt manipulation */
97 #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
98 #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
99 #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
100 /* interrupt specification & status return codes */
101 #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
102 #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
104 /* interrupt handling */
105 #define SAL_INTR_ALLOC 1
106 #define SAL_INTR_FREE 2
109 * operations available on the generic SN_SAL_SYSCTL_OP
112 #define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */
113 #define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */
116 * IRouter (i.e. generalized system controller) operations
118 #define SAL_IROUTER_OPEN 0 /* open a subchannel */
119 #define SAL_IROUTER_CLOSE 1 /* close a subchannel */
120 #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
121 #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
122 #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
125 #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
126 #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
127 #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
129 /* IRouter interrupt mask bits */
130 #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
131 #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
134 * Error Handling Features
136 #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
137 #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
138 #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
139 #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
144 #define SALRET_MORE_PASSES 1
146 #define SALRET_NOT_IMPLEMENTED (-1)
147 #define SALRET_INVALID_ARG (-2)
148 #define SALRET_ERROR (-3)
150 #define SN_SAL_FAKE_PROM 0x02009999
153 * sn_sal_revision - get the SGI SAL revision number
155 * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
156 * This routine simply extracts the major and minor values and
157 * presents them in a u32 format.
159 * For example, version 4.05 would be represented at 0x0405.
164 struct ia64_sal_systab
*systab
= __va(efi
.sal_systab
);
166 return (u32
)(systab
->sal_b_rev_major
<< 8 | systab
->sal_b_rev_minor
);
170 * Returns the master console nasid, if the call fails, return an illegal
174 ia64_sn_get_console_nasid(void)
176 struct ia64_sal_retval ret_stuff
;
178 ret_stuff
.status
= 0;
182 SAL_CALL(ret_stuff
, SN_SAL_GET_MASTER_NASID
, 0, 0, 0, 0, 0, 0, 0);
184 if (ret_stuff
.status
< 0)
185 return ret_stuff
.status
;
187 /* Master console nasid is in 'v0' */
192 * Returns the master baseio nasid, if the call fails, return an illegal
196 ia64_sn_get_master_baseio_nasid(void)
198 struct ia64_sal_retval ret_stuff
;
200 ret_stuff
.status
= 0;
204 SAL_CALL(ret_stuff
, SN_SAL_GET_MASTER_BASEIO_NASID
, 0, 0, 0, 0, 0, 0, 0);
206 if (ret_stuff
.status
< 0)
207 return ret_stuff
.status
;
209 /* Master baseio nasid is in 'v0' */
214 ia64_sn_get_klconfig_addr(nasid_t nasid
)
216 struct ia64_sal_retval ret_stuff
;
218 ret_stuff
.status
= 0;
222 SAL_CALL(ret_stuff
, SN_SAL_GET_KLCONFIG_ADDR
, (u64
)nasid
, 0, 0, 0, 0, 0, 0);
223 return ret_stuff
.v0
? __va(ret_stuff
.v0
) : NULL
;
227 * Returns the next console character.
230 ia64_sn_console_getc(int *ch
)
232 struct ia64_sal_retval ret_stuff
;
234 ret_stuff
.status
= 0;
238 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_GETC
, 0, 0, 0, 0, 0, 0, 0);
240 /* character is in 'v0' */
241 *ch
= (int)ret_stuff
.v0
;
243 return ret_stuff
.status
;
247 * Read a character from the SAL console device, after a previous interrupt
248 * or poll operation has given us to know that a character is available
252 ia64_sn_console_readc(void)
254 struct ia64_sal_retval ret_stuff
;
256 ret_stuff
.status
= 0;
260 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_READC
, 0, 0, 0, 0, 0, 0, 0);
262 /* character is in 'v0' */
267 * Sends the given character to the console.
270 ia64_sn_console_putc(char ch
)
272 struct ia64_sal_retval ret_stuff
;
274 ret_stuff
.status
= 0;
278 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_PUTC
, (u64
)ch
, 0, 0, 0, 0, 0, 0);
280 return ret_stuff
.status
;
284 * Sends the given buffer to the console.
287 ia64_sn_console_putb(const char *buf
, int len
)
289 struct ia64_sal_retval ret_stuff
;
291 ret_stuff
.status
= 0;
295 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_PUTB
, (u64
)buf
, (u64
)len
, 0, 0, 0, 0, 0);
297 if ( ret_stuff
.status
== 0 ) {
304 * Print a platform error record
307 ia64_sn_plat_specific_err_print(int (*hook
)(const char*, ...), char *rec
)
309 struct ia64_sal_retval ret_stuff
;
311 ret_stuff
.status
= 0;
315 SAL_CALL_REENTRANT(ret_stuff
, SN_SAL_PRINT_ERROR
, (u64
)hook
, (u64
)rec
, 0, 0, 0, 0, 0);
317 return ret_stuff
.status
;
321 * Check for Platform errors
324 ia64_sn_plat_cpei_handler(void)
326 struct ia64_sal_retval ret_stuff
;
328 ret_stuff
.status
= 0;
332 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_LOG_CE
, 0, 0, 0, 0, 0, 0, 0);
334 return ret_stuff
.status
;
338 * Set Error Handling Features (Obsolete)
341 ia64_sn_plat_set_error_handling_features(void)
343 struct ia64_sal_retval ret_stuff
;
345 ret_stuff
.status
= 0;
349 SAL_CALL_REENTRANT(ret_stuff
, SN_SAL_SET_ERROR_HANDLING_FEATURES
,
350 SAL_ERR_FEAT_LOG_SBES
,
353 return ret_stuff
.status
;
357 * Checks for console input.
360 ia64_sn_console_check(int *result
)
362 struct ia64_sal_retval ret_stuff
;
364 ret_stuff
.status
= 0;
368 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_POLL
, 0, 0, 0, 0, 0, 0, 0);
370 /* result is in 'v0' */
371 *result
= (int)ret_stuff
.v0
;
373 return ret_stuff
.status
;
377 * Checks console interrupt status
380 ia64_sn_console_intr_status(void)
382 struct ia64_sal_retval ret_stuff
;
384 ret_stuff
.status
= 0;
388 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_INTR
,
389 0, SAL_CONSOLE_INTR_STATUS
,
392 if (ret_stuff
.status
== 0) {
400 * Enable an interrupt on the SAL console device.
403 ia64_sn_console_intr_enable(u64 intr
)
405 struct ia64_sal_retval ret_stuff
;
407 ret_stuff
.status
= 0;
411 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_INTR
,
412 intr
, SAL_CONSOLE_INTR_ON
,
417 * Disable an interrupt on the SAL console device.
420 ia64_sn_console_intr_disable(u64 intr
)
422 struct ia64_sal_retval ret_stuff
;
424 ret_stuff
.status
= 0;
428 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_INTR
,
429 intr
, SAL_CONSOLE_INTR_OFF
,
434 * Sends a character buffer to the console asynchronously.
437 ia64_sn_console_xmit_chars(char *buf
, int len
)
439 struct ia64_sal_retval ret_stuff
;
441 ret_stuff
.status
= 0;
445 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_CONSOLE_XMIT_CHARS
,
449 if (ret_stuff
.status
== 0) {
457 * Returns the iobrick module Id
460 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid
, int *result
)
462 struct ia64_sal_retval ret_stuff
;
464 ret_stuff
.status
= 0;
468 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_SYSCTL_IOBRICK_MODULE_GET
, nasid
, 0, 0, 0, 0, 0, 0);
470 /* result is in 'v0' */
471 *result
= (int)ret_stuff
.v0
;
473 return ret_stuff
.status
;
477 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
479 * SN_SAL_POD_MODE actually takes an argument, but it's always
480 * 0 when we call it from the kernel, so we don't have to expose
484 ia64_sn_pod_mode(void)
486 struct ia64_sal_retval isrv
;
487 SAL_CALL_REENTRANT(isrv
, SN_SAL_POD_MODE
, 0, 0, 0, 0, 0, 0, 0);
494 * ia64_sn_probe_mem - read from memory safely
495 * @addr: address to probe
496 * @size: number bytes to read (1,2,4,8)
497 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
499 * Call into the SAL to do a memory read. If the read generates a machine
500 * check, this routine will recover gracefully and return -1 to the caller.
501 * @addr is usually a kernel virtual address in uncached space (i.e. the
502 * address starts with 0xc), but if called in physical mode, @addr should
503 * be a physical address.
506 * 0 - probe successful
507 * 1 - probe failed (generated MCA)
512 ia64_sn_probe_mem(long addr
, long size
, void *data_ptr
)
514 struct ia64_sal_retval isrv
;
516 SAL_CALL(isrv
, SN_SAL_PROBE
, addr
, size
, 0, 0, 0, 0, 0);
521 *((u8
*)data_ptr
) = (u8
)isrv
.v0
;
524 *((u16
*)data_ptr
) = (u16
)isrv
.v0
;
527 *((u32
*)data_ptr
) = (u32
)isrv
.v0
;
530 *((u64
*)data_ptr
) = (u64
)isrv
.v0
;
540 * Retrieve the system serial number as an ASCII string.
543 ia64_sn_sys_serial_get(char *buf
)
545 struct ia64_sal_retval ret_stuff
;
546 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_SYS_SERIAL_GET
, buf
, 0, 0, 0, 0, 0, 0);
547 return ret_stuff
.status
;
550 extern char sn_system_serial_number_string
[];
551 extern u64 sn_partition_serial_number
;
554 sn_system_serial_number(void) {
555 if (sn_system_serial_number_string
[0]) {
556 return(sn_system_serial_number_string
);
558 ia64_sn_sys_serial_get(sn_system_serial_number_string
);
559 return(sn_system_serial_number_string
);
565 * Returns a unique id number for this system and partition (suitable for
566 * use with license managers), based in part on the system serial number.
569 ia64_sn_partition_serial_get(void)
571 struct ia64_sal_retval ret_stuff
;
572 ia64_sal_oemcall_reentrant(&ret_stuff
, SN_SAL_PARTITION_SERIAL_GET
, 0,
574 if (ret_stuff
.status
!= 0)
580 sn_partition_serial_number_val(void) {
581 if (unlikely(sn_partition_serial_number
== 0)) {
582 sn_partition_serial_number
= ia64_sn_partition_serial_get();
584 return sn_partition_serial_number
;
588 * Returns the partition id of the nasid passed in as an argument,
589 * or INVALID_PARTID if the partition id cannot be retrieved.
591 static inline partid_t
592 ia64_sn_sysctl_partition_get(nasid_t nasid
)
594 struct ia64_sal_retval ret_stuff
;
595 SAL_CALL(ret_stuff
, SN_SAL_SYSCTL_PARTITION_GET
, nasid
,
597 if (ret_stuff
.status
!= 0)
599 return ((partid_t
)ret_stuff
.v0
);
603 * Returns the physical address of the partition's reserved page through
604 * an iterative number of calls.
606 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
607 * set to the nasid of the partition whose reserved page's address is
609 * On subsequent calls, pass the values, that were passed back on the
612 * While the return status equals SALRET_MORE_PASSES, keep calling
613 * this function after first copying 'len' bytes starting at 'addr'
614 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
615 * be the physical address of the partition's reserved page. If the
616 * return status equals neither of these, an error as occurred.
619 sn_partition_reserved_page_pa(u64 buf
, u64
*cookie
, u64
*addr
, u64
*len
)
621 struct ia64_sal_retval rv
;
622 ia64_sal_oemcall_reentrant(&rv
, SN_SAL_GET_PARTITION_ADDR
, *cookie
,
623 *addr
, buf
, *len
, 0, 0, 0);
631 * Register or unregister a physical address range being referenced across
632 * a partition boundary for which certain SAL errors should be scanned for,
633 * cleaned up and ignored. This is of value for kernel partitioning code only.
634 * Values for the operation argument:
635 * 1 = register this address range with SAL
636 * 0 = unregister this address range with SAL
638 * SAL maintains a reference count on an address range in case it is registered
641 * On success, returns the reference count of the address range after the SAL
642 * call has performed the current registration/unregistration. Returns a
643 * negative value if an error occurred.
646 sn_register_xp_addr_region(u64 paddr
, u64 len
, int operation
)
648 struct ia64_sal_retval ret_stuff
;
649 ia64_sal_oemcall(&ret_stuff
, SN_SAL_XP_ADDR_REGION
, paddr
, len
,
650 (u64
)operation
, 0, 0, 0, 0);
651 return ret_stuff
.status
;
655 * Register or unregister an instruction range for which SAL errors should
656 * be ignored. If an error occurs while in the registered range, SAL jumps
657 * to return_addr after ignoring the error. Values for the operation argument:
658 * 1 = register this instruction range with SAL
659 * 0 = unregister this instruction range with SAL
661 * Returns 0 on success, or a negative value if an error occurred.
664 sn_register_nofault_code(u64 start_addr
, u64 end_addr
, u64 return_addr
,
665 int virtual, int operation
)
667 struct ia64_sal_retval ret_stuff
;
670 call
= SN_SAL_NO_FAULT_ZONE_VIRTUAL
;
672 call
= SN_SAL_NO_FAULT_ZONE_PHYSICAL
;
674 ia64_sal_oemcall(&ret_stuff
, call
, start_addr
, end_addr
, return_addr
,
676 return ret_stuff
.status
;
680 * Change or query the coherence domain for this partition. Each cpu-based
681 * nasid is represented by a bit in an array of 64-bit words:
682 * 0 = not in this partition's coherency domain
683 * 1 = in this partition's coherency domain
685 * It is not possible for the local system's nasids to be removed from
686 * the coherency domain. Purpose of the domain arguments:
687 * new_domain = set the coherence domain to the given nasids
688 * old_domain = return the current coherence domain
690 * Returns 0 on success, or a negative value if an error occurred.
693 sn_change_coherence(u64
*new_domain
, u64
*old_domain
)
695 struct ia64_sal_retval ret_stuff
;
696 ia64_sal_oemcall(&ret_stuff
, SN_SAL_COHERENCE
, (u64
)new_domain
,
697 (u64
)old_domain
, 0, 0, 0, 0, 0);
698 return ret_stuff
.status
;
702 * Change memory access protections for a physical address range.
703 * nasid_array is not used on Altix, but may be in future architectures.
704 * Available memory protection access classes are defined after the function.
707 sn_change_memprotect(u64 paddr
, u64 len
, u64 perms
, u64
*nasid_array
)
709 struct ia64_sal_retval ret_stuff
;
711 ia64_sal_oemcall_nolock(&ret_stuff
, SN_SAL_MEMPROTECT
, paddr
, len
,
712 (u64
)nasid_array
, perms
, 0, 0, 0);
713 return ret_stuff
.status
;
715 #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
716 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
717 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
718 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
719 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
720 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
723 * Turns off system power.
726 ia64_sn_power_down(void)
728 struct ia64_sal_retval ret_stuff
;
729 SAL_CALL(ret_stuff
, SN_SAL_SYSTEM_POWER_DOWN
, 0, 0, 0, 0, 0, 0, 0);
736 * ia64_sn_fru_capture - tell the system controller to capture hw state
738 * This routine will call the SAL which will tell the system controller(s)
739 * to capture hw mmr information from each SHub in the system.
742 ia64_sn_fru_capture(void)
744 struct ia64_sal_retval isrv
;
745 SAL_CALL(isrv
, SN_SAL_SYSCTL_FRU_CAPTURE
, 0, 0, 0, 0, 0, 0, 0);
752 * Performs an operation on a PCI bus or slot -- power up, power down
756 ia64_sn_sysctl_iobrick_pci_op(nasid_t n
, u64 connection_type
,
760 struct ia64_sal_retval rv
= {0, 0, 0, 0};
762 SAL_CALL_NOLOCK(rv
, SN_SAL_SYSCTL_IOBRICK_PCI_OP
, connection_type
, n
, action
,
763 bus
, (u64
) slot
, 0, 0);
771 * Open a subchannel for sending arbitrary data to the system
772 * controller network via the system controller device associated with
773 * 'nasid'. Return the subchannel number or a negative error code.
776 ia64_sn_irtr_open(nasid_t nasid
)
778 struct ia64_sal_retval rv
;
779 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_OPEN
, nasid
,
785 * Close system controller subchannel 'subch' previously opened on 'nasid'.
788 ia64_sn_irtr_close(nasid_t nasid
, int subch
)
790 struct ia64_sal_retval rv
;
791 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_CLOSE
,
792 (u64
) nasid
, (u64
) subch
, 0, 0, 0, 0);
793 return (int) rv
.status
;
797 * Read data from system controller associated with 'nasid' on
798 * subchannel 'subch'. The buffer to be filled is pointed to by
799 * 'buf', and its capacity is in the integer pointed to by 'len'. The
800 * referent of 'len' is set to the number of bytes read by the SAL
801 * call. The return value is either SALRET_OK (for bytes read) or
802 * SALRET_ERROR (for error or "no data available").
805 ia64_sn_irtr_recv(nasid_t nasid
, int subch
, char *buf
, int *len
)
807 struct ia64_sal_retval rv
;
808 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_RECV
,
809 (u64
) nasid
, (u64
) subch
, (u64
) buf
, (u64
) len
,
811 return (int) rv
.status
;
815 * Write data to the system controller network via the system
816 * controller associated with 'nasid' on suchannel 'subch'. The
817 * buffer to be written out is pointed to by 'buf', and 'len' is the
818 * number of bytes to be written. The return value is either the
819 * number of bytes written (which could be zero) or a negative error
823 ia64_sn_irtr_send(nasid_t nasid
, int subch
, char *buf
, int len
)
825 struct ia64_sal_retval rv
;
826 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_SEND
,
827 (u64
) nasid
, (u64
) subch
, (u64
) buf
, (u64
) len
,
833 * Check whether any interrupts are pending for the system controller
834 * associated with 'nasid' and its subchannel 'subch'. The return
835 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
836 * SAL_IROUTER_INTR_RECV).
839 ia64_sn_irtr_intr(nasid_t nasid
, int subch
)
841 struct ia64_sal_retval rv
;
842 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_INTR_STATUS
,
843 (u64
) nasid
, (u64
) subch
, 0, 0, 0, 0);
848 * Enable the interrupt indicated by the intr parameter (either
849 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
852 ia64_sn_irtr_intr_enable(nasid_t nasid
, int subch
, u64 intr
)
854 struct ia64_sal_retval rv
;
855 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_INTR_ON
,
856 (u64
) nasid
, (u64
) subch
, intr
, 0, 0, 0);
861 * Disable the interrupt indicated by the intr parameter (either
862 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
865 ia64_sn_irtr_intr_disable(nasid_t nasid
, int subch
, u64 intr
)
867 struct ia64_sal_retval rv
;
868 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_INTR_OFF
,
869 (u64
) nasid
, (u64
) subch
, intr
, 0, 0, 0);
874 * Set up a node as the point of contact for system controller
875 * environmental event delivery.
878 ia64_sn_sysctl_event_init(nasid_t nasid
)
880 struct ia64_sal_retval rv
;
881 SAL_CALL_REENTRANT(rv
, SN_SAL_SYSCTL_EVENT
, (u64
) nasid
,
887 * Ask the system controller on the specified nasid to reset
888 * the CX corelet clock. Only valid on TIO nodes.
891 ia64_sn_sysctl_tio_clock_reset(nasid_t nasid
)
893 struct ia64_sal_retval rv
;
894 SAL_CALL_REENTRANT(rv
, SN_SAL_SYSCTL_OP
, SAL_SYSCTL_OP_TIO_JLCK_RST
,
895 nasid
, 0, 0, 0, 0, 0);
897 return (int)rv
.status
;
905 * Get the associated ioboard type for a given nasid.
908 ia64_sn_sysctl_ioboard_get(nasid_t nasid
, u16
*ioboard
)
910 struct ia64_sal_retval isrv
;
911 SAL_CALL_REENTRANT(isrv
, SN_SAL_SYSCTL_OP
, SAL_SYSCTL_OP_IOBOARD
,
912 nasid
, 0, 0, 0, 0, 0);
926 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
927 * @nasid: NASID of node to read
928 * @index: FIT entry index to be retrieved (0..n)
929 * @fitentry: 16 byte buffer where FIT entry will be stored.
930 * @banbuf: optional buffer for retrieving banner
931 * @banlen: length of banner buffer
933 * Access to the physical PROM chips needs to be serialized since reads and
934 * writes can't occur at the same time, so we need to call into the SAL when
935 * we want to look at the FIT entries on the chips.
939 * %SALRET_INVALID_ARG if index too big
940 * %SALRET_NOT_IMPLEMENTED if running on older PROM
941 * ??? if nasid invalid OR banner buffer not large enough
944 ia64_sn_get_fit_compt(u64 nasid
, u64 index
, void *fitentry
, void *banbuf
,
947 struct ia64_sal_retval rv
;
948 SAL_CALL_NOLOCK(rv
, SN_SAL_GET_FIT_COMPT
, nasid
, index
, fitentry
,
949 banbuf
, banlen
, 0, 0);
950 return (int) rv
.status
;
954 * Initialize the SAL components of the system controller
955 * communication driver; specifically pass in a sizable buffer that
956 * can be used for allocation of subchannel queues as new subchannels
957 * are opened. "buf" points to the buffer, and "len" specifies its
961 ia64_sn_irtr_init(nasid_t nasid
, void *buf
, int len
)
963 struct ia64_sal_retval rv
;
964 SAL_CALL_REENTRANT(rv
, SN_SAL_IROUTER_OP
, SAL_IROUTER_INIT
,
965 (u64
) nasid
, (u64
) buf
, (u64
) len
, 0, 0, 0);
966 return (int) rv
.status
;
970 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
973 * arg0 - SN_SAL_GET_SAPIC_INFO
974 * arg1 - sapicid (lid >> 16)
981 ia64_sn_get_sapic_info(int sapicid
, int *nasid
, int *subnode
, int *slice
)
983 struct ia64_sal_retval ret_stuff
;
985 ret_stuff
.status
= 0;
989 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_GET_SAPIC_INFO
, sapicid
, 0, 0, 0, 0, 0, 0);
991 /***** BEGIN HACK - temp til old proms no longer supported ********/
992 if (ret_stuff
.status
== SALRET_NOT_IMPLEMENTED
) {
993 if (nasid
) *nasid
= sapicid
& 0xfff;
994 if (subnode
) *subnode
= (sapicid
>> 13) & 1;
995 if (slice
) *slice
= (sapicid
>> 12) & 3;
998 /***** END HACK *******/
1000 if (ret_stuff
.status
< 0)
1001 return ret_stuff
.status
;
1003 if (nasid
) *nasid
= (int) ret_stuff
.v0
;
1004 if (subnode
) *subnode
= (int) ret_stuff
.v1
;
1005 if (slice
) *slice
= (int) ret_stuff
.v2
;
1010 * Returns information about the HUB/SHUB.
1012 * arg0 - SN_SAL_GET_SN_INFO
1013 * arg1 - 0 (other values reserved for future use)
1016 * [7:0] - shub type (0=shub1, 1=shub2)
1017 * [15:8] - Log2 max number of nodes in entire system (includes
1018 * C-bricks, I-bricks, etc)
1019 * [23:16] - Log2 of nodes per sharing domain
1020 * [31:24] - partition ID
1021 * [39:32] - coherency_id
1022 * [47:40] - regionsize
1024 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
1025 * [23:15] - bit position of low nasid bit
1028 ia64_sn_get_sn_info(int fc
, u8
*shubtype
, u16
*nasid_bitmask
, u8
*nasid_shift
,
1029 u8
*systemsize
, u8
*sharing_domain_size
, u8
*partid
, u8
*coher
, u8
*reg
)
1031 struct ia64_sal_retval ret_stuff
;
1033 ret_stuff
.status
= 0;
1037 SAL_CALL_NOLOCK(ret_stuff
, SN_SAL_GET_SN_INFO
, fc
, 0, 0, 0, 0, 0, 0);
1039 /***** BEGIN HACK - temp til old proms no longer supported ********/
1040 if (ret_stuff
.status
== SALRET_NOT_IMPLEMENTED
) {
1041 int nasid
= get_sapicid() & 0xfff;
1042 #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1043 #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1044 if (shubtype
) *shubtype
= 0;
1045 if (nasid_bitmask
) *nasid_bitmask
= 0x7ff;
1046 if (nasid_shift
) *nasid_shift
= 38;
1047 if (systemsize
) *systemsize
= 10;
1048 if (sharing_domain_size
) *sharing_domain_size
= 8;
1049 if (partid
) *partid
= ia64_sn_sysctl_partition_get(nasid
);
1050 if (coher
) *coher
= nasid
>> 9;
1051 if (reg
) *reg
= (HUB_L((u64
*) LOCAL_MMR_ADDR(SH1_SHUB_ID
)) & SH_SHUB_ID_NODES_PER_BIT_MASK
) >>
1052 SH_SHUB_ID_NODES_PER_BIT_SHFT
;
1055 /***** END HACK *******/
1057 if (ret_stuff
.status
< 0)
1058 return ret_stuff
.status
;
1060 if (shubtype
) *shubtype
= ret_stuff
.v0
& 0xff;
1061 if (systemsize
) *systemsize
= (ret_stuff
.v0
>> 8) & 0xff;
1062 if (sharing_domain_size
) *sharing_domain_size
= (ret_stuff
.v0
>> 16) & 0xff;
1063 if (partid
) *partid
= (ret_stuff
.v0
>> 24) & 0xff;
1064 if (coher
) *coher
= (ret_stuff
.v0
>> 32) & 0xff;
1065 if (reg
) *reg
= (ret_stuff
.v0
>> 40) & 0xff;
1066 if (nasid_bitmask
) *nasid_bitmask
= (ret_stuff
.v1
& 0xffff);
1067 if (nasid_shift
) *nasid_shift
= (ret_stuff
.v1
>> 16) & 0xff;
1072 * This is the access point to the Altix PROM hardware performance
1073 * and status monitoring interface. For info on using this, see
1074 * include/asm-ia64/sn/sn2/sn_hwperf.h
1077 ia64_sn_hwperf_op(nasid_t nasid
, u64 opcode
, u64 a0
, u64 a1
, u64 a2
,
1078 u64 a3
, u64 a4
, int *v0
)
1080 struct ia64_sal_retval rv
;
1081 SAL_CALL_NOLOCK(rv
, SN_SAL_HWPERF_OP
, (u64
)nasid
,
1082 opcode
, a0
, a1
, a2
, a3
, a4
);
1085 return (int) rv
.status
;
1089 ia64_sn_ioif_get_pci_topology(u64 buf
, u64 len
)
1091 struct ia64_sal_retval rv
;
1092 SAL_CALL_NOLOCK(rv
, SN_SAL_IOIF_GET_PCI_TOPOLOGY
, buf
, len
, 0, 0, 0, 0, 0);
1093 return (int) rv
.status
;
1097 * BTE error recovery is implemented in SAL
1100 ia64_sn_bte_recovery(nasid_t nasid
)
1102 struct ia64_sal_retval rv
;
1105 SAL_CALL_NOLOCK(rv
, SN_SAL_BTE_RECOVER
, (u64
)nasid
, 0, 0, 0, 0, 0, 0);
1106 if (rv
.status
== SALRET_NOT_IMPLEMENTED
)
1108 return (int) rv
.status
;
1112 ia64_sn_is_fake_prom(void)
1114 struct ia64_sal_retval rv
;
1115 SAL_CALL_NOLOCK(rv
, SN_SAL_FAKE_PROM
, 0, 0, 0, 0, 0, 0, 0);
1116 return (rv
.status
== 0);
1120 ia64_sn_get_prom_feature_set(int set
, unsigned long *feature_set
)
1122 struct ia64_sal_retval rv
;
1124 SAL_CALL_NOLOCK(rv
, SN_SAL_GET_PROM_FEATURE_SET
, set
, 0, 0, 0, 0, 0, 0);
1127 *feature_set
= rv
.v0
;
1132 ia64_sn_set_os_feature(int feature
)
1134 struct ia64_sal_retval rv
;
1136 SAL_CALL_NOLOCK(rv
, SN_SAL_SET_OS_FEATURE_SET
, feature
, 0, 0, 0, 0, 0, 0);
1141 sn_inject_error(u64 paddr
, u64
*data
, u64
*ecc
)
1143 struct ia64_sal_retval ret_stuff
;
1145 ia64_sal_oemcall_nolock(&ret_stuff
, SN_SAL_INJECT_ERROR
, paddr
, (u64
)data
,
1146 (u64
)ecc
, 0, 0, 0, 0);
1147 return ret_stuff
.status
;
1151 ia64_sn_set_cpu_number(int cpu
)
1153 struct ia64_sal_retval rv
;
1155 SAL_CALL_NOLOCK(rv
, SN_SAL_SET_CPU_NUMBER
, cpu
, 0, 0, 0, 0, 0, 0);
1158 #endif /* _ASM_IA64_SN_SN_SAL_H */