[NETFILTER]: ipt_TCPMSS: misc cleanup
[hh.org.git] / mm / truncate.c
blobc6ab55ec6883378cb46367e54c7568f1f2b3983d
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 akpm@zip.com.au
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/buffer_head.h> /* grr. try_to_release_page,
16 do_invalidatepage */
19 static inline void truncate_partial_page(struct page *page, unsigned partial)
21 memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);
22 if (PagePrivate(page))
23 do_invalidatepage(page, partial);
27 * If truncate cannot remove the fs-private metadata from the page, the page
28 * becomes anonymous. It will be left on the LRU and may even be mapped into
29 * user pagetables if we're racing with filemap_nopage().
31 * We need to bale out if page->mapping is no longer equal to the original
32 * mapping. This happens a) when the VM reclaimed the page while we waited on
33 * its lock, b) when a concurrent invalidate_inode_pages got there first and
34 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
36 static void
37 truncate_complete_page(struct address_space *mapping, struct page *page)
39 if (page->mapping != mapping)
40 return;
42 if (PagePrivate(page))
43 do_invalidatepage(page, 0);
45 clear_page_dirty(page);
46 ClearPageUptodate(page);
47 ClearPageMappedToDisk(page);
48 remove_from_page_cache(page);
49 page_cache_release(page); /* pagecache ref */
53 * This is for invalidate_inode_pages(). That function can be called at
54 * any time, and is not supposed to throw away dirty pages. But pages can
55 * be marked dirty at any time too. So we re-check the dirtiness inside
56 * ->tree_lock. That provides exclusion against the __set_page_dirty
57 * functions.
59 * Returns non-zero if the page was successfully invalidated.
61 static int
62 invalidate_complete_page(struct address_space *mapping, struct page *page)
64 if (page->mapping != mapping)
65 return 0;
67 if (PagePrivate(page) && !try_to_release_page(page, 0))
68 return 0;
70 write_lock_irq(&mapping->tree_lock);
71 if (PageDirty(page))
72 goto failed;
73 if (page_count(page) != 2) /* caller's ref + pagecache ref */
74 goto failed;
76 BUG_ON(PagePrivate(page));
77 __remove_from_page_cache(page);
78 write_unlock_irq(&mapping->tree_lock);
79 ClearPageUptodate(page);
80 page_cache_release(page); /* pagecache ref */
81 return 1;
82 failed:
83 write_unlock_irq(&mapping->tree_lock);
84 return 0;
87 /**
88 * truncate_inode_pages - truncate range of pages specified by start and
89 * end byte offsets
90 * @mapping: mapping to truncate
91 * @lstart: offset from which to truncate
92 * @lend: offset to which to truncate
94 * Truncate the page cache, removing the pages that are between
95 * specified offsets (and zeroing out partial page
96 * (if lstart is not page aligned)).
98 * Truncate takes two passes - the first pass is nonblocking. It will not
99 * block on page locks and it will not block on writeback. The second pass
100 * will wait. This is to prevent as much IO as possible in the affected region.
101 * The first pass will remove most pages, so the search cost of the second pass
102 * is low.
104 * When looking at page->index outside the page lock we need to be careful to
105 * copy it into a local to avoid races (it could change at any time).
107 * We pass down the cache-hot hint to the page freeing code. Even if the
108 * mapping is large, it is probably the case that the final pages are the most
109 * recently touched, and freeing happens in ascending file offset order.
111 void truncate_inode_pages_range(struct address_space *mapping,
112 loff_t lstart, loff_t lend)
114 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
115 pgoff_t end;
116 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
117 struct pagevec pvec;
118 pgoff_t next;
119 int i;
121 if (mapping->nrpages == 0)
122 return;
124 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
125 end = (lend >> PAGE_CACHE_SHIFT);
127 pagevec_init(&pvec, 0);
128 next = start;
129 while (next <= end &&
130 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
131 for (i = 0; i < pagevec_count(&pvec); i++) {
132 struct page *page = pvec.pages[i];
133 pgoff_t page_index = page->index;
135 if (page_index > end) {
136 next = page_index;
137 break;
140 if (page_index > next)
141 next = page_index;
142 next++;
143 if (TestSetPageLocked(page))
144 continue;
145 if (PageWriteback(page)) {
146 unlock_page(page);
147 continue;
149 truncate_complete_page(mapping, page);
150 unlock_page(page);
152 pagevec_release(&pvec);
153 cond_resched();
156 if (partial) {
157 struct page *page = find_lock_page(mapping, start - 1);
158 if (page) {
159 wait_on_page_writeback(page);
160 truncate_partial_page(page, partial);
161 unlock_page(page);
162 page_cache_release(page);
166 next = start;
167 for ( ; ; ) {
168 cond_resched();
169 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
170 if (next == start)
171 break;
172 next = start;
173 continue;
175 if (pvec.pages[0]->index > end) {
176 pagevec_release(&pvec);
177 break;
179 for (i = 0; i < pagevec_count(&pvec); i++) {
180 struct page *page = pvec.pages[i];
182 if (page->index > end)
183 break;
184 lock_page(page);
185 wait_on_page_writeback(page);
186 if (page->index > next)
187 next = page->index;
188 next++;
189 truncate_complete_page(mapping, page);
190 unlock_page(page);
192 pagevec_release(&pvec);
195 EXPORT_SYMBOL(truncate_inode_pages_range);
198 * truncate_inode_pages - truncate *all* the pages from an offset
199 * @mapping: mapping to truncate
200 * @lstart: offset from which to truncate
202 * Called under (and serialised by) inode->i_mutex.
204 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
206 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
208 EXPORT_SYMBOL(truncate_inode_pages);
211 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
212 * @mapping: the address_space which holds the pages to invalidate
213 * @start: the offset 'from' which to invalidate
214 * @end: the offset 'to' which to invalidate (inclusive)
216 * This function only removes the unlocked pages, if you want to
217 * remove all the pages of one inode, you must call truncate_inode_pages.
219 * invalidate_mapping_pages() will not block on IO activity. It will not
220 * invalidate pages which are dirty, locked, under writeback or mapped into
221 * pagetables.
223 unsigned long invalidate_mapping_pages(struct address_space *mapping,
224 pgoff_t start, pgoff_t end)
226 struct pagevec pvec;
227 pgoff_t next = start;
228 unsigned long ret = 0;
229 int i;
231 pagevec_init(&pvec, 0);
232 while (next <= end &&
233 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
234 for (i = 0; i < pagevec_count(&pvec); i++) {
235 struct page *page = pvec.pages[i];
236 pgoff_t index;
237 int lock_failed;
239 lock_failed = TestSetPageLocked(page);
242 * We really shouldn't be looking at the ->index of an
243 * unlocked page. But we're not allowed to lock these
244 * pages. So we rely upon nobody altering the ->index
245 * of this (pinned-by-us) page.
247 index = page->index;
248 if (index > next)
249 next = index;
250 next++;
251 if (lock_failed)
252 continue;
254 if (PageDirty(page) || PageWriteback(page))
255 goto unlock;
256 if (page_mapped(page))
257 goto unlock;
258 ret += invalidate_complete_page(mapping, page);
259 unlock:
260 unlock_page(page);
261 if (next > end)
262 break;
264 pagevec_release(&pvec);
266 return ret;
269 unsigned long invalidate_inode_pages(struct address_space *mapping)
271 return invalidate_mapping_pages(mapping, 0, ~0UL);
274 EXPORT_SYMBOL(invalidate_inode_pages);
277 * invalidate_inode_pages2_range - remove range of pages from an address_space
278 * @mapping: the address_space
279 * @start: the page offset 'from' which to invalidate
280 * @end: the page offset 'to' which to invalidate (inclusive)
282 * Any pages which are found to be mapped into pagetables are unmapped prior to
283 * invalidation.
285 * Returns -EIO if any pages could not be invalidated.
287 int invalidate_inode_pages2_range(struct address_space *mapping,
288 pgoff_t start, pgoff_t end)
290 struct pagevec pvec;
291 pgoff_t next;
292 int i;
293 int ret = 0;
294 int did_range_unmap = 0;
295 int wrapped = 0;
297 pagevec_init(&pvec, 0);
298 next = start;
299 while (next <= end && !ret && !wrapped &&
300 pagevec_lookup(&pvec, mapping, next,
301 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
302 for (i = 0; !ret && i < pagevec_count(&pvec); i++) {
303 struct page *page = pvec.pages[i];
304 pgoff_t page_index;
305 int was_dirty;
307 lock_page(page);
308 if (page->mapping != mapping) {
309 unlock_page(page);
310 continue;
312 page_index = page->index;
313 next = page_index + 1;
314 if (next == 0)
315 wrapped = 1;
316 if (page_index > end) {
317 unlock_page(page);
318 break;
320 wait_on_page_writeback(page);
321 while (page_mapped(page)) {
322 if (!did_range_unmap) {
324 * Zap the rest of the file in one hit.
326 unmap_mapping_range(mapping,
327 (loff_t)page_index<<PAGE_CACHE_SHIFT,
328 (loff_t)(end - page_index + 1)
329 << PAGE_CACHE_SHIFT,
331 did_range_unmap = 1;
332 } else {
334 * Just zap this page
336 unmap_mapping_range(mapping,
337 (loff_t)page_index<<PAGE_CACHE_SHIFT,
338 PAGE_CACHE_SIZE, 0);
341 was_dirty = test_clear_page_dirty(page);
342 if (!invalidate_complete_page(mapping, page)) {
343 if (was_dirty)
344 set_page_dirty(page);
345 ret = -EIO;
347 unlock_page(page);
349 pagevec_release(&pvec);
350 cond_resched();
352 return ret;
354 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
357 * invalidate_inode_pages2 - remove all pages from an address_space
358 * @mapping: the address_space
360 * Any pages which are found to be mapped into pagetables are unmapped prior to
361 * invalidation.
363 * Returns -EIO if any pages could not be invalidated.
365 int invalidate_inode_pages2(struct address_space *mapping)
367 return invalidate_inode_pages2_range(mapping, 0, -1);
369 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);