[PATCH] m68k traps.c constraints
[hh.org.git] / fs / nfs / direct.c
blob3c72b0c072839383950c59955da28c6c098897bf
1 /*
2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/config.h>
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/pagemap.h>
48 #include <linux/kref.h>
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
54 #include <asm/system.h>
55 #include <asm/uaccess.h>
56 #include <asm/atomic.h>
58 #include "iostat.h"
60 #define NFSDBG_FACILITY NFSDBG_VFS
62 static kmem_cache_t *nfs_direct_cachep;
65 * This represents a set of asynchronous requests that we're waiting on
67 struct nfs_direct_req {
68 struct kref kref; /* release manager */
70 /* I/O parameters */
71 struct list_head list, /* nfs_read/write_data structs */
72 rewrite_list; /* saved nfs_write_data structs */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76 unsigned long user_addr; /* location of user's buffer */
77 size_t user_count; /* total bytes to move */
78 loff_t pos; /* starting offset in file */
79 struct page ** pages; /* pages in our buffer */
80 unsigned int npages; /* count of pages */
82 /* completion state */
83 spinlock_t lock; /* protect completion state */
84 int outstanding; /* i/os we're waiting for */
85 ssize_t count, /* bytes actually processed */
86 error; /* any reported error */
87 struct completion completion; /* wait for i/o completion */
89 /* commit state */
90 struct nfs_write_data * commit_data; /* special write_data for commits */
91 int flags;
92 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
93 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
94 struct nfs_writeverf verf; /* unstable write verifier */
97 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync);
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
101 * nfs_direct_IO - NFS address space operation for direct I/O
102 * @rw: direction (read or write)
103 * @iocb: target I/O control block
104 * @iov: array of vectors that define I/O buffer
105 * @pos: offset in file to begin the operation
106 * @nr_segs: size of iovec array
108 * The presence of this routine in the address space ops vector means
109 * the NFS client supports direct I/O. However, we shunt off direct
110 * read and write requests before the VFS gets them, so this method
111 * should never be called.
113 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
115 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
116 iocb->ki_filp->f_dentry->d_name.name,
117 (long long) pos, nr_segs);
119 return -EINVAL;
122 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
124 int i;
125 for (i = 0; i < npages; i++) {
126 struct page *page = pages[i];
127 if (do_dirty && !PageCompound(page))
128 set_page_dirty_lock(page);
129 page_cache_release(page);
131 kfree(pages);
134 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
136 int result = -ENOMEM;
137 unsigned long page_count;
138 size_t array_size;
140 page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
141 page_count -= user_addr >> PAGE_SHIFT;
143 array_size = (page_count * sizeof(struct page *));
144 *pages = kmalloc(array_size, GFP_KERNEL);
145 if (*pages) {
146 down_read(&current->mm->mmap_sem);
147 result = get_user_pages(current, current->mm, user_addr,
148 page_count, (rw == READ), 0,
149 *pages, NULL);
150 up_read(&current->mm->mmap_sem);
151 if (result != page_count) {
153 * If we got fewer pages than expected from
154 * get_user_pages(), the user buffer runs off the
155 * end of a mapping; return EFAULT.
157 if (result >= 0) {
158 nfs_free_user_pages(*pages, result, 0);
159 result = -EFAULT;
160 } else
161 kfree(*pages);
162 *pages = NULL;
165 return result;
168 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
170 struct nfs_direct_req *dreq;
172 dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
173 if (!dreq)
174 return NULL;
176 kref_init(&dreq->kref);
177 init_completion(&dreq->completion);
178 INIT_LIST_HEAD(&dreq->list);
179 INIT_LIST_HEAD(&dreq->rewrite_list);
180 dreq->iocb = NULL;
181 dreq->ctx = NULL;
182 spin_lock_init(&dreq->lock);
183 dreq->outstanding = 0;
184 dreq->count = 0;
185 dreq->error = 0;
186 dreq->flags = 0;
188 return dreq;
191 static void nfs_direct_req_release(struct kref *kref)
193 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
195 if (dreq->ctx != NULL)
196 put_nfs_open_context(dreq->ctx);
197 kmem_cache_free(nfs_direct_cachep, dreq);
201 * Collects and returns the final error value/byte-count.
203 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
205 ssize_t result = -EIOCBQUEUED;
207 /* Async requests don't wait here */
208 if (dreq->iocb)
209 goto out;
211 result = wait_for_completion_interruptible(&dreq->completion);
213 if (!result)
214 result = dreq->error;
215 if (!result)
216 result = dreq->count;
218 out:
219 kref_put(&dreq->kref, nfs_direct_req_release);
220 return (ssize_t) result;
224 * We must hold a reference to all the pages in this direct read request
225 * until the RPCs complete. This could be long *after* we are woken up in
226 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
228 * In addition, synchronous I/O uses a stack-allocated iocb. Thus we
229 * can't trust the iocb is still valid here if this is a synchronous
230 * request. If the waiter is woken prematurely, the iocb is long gone.
232 static void nfs_direct_complete(struct nfs_direct_req *dreq)
234 nfs_free_user_pages(dreq->pages, dreq->npages, 1);
236 if (dreq->iocb) {
237 long res = (long) dreq->error;
238 if (!res)
239 res = (long) dreq->count;
240 aio_complete(dreq->iocb, res, 0);
242 complete_all(&dreq->completion);
244 kref_put(&dreq->kref, nfs_direct_req_release);
248 * Note we also set the number of requests we have in the dreq when we are
249 * done. This prevents races with I/O completion so we will always wait
250 * until all requests have been dispatched and completed.
252 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
254 struct list_head *list;
255 struct nfs_direct_req *dreq;
256 unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
258 dreq = nfs_direct_req_alloc();
259 if (!dreq)
260 return NULL;
262 list = &dreq->list;
263 for(;;) {
264 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
266 if (unlikely(!data)) {
267 while (!list_empty(list)) {
268 data = list_entry(list->next,
269 struct nfs_read_data, pages);
270 list_del(&data->pages);
271 nfs_readdata_free(data);
273 kref_put(&dreq->kref, nfs_direct_req_release);
274 return NULL;
277 INIT_LIST_HEAD(&data->pages);
278 list_add(&data->pages, list);
280 data->req = (struct nfs_page *) dreq;
281 dreq->outstanding++;
282 if (nbytes <= rsize)
283 break;
284 nbytes -= rsize;
286 kref_get(&dreq->kref);
287 return dreq;
290 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
292 struct nfs_read_data *data = calldata;
293 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
295 if (nfs_readpage_result(task, data) != 0)
296 return;
298 spin_lock(&dreq->lock);
300 if (likely(task->tk_status >= 0))
301 dreq->count += data->res.count;
302 else
303 dreq->error = task->tk_status;
305 if (--dreq->outstanding) {
306 spin_unlock(&dreq->lock);
307 return;
310 spin_unlock(&dreq->lock);
311 nfs_direct_complete(dreq);
314 static const struct rpc_call_ops nfs_read_direct_ops = {
315 .rpc_call_done = nfs_direct_read_result,
316 .rpc_release = nfs_readdata_release,
320 * For each nfs_read_data struct that was allocated on the list, dispatch
321 * an NFS READ operation
323 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq)
325 struct nfs_open_context *ctx = dreq->ctx;
326 struct inode *inode = ctx->dentry->d_inode;
327 struct list_head *list = &dreq->list;
328 struct page **pages = dreq->pages;
329 size_t count = dreq->user_count;
330 loff_t pos = dreq->pos;
331 size_t rsize = NFS_SERVER(inode)->rsize;
332 unsigned int curpage, pgbase;
334 curpage = 0;
335 pgbase = dreq->user_addr & ~PAGE_MASK;
336 do {
337 struct nfs_read_data *data;
338 size_t bytes;
340 bytes = rsize;
341 if (count < rsize)
342 bytes = count;
344 BUG_ON(list_empty(list));
345 data = list_entry(list->next, struct nfs_read_data, pages);
346 list_del_init(&data->pages);
348 data->inode = inode;
349 data->cred = ctx->cred;
350 data->args.fh = NFS_FH(inode);
351 data->args.context = ctx;
352 data->args.offset = pos;
353 data->args.pgbase = pgbase;
354 data->args.pages = &pages[curpage];
355 data->args.count = bytes;
356 data->res.fattr = &data->fattr;
357 data->res.eof = 0;
358 data->res.count = bytes;
360 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
361 &nfs_read_direct_ops, data);
362 NFS_PROTO(inode)->read_setup(data);
364 data->task.tk_cookie = (unsigned long) inode;
366 lock_kernel();
367 rpc_execute(&data->task);
368 unlock_kernel();
370 dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
371 data->task.tk_pid,
372 inode->i_sb->s_id,
373 (long long)NFS_FILEID(inode),
374 bytes,
375 (unsigned long long)data->args.offset);
377 pos += bytes;
378 pgbase += bytes;
379 curpage += pgbase >> PAGE_SHIFT;
380 pgbase &= ~PAGE_MASK;
382 count -= bytes;
383 } while (count != 0);
384 BUG_ON(!list_empty(list));
387 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages)
389 ssize_t result;
390 sigset_t oldset;
391 struct inode *inode = iocb->ki_filp->f_mapping->host;
392 struct rpc_clnt *clnt = NFS_CLIENT(inode);
393 struct nfs_direct_req *dreq;
395 dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
396 if (!dreq)
397 return -ENOMEM;
399 dreq->user_addr = user_addr;
400 dreq->user_count = count;
401 dreq->pos = pos;
402 dreq->pages = pages;
403 dreq->npages = nr_pages;
404 dreq->inode = inode;
405 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
406 if (!is_sync_kiocb(iocb))
407 dreq->iocb = iocb;
409 nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
410 rpc_clnt_sigmask(clnt, &oldset);
411 nfs_direct_read_schedule(dreq);
412 result = nfs_direct_wait(dreq);
413 rpc_clnt_sigunmask(clnt, &oldset);
415 return result;
418 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
420 list_splice_init(&dreq->rewrite_list, &dreq->list);
421 while (!list_empty(&dreq->list)) {
422 struct nfs_write_data *data = list_entry(dreq->list.next, struct nfs_write_data, pages);
423 list_del(&data->pages);
424 nfs_writedata_release(data);
428 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
429 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
431 struct list_head *pos;
433 list_splice_init(&dreq->rewrite_list, &dreq->list);
434 list_for_each(pos, &dreq->list)
435 dreq->outstanding++;
436 dreq->count = 0;
438 nfs_direct_write_schedule(dreq, FLUSH_STABLE);
441 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
443 struct nfs_write_data *data = calldata;
444 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
446 /* Call the NFS version-specific code */
447 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
448 return;
449 if (unlikely(task->tk_status < 0)) {
450 dreq->error = task->tk_status;
451 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
453 if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
454 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
455 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
458 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
459 nfs_direct_write_complete(dreq, data->inode);
462 static const struct rpc_call_ops nfs_commit_direct_ops = {
463 .rpc_call_done = nfs_direct_commit_result,
464 .rpc_release = nfs_commit_release,
467 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
469 struct nfs_write_data *data = dreq->commit_data;
471 data->inode = dreq->inode;
472 data->cred = dreq->ctx->cred;
474 data->args.fh = NFS_FH(data->inode);
475 data->args.offset = dreq->pos;
476 data->args.count = dreq->user_count;
477 data->res.count = 0;
478 data->res.fattr = &data->fattr;
479 data->res.verf = &data->verf;
481 rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
482 &nfs_commit_direct_ops, data);
483 NFS_PROTO(data->inode)->commit_setup(data, 0);
485 data->task.tk_priority = RPC_PRIORITY_NORMAL;
486 data->task.tk_cookie = (unsigned long)data->inode;
487 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
488 dreq->commit_data = NULL;
490 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
492 lock_kernel();
493 rpc_execute(&data->task);
494 unlock_kernel();
497 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
499 int flags = dreq->flags;
501 dreq->flags = 0;
502 switch (flags) {
503 case NFS_ODIRECT_DO_COMMIT:
504 nfs_direct_commit_schedule(dreq);
505 break;
506 case NFS_ODIRECT_RESCHED_WRITES:
507 nfs_direct_write_reschedule(dreq);
508 break;
509 default:
510 nfs_end_data_update(inode);
511 if (dreq->commit_data != NULL)
512 nfs_commit_free(dreq->commit_data);
513 nfs_direct_free_writedata(dreq);
514 nfs_direct_complete(dreq);
518 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
520 dreq->commit_data = nfs_commit_alloc(0);
521 if (dreq->commit_data != NULL)
522 dreq->commit_data->req = (struct nfs_page *) dreq;
524 #else
525 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
527 dreq->commit_data = NULL;
530 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
532 nfs_end_data_update(inode);
533 nfs_direct_free_writedata(dreq);
534 nfs_direct_complete(dreq);
536 #endif
538 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
540 struct list_head *list;
541 struct nfs_direct_req *dreq;
542 unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
544 dreq = nfs_direct_req_alloc();
545 if (!dreq)
546 return NULL;
548 list = &dreq->list;
549 for(;;) {
550 struct nfs_write_data *data = nfs_writedata_alloc(wpages);
552 if (unlikely(!data)) {
553 while (!list_empty(list)) {
554 data = list_entry(list->next,
555 struct nfs_write_data, pages);
556 list_del(&data->pages);
557 nfs_writedata_free(data);
559 kref_put(&dreq->kref, nfs_direct_req_release);
560 return NULL;
563 INIT_LIST_HEAD(&data->pages);
564 list_add(&data->pages, list);
566 data->req = (struct nfs_page *) dreq;
567 dreq->outstanding++;
568 if (nbytes <= wsize)
569 break;
570 nbytes -= wsize;
573 nfs_alloc_commit_data(dreq);
575 kref_get(&dreq->kref);
576 return dreq;
579 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
581 struct nfs_write_data *data = calldata;
582 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
583 int status = task->tk_status;
585 if (nfs_writeback_done(task, data) != 0)
586 return;
588 spin_lock(&dreq->lock);
590 if (likely(status >= 0))
591 dreq->count += data->res.count;
592 else
593 dreq->error = task->tk_status;
595 if (data->res.verf->committed != NFS_FILE_SYNC) {
596 switch (dreq->flags) {
597 case 0:
598 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
599 dreq->flags = NFS_ODIRECT_DO_COMMIT;
600 break;
601 case NFS_ODIRECT_DO_COMMIT:
602 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
603 dprintk("NFS: %5u write verify failed\n", task->tk_pid);
604 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
608 /* In case we have to resend */
609 data->args.stable = NFS_FILE_SYNC;
611 spin_unlock(&dreq->lock);
615 * NB: Return the value of the first error return code. Subsequent
616 * errors after the first one are ignored.
618 static void nfs_direct_write_release(void *calldata)
620 struct nfs_write_data *data = calldata;
621 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
623 spin_lock(&dreq->lock);
624 if (--dreq->outstanding) {
625 spin_unlock(&dreq->lock);
626 return;
628 spin_unlock(&dreq->lock);
630 nfs_direct_write_complete(dreq, data->inode);
633 static const struct rpc_call_ops nfs_write_direct_ops = {
634 .rpc_call_done = nfs_direct_write_result,
635 .rpc_release = nfs_direct_write_release,
639 * For each nfs_write_data struct that was allocated on the list, dispatch
640 * an NFS WRITE operation
642 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync)
644 struct nfs_open_context *ctx = dreq->ctx;
645 struct inode *inode = ctx->dentry->d_inode;
646 struct list_head *list = &dreq->list;
647 struct page **pages = dreq->pages;
648 size_t count = dreq->user_count;
649 loff_t pos = dreq->pos;
650 size_t wsize = NFS_SERVER(inode)->wsize;
651 unsigned int curpage, pgbase;
653 curpage = 0;
654 pgbase = dreq->user_addr & ~PAGE_MASK;
655 do {
656 struct nfs_write_data *data;
657 size_t bytes;
659 bytes = wsize;
660 if (count < wsize)
661 bytes = count;
663 BUG_ON(list_empty(list));
664 data = list_entry(list->next, struct nfs_write_data, pages);
665 list_move_tail(&data->pages, &dreq->rewrite_list);
667 data->inode = inode;
668 data->cred = ctx->cred;
669 data->args.fh = NFS_FH(inode);
670 data->args.context = ctx;
671 data->args.offset = pos;
672 data->args.pgbase = pgbase;
673 data->args.pages = &pages[curpage];
674 data->args.count = bytes;
675 data->res.fattr = &data->fattr;
676 data->res.count = bytes;
677 data->res.verf = &data->verf;
679 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
680 &nfs_write_direct_ops, data);
681 NFS_PROTO(inode)->write_setup(data, sync);
683 data->task.tk_priority = RPC_PRIORITY_NORMAL;
684 data->task.tk_cookie = (unsigned long) inode;
686 lock_kernel();
687 rpc_execute(&data->task);
688 unlock_kernel();
690 dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
691 data->task.tk_pid,
692 inode->i_sb->s_id,
693 (long long)NFS_FILEID(inode),
694 bytes,
695 (unsigned long long)data->args.offset);
697 pos += bytes;
698 pgbase += bytes;
699 curpage += pgbase >> PAGE_SHIFT;
700 pgbase &= ~PAGE_MASK;
702 count -= bytes;
703 } while (count != 0);
704 BUG_ON(!list_empty(list));
707 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages)
709 ssize_t result;
710 sigset_t oldset;
711 struct inode *inode = iocb->ki_filp->f_mapping->host;
712 struct rpc_clnt *clnt = NFS_CLIENT(inode);
713 struct nfs_direct_req *dreq;
714 size_t wsize = NFS_SERVER(inode)->wsize;
715 int sync = 0;
717 dreq = nfs_direct_write_alloc(count, wsize);
718 if (!dreq)
719 return -ENOMEM;
720 if (dreq->commit_data == NULL || count < wsize)
721 sync = FLUSH_STABLE;
723 dreq->user_addr = user_addr;
724 dreq->user_count = count;
725 dreq->pos = pos;
726 dreq->pages = pages;
727 dreq->npages = nr_pages;
728 dreq->inode = inode;
729 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
730 if (!is_sync_kiocb(iocb))
731 dreq->iocb = iocb;
733 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
735 nfs_begin_data_update(inode);
737 rpc_clnt_sigmask(clnt, &oldset);
738 nfs_direct_write_schedule(dreq, sync);
739 result = nfs_direct_wait(dreq);
740 rpc_clnt_sigunmask(clnt, &oldset);
742 return result;
746 * nfs_file_direct_read - file direct read operation for NFS files
747 * @iocb: target I/O control block
748 * @buf: user's buffer into which to read data
749 * @count: number of bytes to read
750 * @pos: byte offset in file where reading starts
752 * We use this function for direct reads instead of calling
753 * generic_file_aio_read() in order to avoid gfar's check to see if
754 * the request starts before the end of the file. For that check
755 * to work, we must generate a GETATTR before each direct read, and
756 * even then there is a window between the GETATTR and the subsequent
757 * READ where the file size could change. Our preference is simply
758 * to do all reads the application wants, and the server will take
759 * care of managing the end of file boundary.
761 * This function also eliminates unnecessarily updating the file's
762 * atime locally, as the NFS server sets the file's atime, and this
763 * client must read the updated atime from the server back into its
764 * cache.
766 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
768 ssize_t retval = -EINVAL;
769 int page_count;
770 struct page **pages;
771 struct file *file = iocb->ki_filp;
772 struct address_space *mapping = file->f_mapping;
774 dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
775 file->f_dentry->d_parent->d_name.name,
776 file->f_dentry->d_name.name,
777 (unsigned long) count, (long long) pos);
779 if (count < 0)
780 goto out;
781 retval = -EFAULT;
782 if (!access_ok(VERIFY_WRITE, buf, count))
783 goto out;
784 retval = 0;
785 if (!count)
786 goto out;
788 retval = nfs_sync_mapping(mapping);
789 if (retval)
790 goto out;
792 retval = nfs_get_user_pages(READ, (unsigned long) buf,
793 count, &pages);
794 if (retval < 0)
795 goto out;
796 page_count = retval;
798 retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
799 pages, page_count);
800 if (retval > 0)
801 iocb->ki_pos = pos + retval;
803 out:
804 return retval;
808 * nfs_file_direct_write - file direct write operation for NFS files
809 * @iocb: target I/O control block
810 * @buf: user's buffer from which to write data
811 * @count: number of bytes to write
812 * @pos: byte offset in file where writing starts
814 * We use this function for direct writes instead of calling
815 * generic_file_aio_write() in order to avoid taking the inode
816 * semaphore and updating the i_size. The NFS server will set
817 * the new i_size and this client must read the updated size
818 * back into its cache. We let the server do generic write
819 * parameter checking and report problems.
821 * We also avoid an unnecessary invocation of generic_osync_inode(),
822 * as it is fairly meaningless to sync the metadata of an NFS file.
824 * We eliminate local atime updates, see direct read above.
826 * We avoid unnecessary page cache invalidations for normal cached
827 * readers of this file.
829 * Note that O_APPEND is not supported for NFS direct writes, as there
830 * is no atomic O_APPEND write facility in the NFS protocol.
832 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
834 ssize_t retval;
835 int page_count;
836 struct page **pages;
837 struct file *file = iocb->ki_filp;
838 struct address_space *mapping = file->f_mapping;
840 dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
841 file->f_dentry->d_parent->d_name.name,
842 file->f_dentry->d_name.name,
843 (unsigned long) count, (long long) pos);
845 retval = generic_write_checks(file, &pos, &count, 0);
846 if (retval)
847 goto out;
849 retval = -EINVAL;
850 if ((ssize_t) count < 0)
851 goto out;
852 retval = 0;
853 if (!count)
854 goto out;
856 retval = -EFAULT;
857 if (!access_ok(VERIFY_READ, buf, count))
858 goto out;
860 retval = nfs_sync_mapping(mapping);
861 if (retval)
862 goto out;
864 retval = nfs_get_user_pages(WRITE, (unsigned long) buf,
865 count, &pages);
866 if (retval < 0)
867 goto out;
868 page_count = retval;
870 retval = nfs_direct_write(iocb, (unsigned long) buf, count,
871 pos, pages, page_count);
874 * XXX: nfs_end_data_update() already ensures this file's
875 * cached data is subsequently invalidated. Do we really
876 * need to call invalidate_inode_pages2() again here?
878 * For aio writes, this invalidation will almost certainly
879 * occur before the writes complete. Kind of racey.
881 if (mapping->nrpages)
882 invalidate_inode_pages2(mapping);
884 if (retval > 0)
885 iocb->ki_pos = pos + retval;
887 out:
888 return retval;
892 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
895 int nfs_init_directcache(void)
897 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
898 sizeof(struct nfs_direct_req),
899 0, (SLAB_RECLAIM_ACCOUNT|
900 SLAB_MEM_SPREAD),
901 NULL, NULL);
902 if (nfs_direct_cachep == NULL)
903 return -ENOMEM;
905 return 0;
909 * nfs_init_directcache - destroy the slab cache for nfs_direct_req structures
912 void nfs_destroy_directcache(void)
914 if (kmem_cache_destroy(nfs_direct_cachep))
915 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");