2 Highly Optimized Object-oriented Many-particle Dynamics -- Blue Edition
3 (HOOMD-blue) Open Source Software License Copyright 2009-2014 The Regents of
4 the University of Michigan All rights reserved.
6 HOOMD-blue may contain modifications ("Contributions") provided, and to which
7 copyright is held, by various Contributors who have granted The Regents of the
8 University of Michigan the right to modify and/or distribute such Contributions.
10 You may redistribute, use, and create derivate works of HOOMD-blue, in source
11 and binary forms, provided you abide by the following conditions:
13 * Redistributions of source code must retain the above copyright notice, this
14 list of conditions, and the following disclaimer both in the code and
15 prominently in any materials provided with the distribution.
17 * Redistributions in binary form must reproduce the above copyright notice, this
18 list of conditions, and the following disclaimer in the documentation and/or
19 other materials provided with the distribution.
21 * All publications and presentations based on HOOMD-blue, including any reports
22 or published results obtained, in whole or in part, with HOOMD-blue, will
23 acknowledge its use according to the terms posted at the time of submission on:
24 http://codeblue.umich.edu/hoomd-blue/citations.html
26 * Any electronic documents citing HOOMD-Blue will link to the HOOMD-Blue website:
27 http://codeblue.umich.edu/hoomd-blue/
29 * Apart from the above required attributions, neither the name of the copyright
30 holder nor the names of HOOMD-blue's contributors may be used to endorse or
31 promote products derived from this software without specific prior written
36 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS'' AND
37 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
38 WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR ANY
39 WARRANTIES THAT THIS SOFTWARE IS FREE OF INFRINGEMENT ARE DISCLAIMED.
41 IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
42 INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
43 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
45 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
46 OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
47 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50 // Maintainer: jglaser
52 #include "TwoStepNVTMTKGPU.cuh"
60 /*! \file TwoStepNVTGPU.cu
61 \brief Defines GPU kernel code for NVT integration on the GPU. Used by TwoStepNVTGPU.
64 //! Takes the first 1/2 step forward in the NVT integration step
65 /*! \param d_pos array of particle positions
66 \param d_vel array of particle velocities
67 \param d_accel array of particle accelerations
68 \param d_image array of particle images
69 \param d_group_members Device array listing the indicies of the mebers of the group to integrate
70 \param group_size Number of members in the group
71 \param box Box dimensions for periodic boundary condition handling
72 \param exp_fac Velocity rescaling factor from thermostat
73 \param deltaT Amount of real time to step forward in one time step
75 Take the first half step forward in the NVT integration.
77 See gpu_nve_step_one_kernel() for some performance notes on how to handle the group data reads efficiently.
80 void gpu_nvt_mtk_step_one_kernel(Scalar4 *d_pos,
82 const Scalar3 *d_accel,
84 unsigned int *d_group_members,
85 unsigned int group_size,
90 // determine which particle this thread works on
91 int group_idx = blockIdx.x * blockDim.x + threadIdx.x;
93 if (group_idx < group_size)
95 unsigned int idx = d_group_members[group_idx];
97 // update positions to the next timestep and update velocities to the next half step
98 Scalar4 postype = d_pos[idx];
99 Scalar3 pos = make_scalar3(postype.x, postype.y, postype.z);
101 Scalar4 velmass = d_vel[idx];
102 Scalar3 vel = make_scalar3(velmass.x, velmass.y, velmass.z);
103 Scalar3 accel = d_accel[idx];
105 // perform update computation
106 vel = vel*exp_fac + Scalar(1.0/2.0) * accel * deltaT;
109 // read in the image flags
110 int3 image = d_image[idx];
112 // time to fix the periodic boundary conditions
113 box.wrap(pos, image);
115 // write out the results
116 d_pos[idx] = make_scalar4(pos.x, pos.y, pos.z, postype.w);
117 d_vel[idx] = make_scalar4(vel.x, vel.y, vel.z, velmass.w);
118 d_image[idx] = image;
122 /*! \param d_pos array of particle positions
123 \param d_vel array of particle velocities
124 \param d_accel array of particle accelerations
125 \param d_image array of particle images
126 \param d_group_members Device array listing the indicies of the mebers of the group to integrate
127 \param group_size Number of members in the group
128 \param box Box dimensions for periodic boundary condition handling
129 \param block_size Size of the block to run
130 \param exp_fac Thermostat rescaling factor
131 \param deltaT Amount of real time to step forward in one time step
133 cudaError_t gpu_nvt_mtk_step_one(Scalar4 *d_pos,
135 const Scalar3 *d_accel,
137 unsigned int *d_group_members,
138 unsigned int group_size,
140 unsigned int block_size,
144 static unsigned int max_block_size = UINT_MAX;
145 if (max_block_size == UINT_MAX)
147 cudaFuncAttributes attr;
148 cudaFuncGetAttributes(&attr, (const void *)gpu_nvt_mtk_step_one_kernel);
149 max_block_size = attr.maxThreadsPerBlock;
152 unsigned int run_block_size = min(block_size, max_block_size);
154 // setup the grid to run the kernel
155 dim3 grid( (group_size/run_block_size) + 1, 1, 1);
156 dim3 threads(run_block_size, 1, 1);
159 gpu_nvt_mtk_step_one_kernel<<< grid, threads >>>(d_pos,
171 //! Takes the second 1/2 step forward in the NVT integration step
172 /*! \param d_vel array of particle velocities
173 \param d_accel array of particle accelerations
174 \param d_group_members Device array listing the indicies of the mebers of the group to integrate
175 \param group_size Number of members in the group
176 \param d_net_force Net force on each particle
177 \param deltaT Amount of real time to step forward in one time step
179 extern "C" __global__
180 void gpu_nvt_mtk_step_two_kernel(Scalar4 *d_vel,
182 unsigned int *d_group_members,
183 unsigned int group_size,
184 Scalar4 *d_net_force,
187 // determine which particle this thread works on
188 int group_idx = blockIdx.x * blockDim.x + threadIdx.x;
190 if (group_idx < group_size)
192 unsigned int idx = d_group_members[group_idx];
194 // read in the net force and calculate the acceleration
195 Scalar4 net_force = d_net_force[idx];
196 Scalar3 accel = make_scalar3(net_force.x,net_force.y,net_force.z);
198 Scalar4 vel = d_vel[idx];
199 Scalar3 v = make_scalar3(vel.x,vel.y,vel.z);
203 v += Scalar(1.0/2.0) * deltaT * accel;
206 d_vel[idx] = make_scalar4(v.x,v.y,v.z,vel.w);
208 // since we calculate the acceleration, we need to write it for the next step
209 d_accel[idx] = accel;
213 /*! \param d_vel array of particle velocities
214 \param d_accel array of particle accelerations
215 \param d_group_members Device array listing the indicies of the mebers of the group to integrate
216 \param group_size Number of members in the group
217 \param d_net_force Net force on each particle
218 \param block_size Size of the block to execute on the device
219 \param deltaT Amount of real time to step forward in one time step
221 cudaError_t gpu_nvt_mtk_step_two(Scalar4 *d_vel,
223 unsigned int *d_group_members,
224 unsigned int group_size,
225 Scalar4 *d_net_force,
226 unsigned int block_size,
229 static unsigned int max_block_size = UINT_MAX;
230 if (max_block_size == UINT_MAX)
232 cudaFuncAttributes attr;
233 cudaFuncGetAttributes(&attr, (const void *)gpu_nvt_mtk_step_two_kernel);
234 max_block_size = attr.maxThreadsPerBlock;
237 unsigned int run_block_size = min(block_size, max_block_size);
239 // setup the grid to run the kernel
240 dim3 grid( (group_size/run_block_size) + 1, 1, 1);
241 dim3 threads(run_block_size, 1, 1);
244 gpu_nvt_mtk_step_two_kernel<<< grid, threads >>>(d_vel, d_accel, d_group_members, group_size, d_net_force, deltaT);