driver_test: Remove forgotten, unused prototypes
[hostap-gosc2009.git] / src / crypto / md5-internal.c
blobf8692a9557aed0048fbbfc28494f1462b1f1e5b0
1 /*
2 * MD5 hash implementation and interface functions
3 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
12 * See README and COPYING for more details.
15 #include "includes.h"
17 #include "common.h"
18 #include "md5.h"
19 #include "md5_i.h"
20 #include "crypto.h"
23 static void MD5Transform(u32 buf[4], u32 const in[16]);
26 typedef struct MD5Context MD5_CTX;
29 /**
30 * md5_vector - MD5 hash for data vector
31 * @num_elem: Number of elements in the data vector
32 * @addr: Pointers to the data areas
33 * @len: Lengths of the data blocks
34 * @mac: Buffer for the hash
35 * Returns: 0 on success, -1 of failure
37 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
39 MD5_CTX ctx;
40 size_t i;
42 MD5Init(&ctx);
43 for (i = 0; i < num_elem; i++)
44 MD5Update(&ctx, addr[i], len[i]);
45 MD5Final(mac, &ctx);
46 return 0;
50 /* ===== start - public domain MD5 implementation ===== */
52 * This code implements the MD5 message-digest algorithm.
53 * The algorithm is due to Ron Rivest. This code was
54 * written by Colin Plumb in 1993, no copyright is claimed.
55 * This code is in the public domain; do with it what you wish.
57 * Equivalent code is available from RSA Data Security, Inc.
58 * This code has been tested against that, and is equivalent,
59 * except that you don't need to include two pages of legalese
60 * with every copy.
62 * To compute the message digest of a chunk of bytes, declare an
63 * MD5Context structure, pass it to MD5Init, call MD5Update as
64 * needed on buffers full of bytes, and then call MD5Final, which
65 * will fill a supplied 16-byte array with the digest.
68 #ifndef WORDS_BIGENDIAN
69 #define byteReverse(buf, len) /* Nothing */
70 #else
72 * Note: this code is harmless on little-endian machines.
74 static void byteReverse(unsigned char *buf, unsigned longs)
76 u32 t;
77 do {
78 t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
79 ((unsigned) buf[1] << 8 | buf[0]);
80 *(u32 *) buf = t;
81 buf += 4;
82 } while (--longs);
84 #endif
87 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
88 * initialization constants.
90 void MD5Init(struct MD5Context *ctx)
92 ctx->buf[0] = 0x67452301;
93 ctx->buf[1] = 0xefcdab89;
94 ctx->buf[2] = 0x98badcfe;
95 ctx->buf[3] = 0x10325476;
97 ctx->bits[0] = 0;
98 ctx->bits[1] = 0;
102 * Update context to reflect the concatenation of another buffer full
103 * of bytes.
105 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
107 u32 t;
109 /* Update bitcount */
111 t = ctx->bits[0];
112 if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
113 ctx->bits[1]++; /* Carry from low to high */
114 ctx->bits[1] += len >> 29;
116 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
118 /* Handle any leading odd-sized chunks */
120 if (t) {
121 unsigned char *p = (unsigned char *) ctx->in + t;
123 t = 64 - t;
124 if (len < t) {
125 os_memcpy(p, buf, len);
126 return;
128 os_memcpy(p, buf, t);
129 byteReverse(ctx->in, 16);
130 MD5Transform(ctx->buf, (u32 *) ctx->in);
131 buf += t;
132 len -= t;
134 /* Process data in 64-byte chunks */
136 while (len >= 64) {
137 os_memcpy(ctx->in, buf, 64);
138 byteReverse(ctx->in, 16);
139 MD5Transform(ctx->buf, (u32 *) ctx->in);
140 buf += 64;
141 len -= 64;
144 /* Handle any remaining bytes of data. */
146 os_memcpy(ctx->in, buf, len);
150 * Final wrapup - pad to 64-byte boundary with the bit pattern
151 * 1 0* (64-bit count of bits processed, MSB-first)
153 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
155 unsigned count;
156 unsigned char *p;
158 /* Compute number of bytes mod 64 */
159 count = (ctx->bits[0] >> 3) & 0x3F;
161 /* Set the first char of padding to 0x80. This is safe since there is
162 always at least one byte free */
163 p = ctx->in + count;
164 *p++ = 0x80;
166 /* Bytes of padding needed to make 64 bytes */
167 count = 64 - 1 - count;
169 /* Pad out to 56 mod 64 */
170 if (count < 8) {
171 /* Two lots of padding: Pad the first block to 64 bytes */
172 os_memset(p, 0, count);
173 byteReverse(ctx->in, 16);
174 MD5Transform(ctx->buf, (u32 *) ctx->in);
176 /* Now fill the next block with 56 bytes */
177 os_memset(ctx->in, 0, 56);
178 } else {
179 /* Pad block to 56 bytes */
180 os_memset(p, 0, count - 8);
182 byteReverse(ctx->in, 14);
184 /* Append length in bits and transform */
185 ((u32 *) ctx->in)[14] = ctx->bits[0];
186 ((u32 *) ctx->in)[15] = ctx->bits[1];
188 MD5Transform(ctx->buf, (u32 *) ctx->in);
189 byteReverse((unsigned char *) ctx->buf, 4);
190 os_memcpy(digest, ctx->buf, 16);
191 os_memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
194 /* The four core functions - F1 is optimized somewhat */
196 /* #define F1(x, y, z) (x & y | ~x & z) */
197 #define F1(x, y, z) (z ^ (x & (y ^ z)))
198 #define F2(x, y, z) F1(z, x, y)
199 #define F3(x, y, z) (x ^ y ^ z)
200 #define F4(x, y, z) (y ^ (x | ~z))
202 /* This is the central step in the MD5 algorithm. */
203 #define MD5STEP(f, w, x, y, z, data, s) \
204 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
207 * The core of the MD5 algorithm, this alters an existing MD5 hash to
208 * reflect the addition of 16 longwords of new data. MD5Update blocks
209 * the data and converts bytes into longwords for this routine.
211 static void MD5Transform(u32 buf[4], u32 const in[16])
213 register u32 a, b, c, d;
215 a = buf[0];
216 b = buf[1];
217 c = buf[2];
218 d = buf[3];
220 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
221 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
222 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
223 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
224 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
225 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
226 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
227 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
228 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
229 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
230 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
231 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
232 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
233 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
234 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
235 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
237 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
238 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
239 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
240 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
241 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
242 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
243 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
244 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
245 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
246 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
247 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
248 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
249 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
250 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
251 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
252 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
254 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
255 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
256 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
257 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
258 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
259 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
260 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
261 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
262 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
263 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
264 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
265 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
266 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
267 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
268 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
269 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
271 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
272 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
273 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
274 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
275 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
276 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
277 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
278 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
279 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
280 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
281 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
282 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
283 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
284 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
285 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
286 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
288 buf[0] += a;
289 buf[1] += b;
290 buf[2] += c;
291 buf[3] += d;
293 /* ===== end - public domain MD5 implementation ===== */