htcleo: add Cotulla's fixes for non-android touchscreen!
[htc-linux.git] / arch / blackfin / mm / sram-alloc.c
blobf068c11ea98f5ca6c53568b4e7cf2dfc3a363a1f
1 /*
2 * SRAM allocator for Blackfin on-chip memory
4 * Copyright 2004-2009 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
7 */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/spinlock.h>
19 #include <linux/rtc.h>
20 #include <asm/blackfin.h>
21 #include <asm/mem_map.h>
22 #include "blackfin_sram.h"
24 /* the data structure for L1 scratchpad and DATA SRAM */
25 struct sram_piece {
26 void *paddr;
27 int size;
28 pid_t pid;
29 struct sram_piece *next;
32 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
33 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
34 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
36 #if L1_DATA_A_LENGTH != 0
37 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
38 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
39 #endif
41 #if L1_DATA_B_LENGTH != 0
42 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
43 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
44 #endif
46 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
47 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
48 #endif
50 #if L1_CODE_LENGTH != 0
51 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
52 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
53 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
54 #endif
56 #if L2_LENGTH != 0
57 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
58 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
59 #endif
61 static struct kmem_cache *sram_piece_cache;
63 /* L1 Scratchpad SRAM initialization function */
64 static void __init l1sram_init(void)
66 unsigned int cpu;
67 unsigned long reserve;
69 #ifdef CONFIG_SMP
70 reserve = 0;
71 #else
72 reserve = sizeof(struct l1_scratch_task_info);
73 #endif
75 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
76 per_cpu(free_l1_ssram_head, cpu).next =
77 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
78 if (!per_cpu(free_l1_ssram_head, cpu).next) {
79 printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
80 return;
83 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
84 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
85 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
86 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
88 per_cpu(used_l1_ssram_head, cpu).next = NULL;
90 /* mutex initialize */
91 spin_lock_init(&per_cpu(l1sram_lock, cpu));
92 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
93 L1_SCRATCH_LENGTH >> 10);
97 static void __init l1_data_sram_init(void)
99 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
100 unsigned int cpu;
101 #endif
102 #if L1_DATA_A_LENGTH != 0
103 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
104 per_cpu(free_l1_data_A_sram_head, cpu).next =
105 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
106 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
107 printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
108 return;
111 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
112 (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
113 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
114 L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
115 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
116 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
118 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
120 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
121 L1_DATA_A_LENGTH >> 10,
122 per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
124 #endif
125 #if L1_DATA_B_LENGTH != 0
126 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
127 per_cpu(free_l1_data_B_sram_head, cpu).next =
128 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
129 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
130 printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
131 return;
134 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
135 (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
136 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
137 L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
138 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
139 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
141 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
143 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
144 L1_DATA_B_LENGTH >> 10,
145 per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
146 /* mutex initialize */
148 #endif
150 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
151 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
152 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
153 #endif
156 static void __init l1_inst_sram_init(void)
158 #if L1_CODE_LENGTH != 0
159 unsigned int cpu;
160 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
161 per_cpu(free_l1_inst_sram_head, cpu).next =
162 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
163 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
164 printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
165 return;
168 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
169 (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
170 per_cpu(free_l1_inst_sram_head, cpu).next->size =
171 L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
172 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
173 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
175 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
177 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
178 L1_CODE_LENGTH >> 10,
179 per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
181 /* mutex initialize */
182 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
184 #endif
187 static void __init l2_sram_init(void)
189 #if L2_LENGTH != 0
190 free_l2_sram_head.next =
191 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
192 if (!free_l2_sram_head.next) {
193 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
194 return;
197 free_l2_sram_head.next->paddr =
198 (void *)L2_START + (_ebss_l2 - _stext_l2);
199 free_l2_sram_head.next->size =
200 L2_LENGTH - (_ebss_l2 - _stext_l2);
201 free_l2_sram_head.next->pid = 0;
202 free_l2_sram_head.next->next = NULL;
204 used_l2_sram_head.next = NULL;
206 printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
207 L2_LENGTH >> 10,
208 free_l2_sram_head.next->size >> 10);
210 /* mutex initialize */
211 spin_lock_init(&l2_sram_lock);
212 #endif
215 static int __init bfin_sram_init(void)
217 sram_piece_cache = kmem_cache_create("sram_piece_cache",
218 sizeof(struct sram_piece),
219 0, SLAB_PANIC, NULL);
221 l1sram_init();
222 l1_data_sram_init();
223 l1_inst_sram_init();
224 l2_sram_init();
226 return 0;
228 pure_initcall(bfin_sram_init);
230 /* SRAM allocate function */
231 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
232 struct sram_piece *pused_head)
234 struct sram_piece *pslot, *plast, *pavail;
236 if (size <= 0 || !pfree_head || !pused_head)
237 return NULL;
239 /* Align the size */
240 size = (size + 3) & ~3;
242 pslot = pfree_head->next;
243 plast = pfree_head;
245 /* search an available piece slot */
246 while (pslot != NULL && size > pslot->size) {
247 plast = pslot;
248 pslot = pslot->next;
251 if (!pslot)
252 return NULL;
254 if (pslot->size == size) {
255 plast->next = pslot->next;
256 pavail = pslot;
257 } else {
258 pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
260 if (!pavail)
261 return NULL;
263 pavail->paddr = pslot->paddr;
264 pavail->size = size;
265 pslot->paddr += size;
266 pslot->size -= size;
269 pavail->pid = current->pid;
271 pslot = pused_head->next;
272 plast = pused_head;
274 /* insert new piece into used piece list !!! */
275 while (pslot != NULL && pavail->paddr < pslot->paddr) {
276 plast = pslot;
277 pslot = pslot->next;
280 pavail->next = pslot;
281 plast->next = pavail;
283 return pavail->paddr;
286 /* Allocate the largest available block. */
287 static void *_sram_alloc_max(struct sram_piece *pfree_head,
288 struct sram_piece *pused_head,
289 unsigned long *psize)
291 struct sram_piece *pslot, *pmax;
293 if (!pfree_head || !pused_head)
294 return NULL;
296 pmax = pslot = pfree_head->next;
298 /* search an available piece slot */
299 while (pslot != NULL) {
300 if (pslot->size > pmax->size)
301 pmax = pslot;
302 pslot = pslot->next;
305 if (!pmax)
306 return NULL;
308 *psize = pmax->size;
310 return _sram_alloc(*psize, pfree_head, pused_head);
313 /* SRAM free function */
314 static int _sram_free(const void *addr,
315 struct sram_piece *pfree_head,
316 struct sram_piece *pused_head)
318 struct sram_piece *pslot, *plast, *pavail;
320 if (!pfree_head || !pused_head)
321 return -1;
323 /* search the relevant memory slot */
324 pslot = pused_head->next;
325 plast = pused_head;
327 /* search an available piece slot */
328 while (pslot != NULL && pslot->paddr != addr) {
329 plast = pslot;
330 pslot = pslot->next;
333 if (!pslot)
334 return -1;
336 plast->next = pslot->next;
337 pavail = pslot;
338 pavail->pid = 0;
340 /* insert free pieces back to the free list */
341 pslot = pfree_head->next;
342 plast = pfree_head;
344 while (pslot != NULL && addr > pslot->paddr) {
345 plast = pslot;
346 pslot = pslot->next;
349 if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
350 plast->size += pavail->size;
351 kmem_cache_free(sram_piece_cache, pavail);
352 } else {
353 pavail->next = plast->next;
354 plast->next = pavail;
355 plast = pavail;
358 if (pslot && plast->paddr + plast->size == pslot->paddr) {
359 plast->size += pslot->size;
360 plast->next = pslot->next;
361 kmem_cache_free(sram_piece_cache, pslot);
364 return 0;
367 int sram_free(const void *addr)
370 #if L1_CODE_LENGTH != 0
371 if (addr >= (void *)get_l1_code_start()
372 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
373 return l1_inst_sram_free(addr);
374 else
375 #endif
376 #if L1_DATA_A_LENGTH != 0
377 if (addr >= (void *)get_l1_data_a_start()
378 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
379 return l1_data_A_sram_free(addr);
380 else
381 #endif
382 #if L1_DATA_B_LENGTH != 0
383 if (addr >= (void *)get_l1_data_b_start()
384 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
385 return l1_data_B_sram_free(addr);
386 else
387 #endif
388 #if L2_LENGTH != 0
389 if (addr >= (void *)L2_START
390 && addr < (void *)(L2_START + L2_LENGTH))
391 return l2_sram_free(addr);
392 else
393 #endif
394 return -1;
396 EXPORT_SYMBOL(sram_free);
398 void *l1_data_A_sram_alloc(size_t size)
400 #if L1_DATA_A_LENGTH != 0
401 unsigned long flags;
402 void *addr;
403 unsigned int cpu;
405 cpu = get_cpu();
406 /* add mutex operation */
407 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
409 addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
410 &per_cpu(used_l1_data_A_sram_head, cpu));
412 /* add mutex operation */
413 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
414 put_cpu();
416 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
417 (long unsigned int)addr, size);
419 return addr;
420 #else
421 return NULL;
422 #endif
424 EXPORT_SYMBOL(l1_data_A_sram_alloc);
426 int l1_data_A_sram_free(const void *addr)
428 #if L1_DATA_A_LENGTH != 0
429 unsigned long flags;
430 int ret;
431 unsigned int cpu;
433 cpu = get_cpu();
434 /* add mutex operation */
435 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
437 ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
438 &per_cpu(used_l1_data_A_sram_head, cpu));
440 /* add mutex operation */
441 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
442 put_cpu();
444 return ret;
445 #else
446 return -1;
447 #endif
449 EXPORT_SYMBOL(l1_data_A_sram_free);
451 void *l1_data_B_sram_alloc(size_t size)
453 #if L1_DATA_B_LENGTH != 0
454 unsigned long flags;
455 void *addr;
456 unsigned int cpu;
458 cpu = get_cpu();
459 /* add mutex operation */
460 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
462 addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
463 &per_cpu(used_l1_data_B_sram_head, cpu));
465 /* add mutex operation */
466 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
467 put_cpu();
469 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
470 (long unsigned int)addr, size);
472 return addr;
473 #else
474 return NULL;
475 #endif
477 EXPORT_SYMBOL(l1_data_B_sram_alloc);
479 int l1_data_B_sram_free(const void *addr)
481 #if L1_DATA_B_LENGTH != 0
482 unsigned long flags;
483 int ret;
484 unsigned int cpu;
486 cpu = get_cpu();
487 /* add mutex operation */
488 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
490 ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
491 &per_cpu(used_l1_data_B_sram_head, cpu));
493 /* add mutex operation */
494 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
495 put_cpu();
497 return ret;
498 #else
499 return -1;
500 #endif
502 EXPORT_SYMBOL(l1_data_B_sram_free);
504 void *l1_data_sram_alloc(size_t size)
506 void *addr = l1_data_A_sram_alloc(size);
508 if (!addr)
509 addr = l1_data_B_sram_alloc(size);
511 return addr;
513 EXPORT_SYMBOL(l1_data_sram_alloc);
515 void *l1_data_sram_zalloc(size_t size)
517 void *addr = l1_data_sram_alloc(size);
519 if (addr)
520 memset(addr, 0x00, size);
522 return addr;
524 EXPORT_SYMBOL(l1_data_sram_zalloc);
526 int l1_data_sram_free(const void *addr)
528 int ret;
529 ret = l1_data_A_sram_free(addr);
530 if (ret == -1)
531 ret = l1_data_B_sram_free(addr);
532 return ret;
534 EXPORT_SYMBOL(l1_data_sram_free);
536 void *l1_inst_sram_alloc(size_t size)
538 #if L1_CODE_LENGTH != 0
539 unsigned long flags;
540 void *addr;
541 unsigned int cpu;
543 cpu = get_cpu();
544 /* add mutex operation */
545 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
547 addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
548 &per_cpu(used_l1_inst_sram_head, cpu));
550 /* add mutex operation */
551 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
552 put_cpu();
554 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
555 (long unsigned int)addr, size);
557 return addr;
558 #else
559 return NULL;
560 #endif
562 EXPORT_SYMBOL(l1_inst_sram_alloc);
564 int l1_inst_sram_free(const void *addr)
566 #if L1_CODE_LENGTH != 0
567 unsigned long flags;
568 int ret;
569 unsigned int cpu;
571 cpu = get_cpu();
572 /* add mutex operation */
573 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
575 ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
576 &per_cpu(used_l1_inst_sram_head, cpu));
578 /* add mutex operation */
579 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
580 put_cpu();
582 return ret;
583 #else
584 return -1;
585 #endif
587 EXPORT_SYMBOL(l1_inst_sram_free);
589 /* L1 Scratchpad memory allocate function */
590 void *l1sram_alloc(size_t size)
592 unsigned long flags;
593 void *addr;
594 unsigned int cpu;
596 cpu = get_cpu();
597 /* add mutex operation */
598 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
600 addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
601 &per_cpu(used_l1_ssram_head, cpu));
603 /* add mutex operation */
604 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
605 put_cpu();
607 return addr;
610 /* L1 Scratchpad memory allocate function */
611 void *l1sram_alloc_max(size_t *psize)
613 unsigned long flags;
614 void *addr;
615 unsigned int cpu;
617 cpu = get_cpu();
618 /* add mutex operation */
619 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
621 addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
622 &per_cpu(used_l1_ssram_head, cpu), psize);
624 /* add mutex operation */
625 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
626 put_cpu();
628 return addr;
631 /* L1 Scratchpad memory free function */
632 int l1sram_free(const void *addr)
634 unsigned long flags;
635 int ret;
636 unsigned int cpu;
638 cpu = get_cpu();
639 /* add mutex operation */
640 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
642 ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
643 &per_cpu(used_l1_ssram_head, cpu));
645 /* add mutex operation */
646 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
647 put_cpu();
649 return ret;
652 void *l2_sram_alloc(size_t size)
654 #if L2_LENGTH != 0
655 unsigned long flags;
656 void *addr;
658 /* add mutex operation */
659 spin_lock_irqsave(&l2_sram_lock, flags);
661 addr = _sram_alloc(size, &free_l2_sram_head,
662 &used_l2_sram_head);
664 /* add mutex operation */
665 spin_unlock_irqrestore(&l2_sram_lock, flags);
667 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
668 (long unsigned int)addr, size);
670 return addr;
671 #else
672 return NULL;
673 #endif
675 EXPORT_SYMBOL(l2_sram_alloc);
677 void *l2_sram_zalloc(size_t size)
679 void *addr = l2_sram_alloc(size);
681 if (addr)
682 memset(addr, 0x00, size);
684 return addr;
686 EXPORT_SYMBOL(l2_sram_zalloc);
688 int l2_sram_free(const void *addr)
690 #if L2_LENGTH != 0
691 unsigned long flags;
692 int ret;
694 /* add mutex operation */
695 spin_lock_irqsave(&l2_sram_lock, flags);
697 ret = _sram_free(addr, &free_l2_sram_head,
698 &used_l2_sram_head);
700 /* add mutex operation */
701 spin_unlock_irqrestore(&l2_sram_lock, flags);
703 return ret;
704 #else
705 return -1;
706 #endif
708 EXPORT_SYMBOL(l2_sram_free);
710 int sram_free_with_lsl(const void *addr)
712 struct sram_list_struct *lsl, **tmp;
713 struct mm_struct *mm = current->mm;
715 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
716 if ((*tmp)->addr == addr)
717 goto found;
718 return -1;
719 found:
720 lsl = *tmp;
721 sram_free(addr);
722 *tmp = lsl->next;
723 kfree(lsl);
725 return 0;
727 EXPORT_SYMBOL(sram_free_with_lsl);
729 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
730 * tracked. These are designed for userspace so that when a process exits,
731 * we can safely reap their resources.
733 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
735 void *addr = NULL;
736 struct sram_list_struct *lsl = NULL;
737 struct mm_struct *mm = current->mm;
739 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
740 if (!lsl)
741 return NULL;
743 if (flags & L1_INST_SRAM)
744 addr = l1_inst_sram_alloc(size);
746 if (addr == NULL && (flags & L1_DATA_A_SRAM))
747 addr = l1_data_A_sram_alloc(size);
749 if (addr == NULL && (flags & L1_DATA_B_SRAM))
750 addr = l1_data_B_sram_alloc(size);
752 if (addr == NULL && (flags & L2_SRAM))
753 addr = l2_sram_alloc(size);
755 if (addr == NULL) {
756 kfree(lsl);
757 return NULL;
759 lsl->addr = addr;
760 lsl->length = size;
761 lsl->next = mm->context.sram_list;
762 mm->context.sram_list = lsl;
763 return addr;
765 EXPORT_SYMBOL(sram_alloc_with_lsl);
767 #ifdef CONFIG_PROC_FS
768 /* Once we get a real allocator, we'll throw all of this away.
769 * Until then, we need some sort of visibility into the L1 alloc.
771 /* Need to keep line of output the same. Currently, that is 44 bytes
772 * (including newline).
774 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
775 struct sram_piece *pfree_head,
776 struct sram_piece *pused_head)
778 struct sram_piece *pslot;
780 if (!pfree_head || !pused_head)
781 return -1;
783 *len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
785 /* search the relevant memory slot */
786 pslot = pused_head->next;
788 while (pslot != NULL) {
789 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
790 pslot->paddr, pslot->paddr + pslot->size,
791 pslot->size, pslot->pid, "ALLOCATED");
793 pslot = pslot->next;
796 pslot = pfree_head->next;
798 while (pslot != NULL) {
799 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
800 pslot->paddr, pslot->paddr + pslot->size,
801 pslot->size, pslot->pid, "FREE");
803 pslot = pslot->next;
806 return 0;
808 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
809 int *eof, void *data)
811 int len = 0;
812 unsigned int cpu;
814 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
815 if (_sram_proc_read(buf, &len, count, "Scratchpad",
816 &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
817 goto not_done;
818 #if L1_DATA_A_LENGTH != 0
819 if (_sram_proc_read(buf, &len, count, "L1 Data A",
820 &per_cpu(free_l1_data_A_sram_head, cpu),
821 &per_cpu(used_l1_data_A_sram_head, cpu)))
822 goto not_done;
823 #endif
824 #if L1_DATA_B_LENGTH != 0
825 if (_sram_proc_read(buf, &len, count, "L1 Data B",
826 &per_cpu(free_l1_data_B_sram_head, cpu),
827 &per_cpu(used_l1_data_B_sram_head, cpu)))
828 goto not_done;
829 #endif
830 #if L1_CODE_LENGTH != 0
831 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
832 &per_cpu(free_l1_inst_sram_head, cpu),
833 &per_cpu(used_l1_inst_sram_head, cpu)))
834 goto not_done;
835 #endif
837 #if L2_LENGTH != 0
838 if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
839 &used_l2_sram_head))
840 goto not_done;
841 #endif
842 *eof = 1;
843 not_done:
844 return len;
847 static int __init sram_proc_init(void)
849 struct proc_dir_entry *ptr;
850 ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
851 if (!ptr) {
852 printk(KERN_WARNING "unable to create /proc/sram\n");
853 return -1;
855 ptr->read_proc = sram_proc_read;
856 return 0;
858 late_initcall(sram_proc_init);
859 #endif