1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
39 char stat_string
[ETH_GSTRING_LEN
];
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats
[] = {
47 { "rx_packets", E1000_STAT(stats
.gprc
) },
48 { "tx_packets", E1000_STAT(stats
.gptc
) },
49 { "rx_bytes", E1000_STAT(stats
.gorc
) },
50 { "tx_bytes", E1000_STAT(stats
.gotc
) },
51 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
52 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
53 { "rx_multicast", E1000_STAT(stats
.mprc
) },
54 { "tx_multicast", E1000_STAT(stats
.mptc
) },
55 { "rx_errors", E1000_STAT(net_stats
.rx_errors
) },
56 { "tx_errors", E1000_STAT(net_stats
.tx_errors
) },
57 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
58 { "multicast", E1000_STAT(stats
.mprc
) },
59 { "collisions", E1000_STAT(stats
.colc
) },
60 { "rx_length_errors", E1000_STAT(net_stats
.rx_length_errors
) },
61 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
62 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
63 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
64 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
65 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
66 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
67 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
68 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
70 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
71 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
72 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
73 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
74 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
76 { "tx_restart_queue", E1000_STAT(restart_queue
) },
77 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
78 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
79 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
80 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
82 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
83 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
84 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
85 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
86 { "rx_long_byte_count", E1000_STAT(stats
.gorc
) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
91 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
92 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
93 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed
) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed
) },
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
107 static int e1000_get_settings(struct net_device
*netdev
,
108 struct ethtool_cmd
*ecmd
)
110 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
111 struct e1000_hw
*hw
= &adapter
->hw
;
114 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
116 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
117 SUPPORTED_10baseT_Full
|
118 SUPPORTED_100baseT_Half
|
119 SUPPORTED_100baseT_Full
|
120 SUPPORTED_1000baseT_Full
|
123 if (hw
->phy
.type
== e1000_phy_ife
)
124 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
125 ecmd
->advertising
= ADVERTISED_TP
;
127 if (hw
->mac
.autoneg
== 1) {
128 ecmd
->advertising
|= ADVERTISED_Autoneg
;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
133 ecmd
->port
= PORT_TP
;
134 ecmd
->phy_address
= hw
->phy
.addr
;
135 ecmd
->transceiver
= XCVR_INTERNAL
;
138 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
142 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
146 ecmd
->port
= PORT_FIBRE
;
147 ecmd
->transceiver
= XCVR_EXTERNAL
;
150 status
= er32(STATUS
);
151 if (status
& E1000_STATUS_LU
) {
152 if (status
& E1000_STATUS_SPEED_1000
)
154 else if (status
& E1000_STATUS_SPEED_100
)
159 if (status
& E1000_STATUS_FD
)
160 ecmd
->duplex
= DUPLEX_FULL
;
162 ecmd
->duplex
= DUPLEX_HALF
;
168 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
169 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
171 /* MDI-X => 2; MDI =>1; Invalid =>0 */
172 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
173 !hw
->mac
.get_link_status
)
174 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
177 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
182 static u32
e1000_get_link(struct net_device
*netdev
)
184 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
186 return e1000_has_link(adapter
);
189 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
191 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
195 /* Fiber NICs only allow 1000 gbps Full duplex */
196 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
197 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
198 e_err("Unsupported Speed/Duplex configuration\n");
203 case SPEED_10
+ DUPLEX_HALF
:
204 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
206 case SPEED_10
+ DUPLEX_FULL
:
207 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
209 case SPEED_100
+ DUPLEX_HALF
:
210 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
212 case SPEED_100
+ DUPLEX_FULL
:
213 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
215 case SPEED_1000
+ DUPLEX_FULL
:
217 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
219 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
221 e_err("Unsupported Speed/Duplex configuration\n");
227 static int e1000_set_settings(struct net_device
*netdev
,
228 struct ethtool_cmd
*ecmd
)
230 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
231 struct e1000_hw
*hw
= &adapter
->hw
;
234 * When SoL/IDER sessions are active, autoneg/speed/duplex
237 if (e1000_check_reset_block(hw
)) {
238 e_err("Cannot change link characteristics when SoL/IDER is "
243 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
246 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
248 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
249 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
253 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
256 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
257 if (adapter
->fc_autoneg
)
258 hw
->fc
.requested_mode
= e1000_fc_default
;
260 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
261 clear_bit(__E1000_RESETTING
, &adapter
->state
);
268 if (netif_running(adapter
->netdev
)) {
269 e1000e_down(adapter
);
272 e1000e_reset(adapter
);
275 clear_bit(__E1000_RESETTING
, &adapter
->state
);
279 static void e1000_get_pauseparam(struct net_device
*netdev
,
280 struct ethtool_pauseparam
*pause
)
282 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
283 struct e1000_hw
*hw
= &adapter
->hw
;
286 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
288 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
290 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
292 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
298 static int e1000_set_pauseparam(struct net_device
*netdev
,
299 struct ethtool_pauseparam
*pause
)
301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
302 struct e1000_hw
*hw
= &adapter
->hw
;
305 adapter
->fc_autoneg
= pause
->autoneg
;
307 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
310 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
311 hw
->fc
.requested_mode
= e1000_fc_default
;
312 if (netif_running(adapter
->netdev
)) {
313 e1000e_down(adapter
);
316 e1000e_reset(adapter
);
319 if (pause
->rx_pause
&& pause
->tx_pause
)
320 hw
->fc
.requested_mode
= e1000_fc_full
;
321 else if (pause
->rx_pause
&& !pause
->tx_pause
)
322 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
323 else if (!pause
->rx_pause
&& pause
->tx_pause
)
324 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
325 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
326 hw
->fc
.requested_mode
= e1000_fc_none
;
328 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
330 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
331 retval
= hw
->mac
.ops
.setup_link(hw
);
332 /* implicit goto out */
334 retval
= e1000e_force_mac_fc(hw
);
337 e1000e_set_fc_watermarks(hw
);
342 clear_bit(__E1000_RESETTING
, &adapter
->state
);
346 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
348 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
349 return (adapter
->flags
& FLAG_RX_CSUM_ENABLED
);
352 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
354 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
357 adapter
->flags
|= FLAG_RX_CSUM_ENABLED
;
359 adapter
->flags
&= ~FLAG_RX_CSUM_ENABLED
;
361 if (netif_running(netdev
))
362 e1000e_reinit_locked(adapter
);
364 e1000e_reset(adapter
);
368 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
370 return ((netdev
->features
& NETIF_F_HW_CSUM
) != 0);
373 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
376 netdev
->features
|= NETIF_F_HW_CSUM
;
378 netdev
->features
&= ~NETIF_F_HW_CSUM
;
383 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
385 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
388 netdev
->features
|= NETIF_F_TSO
;
389 netdev
->features
|= NETIF_F_TSO6
;
391 netdev
->features
&= ~NETIF_F_TSO
;
392 netdev
->features
&= ~NETIF_F_TSO6
;
395 e_info("TSO is %s\n", data
? "Enabled" : "Disabled");
396 adapter
->flags
|= FLAG_TSO_FORCE
;
400 static u32
e1000_get_msglevel(struct net_device
*netdev
)
402 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
403 return adapter
->msg_enable
;
406 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
408 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
409 adapter
->msg_enable
= data
;
412 static int e1000_get_regs_len(struct net_device
*netdev
)
414 #define E1000_REGS_LEN 32 /* overestimate */
415 return E1000_REGS_LEN
* sizeof(u32
);
418 static void e1000_get_regs(struct net_device
*netdev
,
419 struct ethtool_regs
*regs
, void *p
)
421 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
422 struct e1000_hw
*hw
= &adapter
->hw
;
427 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
429 pci_read_config_byte(adapter
->pdev
, PCI_REVISION_ID
, &revision_id
);
431 regs
->version
= (1 << 24) | (revision_id
<< 16) | adapter
->pdev
->device
;
433 regs_buff
[0] = er32(CTRL
);
434 regs_buff
[1] = er32(STATUS
);
436 regs_buff
[2] = er32(RCTL
);
437 regs_buff
[3] = er32(RDLEN
);
438 regs_buff
[4] = er32(RDH
);
439 regs_buff
[5] = er32(RDT
);
440 regs_buff
[6] = er32(RDTR
);
442 regs_buff
[7] = er32(TCTL
);
443 regs_buff
[8] = er32(TDLEN
);
444 regs_buff
[9] = er32(TDH
);
445 regs_buff
[10] = er32(TDT
);
446 regs_buff
[11] = er32(TIDV
);
448 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
450 /* ethtool doesn't use anything past this point, so all this
451 * code is likely legacy junk for apps that may or may not
453 if (hw
->phy
.type
== e1000_phy_m88
) {
454 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
455 regs_buff
[13] = (u32
)phy_data
; /* cable length */
456 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
457 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
458 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
459 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
460 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
461 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
462 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
463 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
464 /* phy receive errors */
465 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
466 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
468 regs_buff
[21] = 0; /* was idle_errors */
469 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
470 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
471 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
474 static int e1000_get_eeprom_len(struct net_device
*netdev
)
476 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
477 return adapter
->hw
.nvm
.word_size
* 2;
480 static int e1000_get_eeprom(struct net_device
*netdev
,
481 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
483 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
484 struct e1000_hw
*hw
= &adapter
->hw
;
491 if (eeprom
->len
== 0)
494 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
496 first_word
= eeprom
->offset
>> 1;
497 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
499 eeprom_buff
= kmalloc(sizeof(u16
) *
500 (last_word
- first_word
+ 1), GFP_KERNEL
);
504 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
505 ret_val
= e1000_read_nvm(hw
, first_word
,
506 last_word
- first_word
+ 1,
509 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
510 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
518 /* a read error occurred, throw away the result */
519 memset(eeprom_buff
, 0xff, sizeof(eeprom_buff
));
521 /* Device's eeprom is always little-endian, word addressable */
522 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
523 le16_to_cpus(&eeprom_buff
[i
]);
526 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
532 static int e1000_set_eeprom(struct net_device
*netdev
,
533 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
535 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
536 struct e1000_hw
*hw
= &adapter
->hw
;
545 if (eeprom
->len
== 0)
548 if (eeprom
->magic
!= (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
551 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
554 max_len
= hw
->nvm
.word_size
* 2;
556 first_word
= eeprom
->offset
>> 1;
557 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
558 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
562 ptr
= (void *)eeprom_buff
;
564 if (eeprom
->offset
& 1) {
565 /* need read/modify/write of first changed EEPROM word */
566 /* only the second byte of the word is being modified */
567 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
570 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0))
571 /* need read/modify/write of last changed EEPROM word */
572 /* only the first byte of the word is being modified */
573 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
574 &eeprom_buff
[last_word
- first_word
]);
579 /* Device's eeprom is always little-endian, word addressable */
580 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
581 le16_to_cpus(&eeprom_buff
[i
]);
583 memcpy(ptr
, bytes
, eeprom
->len
);
585 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
586 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
588 ret_val
= e1000_write_nvm(hw
, first_word
,
589 last_word
- first_word
+ 1, eeprom_buff
);
595 * Update the checksum over the first part of the EEPROM if needed
596 * and flush shadow RAM for applicable controllers
598 if ((first_word
<= NVM_CHECKSUM_REG
) ||
599 (hw
->mac
.type
== e1000_82574
) || (hw
->mac
.type
== e1000_82573
))
600 ret_val
= e1000e_update_nvm_checksum(hw
);
607 static void e1000_get_drvinfo(struct net_device
*netdev
,
608 struct ethtool_drvinfo
*drvinfo
)
610 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
611 char firmware_version
[32];
613 strncpy(drvinfo
->driver
, e1000e_driver_name
, 32);
614 strncpy(drvinfo
->version
, e1000e_driver_version
, 32);
617 * EEPROM image version # is reported as firmware version # for
620 sprintf(firmware_version
, "%d.%d-%d",
621 (adapter
->eeprom_vers
& 0xF000) >> 12,
622 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
623 (adapter
->eeprom_vers
& 0x000F));
625 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
626 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
627 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
628 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
631 static void e1000_get_ringparam(struct net_device
*netdev
,
632 struct ethtool_ringparam
*ring
)
634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
635 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
636 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
638 ring
->rx_max_pending
= E1000_MAX_RXD
;
639 ring
->tx_max_pending
= E1000_MAX_TXD
;
640 ring
->rx_mini_max_pending
= 0;
641 ring
->rx_jumbo_max_pending
= 0;
642 ring
->rx_pending
= rx_ring
->count
;
643 ring
->tx_pending
= tx_ring
->count
;
644 ring
->rx_mini_pending
= 0;
645 ring
->rx_jumbo_pending
= 0;
648 static int e1000_set_ringparam(struct net_device
*netdev
,
649 struct ethtool_ringparam
*ring
)
651 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
652 struct e1000_ring
*tx_ring
, *tx_old
;
653 struct e1000_ring
*rx_ring
, *rx_old
;
656 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
659 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
662 if (netif_running(adapter
->netdev
))
663 e1000e_down(adapter
);
665 tx_old
= adapter
->tx_ring
;
666 rx_old
= adapter
->rx_ring
;
669 tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
673 * use a memcpy to save any previously configured
674 * items like napi structs from having to be
677 memcpy(tx_ring
, tx_old
, sizeof(struct e1000_ring
));
679 rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
682 memcpy(rx_ring
, rx_old
, sizeof(struct e1000_ring
));
684 adapter
->tx_ring
= tx_ring
;
685 adapter
->rx_ring
= rx_ring
;
687 rx_ring
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
688 rx_ring
->count
= min(rx_ring
->count
, (u32
)(E1000_MAX_RXD
));
689 rx_ring
->count
= ALIGN(rx_ring
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
691 tx_ring
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
692 tx_ring
->count
= min(tx_ring
->count
, (u32
)(E1000_MAX_TXD
));
693 tx_ring
->count
= ALIGN(tx_ring
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
695 if (netif_running(adapter
->netdev
)) {
696 /* Try to get new resources before deleting old */
697 err
= e1000e_setup_rx_resources(adapter
);
700 err
= e1000e_setup_tx_resources(adapter
);
705 * restore the old in order to free it,
706 * then add in the new
708 adapter
->rx_ring
= rx_old
;
709 adapter
->tx_ring
= tx_old
;
710 e1000e_free_rx_resources(adapter
);
711 e1000e_free_tx_resources(adapter
);
714 adapter
->rx_ring
= rx_ring
;
715 adapter
->tx_ring
= tx_ring
;
716 err
= e1000e_up(adapter
);
721 clear_bit(__E1000_RESETTING
, &adapter
->state
);
724 e1000e_free_rx_resources(adapter
);
726 adapter
->rx_ring
= rx_old
;
727 adapter
->tx_ring
= tx_old
;
734 clear_bit(__E1000_RESETTING
, &adapter
->state
);
738 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
739 int reg
, int offset
, u32 mask
, u32 write
)
742 static const u32 test
[] =
743 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
744 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
745 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
746 (test
[pat
] & write
));
747 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
748 if (val
!= (test
[pat
] & write
& mask
)) {
749 e_err("pattern test reg %04X failed: got 0x%08X "
750 "expected 0x%08X\n", reg
+ offset
, val
,
751 (test
[pat
] & write
& mask
));
759 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
760 int reg
, u32 mask
, u32 write
)
763 __ew32(&adapter
->hw
, reg
, write
& mask
);
764 val
= __er32(&adapter
->hw
, reg
);
765 if ((write
& mask
) != (val
& mask
)) {
766 e_err("set/check reg %04X test failed: got 0x%08X "
767 "expected 0x%08X\n", reg
, (val
& mask
), (write
& mask
));
773 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
775 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
778 #define REG_PATTERN_TEST(reg, mask, write) \
779 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
781 #define REG_SET_AND_CHECK(reg, mask, write) \
783 if (reg_set_and_check(adapter, data, reg, mask, write)) \
787 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
789 struct e1000_hw
*hw
= &adapter
->hw
;
790 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
799 * The status register is Read Only, so a write should fail.
800 * Some bits that get toggled are ignored.
803 /* there are several bits on newer hardware that are r/w */
806 case e1000_80003es2lan
:
814 before
= er32(STATUS
);
815 value
= (er32(STATUS
) & toggle
);
816 ew32(STATUS
, toggle
);
817 after
= er32(STATUS
) & toggle
;
818 if (value
!= after
) {
819 e_err("failed STATUS register test got: 0x%08X expected: "
820 "0x%08X\n", after
, value
);
824 /* restore previous status */
825 ew32(STATUS
, before
);
827 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
828 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
829 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
830 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
831 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
834 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
835 REG_PATTERN_TEST(E1000_RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
836 REG_PATTERN_TEST(E1000_RDLEN
, 0x000FFF80, 0x000FFFFF);
837 REG_PATTERN_TEST(E1000_RDH
, 0x0000FFFF, 0x0000FFFF);
838 REG_PATTERN_TEST(E1000_RDT
, 0x0000FFFF, 0x0000FFFF);
839 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
840 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
841 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
842 REG_PATTERN_TEST(E1000_TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
843 REG_PATTERN_TEST(E1000_TDLEN
, 0x000FFF80, 0x000FFFFF);
845 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
847 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
848 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
849 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
851 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
853 if (!(adapter
->flags
& FLAG_IS_ICH
))
854 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
855 REG_PATTERN_TEST(E1000_TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
856 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
866 for (i
= 0; i
< mac
->rar_entry_count
; i
++)
867 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1),
870 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
871 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
877 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
884 /* Read and add up the contents of the EEPROM */
885 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
886 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
893 /* If Checksum is not Correct return error else test passed */
894 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
900 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
902 struct net_device
*netdev
= (struct net_device
*) data
;
903 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
904 struct e1000_hw
*hw
= &adapter
->hw
;
906 adapter
->test_icr
|= er32(ICR
);
911 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
913 struct net_device
*netdev
= adapter
->netdev
;
914 struct e1000_hw
*hw
= &adapter
->hw
;
917 u32 irq
= adapter
->pdev
->irq
;
920 int int_mode
= E1000E_INT_MODE_LEGACY
;
924 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
925 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
926 int_mode
= adapter
->int_mode
;
927 e1000e_reset_interrupt_capability(adapter
);
928 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
929 e1000e_set_interrupt_capability(adapter
);
931 /* Hook up test interrupt handler just for this test */
932 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
935 } else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
936 netdev
->name
, netdev
)) {
941 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
943 /* Disable all the interrupts */
944 ew32(IMC
, 0xFFFFFFFF);
947 /* Test each interrupt */
948 for (i
= 0; i
< 10; i
++) {
949 /* Interrupt to test */
952 if (adapter
->flags
& FLAG_IS_ICH
) {
954 case E1000_ICR_RXSEQ
:
957 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
958 adapter
->hw
.mac
.type
== e1000_ich9lan
)
968 * Disable the interrupt to be reported in
969 * the cause register and then force the same
970 * interrupt and see if one gets posted. If
971 * an interrupt was posted to the bus, the
974 adapter
->test_icr
= 0;
979 if (adapter
->test_icr
& mask
) {
986 * Enable the interrupt to be reported in
987 * the cause register and then force the same
988 * interrupt and see if one gets posted. If
989 * an interrupt was not posted to the bus, the
992 adapter
->test_icr
= 0;
997 if (!(adapter
->test_icr
& mask
)) {
1004 * Disable the other interrupts to be reported in
1005 * the cause register and then force the other
1006 * interrupts and see if any get posted. If
1007 * an interrupt was posted to the bus, the
1010 adapter
->test_icr
= 0;
1011 ew32(IMC
, ~mask
& 0x00007FFF);
1012 ew32(ICS
, ~mask
& 0x00007FFF);
1015 if (adapter
->test_icr
) {
1022 /* Disable all the interrupts */
1023 ew32(IMC
, 0xFFFFFFFF);
1026 /* Unhook test interrupt handler */
1027 free_irq(irq
, netdev
);
1030 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1031 e1000e_reset_interrupt_capability(adapter
);
1032 adapter
->int_mode
= int_mode
;
1033 e1000e_set_interrupt_capability(adapter
);
1039 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1041 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1042 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1043 struct pci_dev
*pdev
= adapter
->pdev
;
1046 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1047 for (i
= 0; i
< tx_ring
->count
; i
++) {
1048 if (tx_ring
->buffer_info
[i
].dma
)
1049 pci_unmap_single(pdev
,
1050 tx_ring
->buffer_info
[i
].dma
,
1051 tx_ring
->buffer_info
[i
].length
,
1053 if (tx_ring
->buffer_info
[i
].skb
)
1054 dev_kfree_skb(tx_ring
->buffer_info
[i
].skb
);
1058 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1059 for (i
= 0; i
< rx_ring
->count
; i
++) {
1060 if (rx_ring
->buffer_info
[i
].dma
)
1061 pci_unmap_single(pdev
,
1062 rx_ring
->buffer_info
[i
].dma
,
1063 2048, PCI_DMA_FROMDEVICE
);
1064 if (rx_ring
->buffer_info
[i
].skb
)
1065 dev_kfree_skb(rx_ring
->buffer_info
[i
].skb
);
1069 if (tx_ring
->desc
) {
1070 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1072 tx_ring
->desc
= NULL
;
1074 if (rx_ring
->desc
) {
1075 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1077 rx_ring
->desc
= NULL
;
1080 kfree(tx_ring
->buffer_info
);
1081 tx_ring
->buffer_info
= NULL
;
1082 kfree(rx_ring
->buffer_info
);
1083 rx_ring
->buffer_info
= NULL
;
1086 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1088 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1089 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1090 struct pci_dev
*pdev
= adapter
->pdev
;
1091 struct e1000_hw
*hw
= &adapter
->hw
;
1096 /* Setup Tx descriptor ring and Tx buffers */
1098 if (!tx_ring
->count
)
1099 tx_ring
->count
= E1000_DEFAULT_TXD
;
1101 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1102 sizeof(struct e1000_buffer
),
1104 if (!(tx_ring
->buffer_info
)) {
1109 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1110 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1111 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1112 &tx_ring
->dma
, GFP_KERNEL
);
1113 if (!tx_ring
->desc
) {
1117 tx_ring
->next_to_use
= 0;
1118 tx_ring
->next_to_clean
= 0;
1120 ew32(TDBAL
, ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1121 ew32(TDBAH
, ((u64
) tx_ring
->dma
>> 32));
1122 ew32(TDLEN
, tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1125 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1126 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1127 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1129 for (i
= 0; i
< tx_ring
->count
; i
++) {
1130 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1131 struct sk_buff
*skb
;
1132 unsigned int skb_size
= 1024;
1134 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1139 skb_put(skb
, skb_size
);
1140 tx_ring
->buffer_info
[i
].skb
= skb
;
1141 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1142 tx_ring
->buffer_info
[i
].dma
=
1143 pci_map_single(pdev
, skb
->data
, skb
->len
,
1145 if (pci_dma_mapping_error(pdev
, tx_ring
->buffer_info
[i
].dma
)) {
1149 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1150 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1151 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1152 E1000_TXD_CMD_IFCS
|
1154 tx_desc
->upper
.data
= 0;
1157 /* Setup Rx descriptor ring and Rx buffers */
1159 if (!rx_ring
->count
)
1160 rx_ring
->count
= E1000_DEFAULT_RXD
;
1162 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1163 sizeof(struct e1000_buffer
),
1165 if (!(rx_ring
->buffer_info
)) {
1170 rx_ring
->size
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
1171 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1172 &rx_ring
->dma
, GFP_KERNEL
);
1173 if (!rx_ring
->desc
) {
1177 rx_ring
->next_to_use
= 0;
1178 rx_ring
->next_to_clean
= 0;
1181 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1182 ew32(RDBAL
, ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1183 ew32(RDBAH
, ((u64
) rx_ring
->dma
>> 32));
1184 ew32(RDLEN
, rx_ring
->size
);
1187 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1188 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1189 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1190 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1191 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1194 for (i
= 0; i
< rx_ring
->count
; i
++) {
1195 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1196 struct sk_buff
*skb
;
1198 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1203 skb_reserve(skb
, NET_IP_ALIGN
);
1204 rx_ring
->buffer_info
[i
].skb
= skb
;
1205 rx_ring
->buffer_info
[i
].dma
=
1206 pci_map_single(pdev
, skb
->data
, 2048,
1207 PCI_DMA_FROMDEVICE
);
1208 if (pci_dma_mapping_error(pdev
, rx_ring
->buffer_info
[i
].dma
)) {
1212 rx_desc
->buffer_addr
=
1213 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1214 memset(skb
->data
, 0x00, skb
->len
);
1220 e1000_free_desc_rings(adapter
);
1224 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1226 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1227 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1228 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1229 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1230 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1233 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1235 struct e1000_hw
*hw
= &adapter
->hw
;
1240 hw
->mac
.autoneg
= 0;
1242 if (hw
->phy
.type
== e1000_phy_m88
) {
1243 /* Auto-MDI/MDIX Off */
1244 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1245 /* reset to update Auto-MDI/MDIX */
1246 e1e_wphy(hw
, PHY_CONTROL
, 0x9140);
1248 e1e_wphy(hw
, PHY_CONTROL
, 0x8140);
1249 } else if (hw
->phy
.type
== e1000_phy_gg82563
)
1250 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1252 ctrl_reg
= er32(CTRL
);
1254 switch (hw
->phy
.type
) {
1256 /* force 100, set loopback */
1257 e1e_wphy(hw
, PHY_CONTROL
, 0x6100);
1259 /* Now set up the MAC to the same speed/duplex as the PHY. */
1260 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1261 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1262 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1263 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1264 E1000_CTRL_FD
); /* Force Duplex to FULL */
1267 /* Set Default MAC Interface speed to 1GB */
1268 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1271 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1272 /* Assert SW reset for above settings to take effect */
1273 e1000e_commit_phy(hw
);
1275 /* Force Full Duplex */
1276 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1277 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1278 /* Set Link Up (in force link) */
1279 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1280 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1282 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1283 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1284 /* Set Early Link Enable */
1285 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1286 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1289 /* force 1000, set loopback */
1290 e1e_wphy(hw
, PHY_CONTROL
, 0x4140);
1293 /* Now set up the MAC to the same speed/duplex as the PHY. */
1294 ctrl_reg
= er32(CTRL
);
1295 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1296 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1297 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1298 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1299 E1000_CTRL_FD
); /* Force Duplex to FULL */
1301 if (adapter
->flags
& FLAG_IS_ICH
)
1302 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1305 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1306 hw
->phy
.type
== e1000_phy_m88
) {
1307 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1310 * Set the ILOS bit on the fiber Nic if half duplex link is
1313 stat_reg
= er32(STATUS
);
1314 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1315 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1318 ew32(CTRL
, ctrl_reg
);
1321 * Disable the receiver on the PHY so when a cable is plugged in, the
1322 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1324 if (hw
->phy
.type
== e1000_phy_m88
)
1325 e1000_phy_disable_receiver(adapter
);
1332 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1334 struct e1000_hw
*hw
= &adapter
->hw
;
1335 u32 ctrl
= er32(CTRL
);
1338 /* special requirements for 82571/82572 fiber adapters */
1341 * jump through hoops to make sure link is up because serdes
1342 * link is hardwired up
1344 ctrl
|= E1000_CTRL_SLU
;
1347 /* disable autoneg */
1352 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1355 /* set invert loss of signal */
1357 ctrl
|= E1000_CTRL_ILOS
;
1362 * special write to serdes control register to enable SerDes analog
1365 #define E1000_SERDES_LB_ON 0x410
1366 ew32(SCTL
, E1000_SERDES_LB_ON
);
1372 /* only call this for fiber/serdes connections to es2lan */
1373 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1375 struct e1000_hw
*hw
= &adapter
->hw
;
1376 u32 ctrlext
= er32(CTRL_EXT
);
1377 u32 ctrl
= er32(CTRL
);
1380 * save CTRL_EXT to restore later, reuse an empty variable (unused
1381 * on mac_type 80003es2lan)
1383 adapter
->tx_fifo_head
= ctrlext
;
1385 /* clear the serdes mode bits, putting the device into mac loopback */
1386 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1387 ew32(CTRL_EXT
, ctrlext
);
1389 /* force speed to 1000/FD, link up */
1390 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1391 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1392 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1395 /* set mac loopback */
1397 ctrl
|= E1000_RCTL_LBM_MAC
;
1400 /* set testing mode parameters (no need to reset later) */
1401 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1402 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1404 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1409 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1411 struct e1000_hw
*hw
= &adapter
->hw
;
1414 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1415 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1416 switch (hw
->mac
.type
) {
1417 case e1000_80003es2lan
:
1418 return e1000_set_es2lan_mac_loopback(adapter
);
1422 return e1000_set_82571_fiber_loopback(adapter
);
1426 rctl
|= E1000_RCTL_LBM_TCVR
;
1430 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1431 return e1000_integrated_phy_loopback(adapter
);
1437 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1439 struct e1000_hw
*hw
= &adapter
->hw
;
1444 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1447 switch (hw
->mac
.type
) {
1448 case e1000_80003es2lan
:
1449 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1450 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1451 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1452 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1453 adapter
->tx_fifo_head
= 0;
1458 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1459 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1460 #define E1000_SERDES_LB_OFF 0x400
1461 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1467 hw
->mac
.autoneg
= 1;
1468 if (hw
->phy
.type
== e1000_phy_gg82563
)
1469 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1470 e1e_rphy(hw
, PHY_CONTROL
, &phy_reg
);
1471 if (phy_reg
& MII_CR_LOOPBACK
) {
1472 phy_reg
&= ~MII_CR_LOOPBACK
;
1473 e1e_wphy(hw
, PHY_CONTROL
, phy_reg
);
1474 e1000e_commit_phy(hw
);
1480 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1481 unsigned int frame_size
)
1483 memset(skb
->data
, 0xFF, frame_size
);
1485 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1486 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1487 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1490 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1491 unsigned int frame_size
)
1494 if (*(skb
->data
+ 3) == 0xFF)
1495 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1496 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1501 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1503 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1504 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1505 struct pci_dev
*pdev
= adapter
->pdev
;
1506 struct e1000_hw
*hw
= &adapter
->hw
;
1513 ew32(RDT
, rx_ring
->count
- 1);
1516 * Calculate the loop count based on the largest descriptor ring
1517 * The idea is to wrap the largest ring a number of times using 64
1518 * send/receive pairs during each loop
1521 if (rx_ring
->count
<= tx_ring
->count
)
1522 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1524 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1528 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1529 for (i
= 0; i
< 64; i
++) { /* send the packets */
1530 e1000_create_lbtest_frame(tx_ring
->buffer_info
[k
].skb
,
1532 pci_dma_sync_single_for_device(pdev
,
1533 tx_ring
->buffer_info
[k
].dma
,
1534 tx_ring
->buffer_info
[k
].length
,
1537 if (k
== tx_ring
->count
)
1542 time
= jiffies
; /* set the start time for the receive */
1544 do { /* receive the sent packets */
1545 pci_dma_sync_single_for_cpu(pdev
,
1546 rx_ring
->buffer_info
[l
].dma
, 2048,
1547 PCI_DMA_FROMDEVICE
);
1549 ret_val
= e1000_check_lbtest_frame(
1550 rx_ring
->buffer_info
[l
].skb
, 1024);
1554 if (l
== rx_ring
->count
)
1557 * time + 20 msecs (200 msecs on 2.4) is more than
1558 * enough time to complete the receives, if it's
1559 * exceeded, break and error off
1561 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1562 if (good_cnt
!= 64) {
1563 ret_val
= 13; /* ret_val is the same as mis-compare */
1566 if (jiffies
>= (time
+ 20)) {
1567 ret_val
= 14; /* error code for time out error */
1570 } /* end loop count loop */
1574 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1577 * PHY loopback cannot be performed if SoL/IDER
1578 * sessions are active
1580 if (e1000_check_reset_block(&adapter
->hw
)) {
1581 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1586 *data
= e1000_setup_desc_rings(adapter
);
1590 *data
= e1000_setup_loopback_test(adapter
);
1594 *data
= e1000_run_loopback_test(adapter
);
1595 e1000_loopback_cleanup(adapter
);
1598 e1000_free_desc_rings(adapter
);
1603 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1605 struct e1000_hw
*hw
= &adapter
->hw
;
1608 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1610 hw
->mac
.serdes_has_link
= false;
1613 * On some blade server designs, link establishment
1614 * could take as long as 2-3 minutes
1617 hw
->mac
.ops
.check_for_link(hw
);
1618 if (hw
->mac
.serdes_has_link
)
1621 } while (i
++ < 3750);
1625 hw
->mac
.ops
.check_for_link(hw
);
1626 if (hw
->mac
.autoneg
)
1629 if (!(er32(STATUS
) &
1636 static int e1000e_get_sset_count(struct net_device
*netdev
, int sset
)
1640 return E1000_TEST_LEN
;
1642 return E1000_STATS_LEN
;
1648 static void e1000_diag_test(struct net_device
*netdev
,
1649 struct ethtool_test
*eth_test
, u64
*data
)
1651 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1652 u16 autoneg_advertised
;
1653 u8 forced_speed_duplex
;
1655 bool if_running
= netif_running(netdev
);
1657 set_bit(__E1000_TESTING
, &adapter
->state
);
1658 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1661 /* save speed, duplex, autoneg settings */
1662 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1663 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1664 autoneg
= adapter
->hw
.mac
.autoneg
;
1666 e_info("offline testing starting\n");
1669 * Link test performed before hardware reset so autoneg doesn't
1670 * interfere with test result
1672 if (e1000_link_test(adapter
, &data
[4]))
1673 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1676 /* indicate we're in test mode */
1679 e1000e_reset(adapter
);
1681 if (e1000_reg_test(adapter
, &data
[0]))
1682 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1684 e1000e_reset(adapter
);
1685 if (e1000_eeprom_test(adapter
, &data
[1]))
1686 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1688 e1000e_reset(adapter
);
1689 if (e1000_intr_test(adapter
, &data
[2]))
1690 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1692 e1000e_reset(adapter
);
1693 /* make sure the phy is powered up */
1694 e1000e_power_up_phy(adapter
);
1695 if (e1000_loopback_test(adapter
, &data
[3]))
1696 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1698 /* restore speed, duplex, autoneg settings */
1699 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1700 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1701 adapter
->hw
.mac
.autoneg
= autoneg
;
1703 /* force this routine to wait until autoneg complete/timeout */
1704 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1705 e1000e_reset(adapter
);
1706 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1708 clear_bit(__E1000_TESTING
, &adapter
->state
);
1712 e_info("online testing starting\n");
1714 if (e1000_link_test(adapter
, &data
[4]))
1715 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1717 /* Online tests aren't run; pass by default */
1723 clear_bit(__E1000_TESTING
, &adapter
->state
);
1725 msleep_interruptible(4 * 1000);
1728 static void e1000_get_wol(struct net_device
*netdev
,
1729 struct ethtool_wolinfo
*wol
)
1731 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1736 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1737 !device_can_wakeup(&adapter
->pdev
->dev
))
1740 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1741 WAKE_BCAST
| WAKE_MAGIC
|
1742 WAKE_PHY
| WAKE_ARP
;
1744 /* apply any specific unsupported masks here */
1745 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1746 wol
->supported
&= ~WAKE_UCAST
;
1748 if (adapter
->wol
& E1000_WUFC_EX
)
1749 e_err("Interface does not support directed (unicast) "
1750 "frame wake-up packets\n");
1753 if (adapter
->wol
& E1000_WUFC_EX
)
1754 wol
->wolopts
|= WAKE_UCAST
;
1755 if (adapter
->wol
& E1000_WUFC_MC
)
1756 wol
->wolopts
|= WAKE_MCAST
;
1757 if (adapter
->wol
& E1000_WUFC_BC
)
1758 wol
->wolopts
|= WAKE_BCAST
;
1759 if (adapter
->wol
& E1000_WUFC_MAG
)
1760 wol
->wolopts
|= WAKE_MAGIC
;
1761 if (adapter
->wol
& E1000_WUFC_LNKC
)
1762 wol
->wolopts
|= WAKE_PHY
;
1763 if (adapter
->wol
& E1000_WUFC_ARP
)
1764 wol
->wolopts
|= WAKE_ARP
;
1767 static int e1000_set_wol(struct net_device
*netdev
,
1768 struct ethtool_wolinfo
*wol
)
1770 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1772 if (wol
->wolopts
& WAKE_MAGICSECURE
)
1775 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1776 !device_can_wakeup(&adapter
->pdev
->dev
))
1777 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1779 /* these settings will always override what we currently have */
1782 if (wol
->wolopts
& WAKE_UCAST
)
1783 adapter
->wol
|= E1000_WUFC_EX
;
1784 if (wol
->wolopts
& WAKE_MCAST
)
1785 adapter
->wol
|= E1000_WUFC_MC
;
1786 if (wol
->wolopts
& WAKE_BCAST
)
1787 adapter
->wol
|= E1000_WUFC_BC
;
1788 if (wol
->wolopts
& WAKE_MAGIC
)
1789 adapter
->wol
|= E1000_WUFC_MAG
;
1790 if (wol
->wolopts
& WAKE_PHY
)
1791 adapter
->wol
|= E1000_WUFC_LNKC
;
1792 if (wol
->wolopts
& WAKE_ARP
)
1793 adapter
->wol
|= E1000_WUFC_ARP
;
1795 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1800 /* toggle LED 4 times per second = 2 "blinks" per second */
1801 #define E1000_ID_INTERVAL (HZ/4)
1803 /* bit defines for adapter->led_status */
1804 #define E1000_LED_ON 0
1806 static void e1000e_led_blink_task(struct work_struct
*work
)
1808 struct e1000_adapter
*adapter
= container_of(work
,
1809 struct e1000_adapter
, led_blink_task
);
1811 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1812 adapter
->hw
.mac
.ops
.led_off(&adapter
->hw
);
1814 adapter
->hw
.mac
.ops
.led_on(&adapter
->hw
);
1817 static void e1000_led_blink_callback(unsigned long data
)
1819 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1821 schedule_work(&adapter
->led_blink_task
);
1822 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1825 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1827 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1828 struct e1000_hw
*hw
= &adapter
->hw
;
1833 if ((hw
->phy
.type
== e1000_phy_ife
) ||
1834 (hw
->mac
.type
== e1000_pchlan
) ||
1835 (hw
->mac
.type
== e1000_82574
)) {
1836 INIT_WORK(&adapter
->led_blink_task
, e1000e_led_blink_task
);
1837 if (!adapter
->blink_timer
.function
) {
1838 init_timer(&adapter
->blink_timer
);
1839 adapter
->blink_timer
.function
=
1840 e1000_led_blink_callback
;
1841 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1843 mod_timer(&adapter
->blink_timer
, jiffies
);
1844 msleep_interruptible(data
* 1000);
1845 del_timer_sync(&adapter
->blink_timer
);
1846 if (hw
->phy
.type
== e1000_phy_ife
)
1847 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1849 e1000e_blink_led(hw
);
1850 msleep_interruptible(data
* 1000);
1853 hw
->mac
.ops
.led_off(hw
);
1854 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1855 hw
->mac
.ops
.cleanup_led(hw
);
1860 static int e1000_get_coalesce(struct net_device
*netdev
,
1861 struct ethtool_coalesce
*ec
)
1863 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1865 if (adapter
->itr_setting
<= 3)
1866 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1868 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1873 static int e1000_set_coalesce(struct net_device
*netdev
,
1874 struct ethtool_coalesce
*ec
)
1876 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1877 struct e1000_hw
*hw
= &adapter
->hw
;
1879 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1880 ((ec
->rx_coalesce_usecs
> 3) &&
1881 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1882 (ec
->rx_coalesce_usecs
== 2))
1885 if (ec
->rx_coalesce_usecs
<= 3) {
1886 adapter
->itr
= 20000;
1887 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1889 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1890 adapter
->itr_setting
= adapter
->itr
& ~3;
1893 if (adapter
->itr_setting
!= 0)
1894 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1901 static int e1000_nway_reset(struct net_device
*netdev
)
1903 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1904 if (netif_running(netdev
))
1905 e1000e_reinit_locked(adapter
);
1909 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1910 struct ethtool_stats
*stats
,
1913 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1916 e1000e_update_stats(adapter
);
1917 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1918 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1919 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1920 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1924 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1930 switch (stringset
) {
1932 memcpy(data
, *e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
1935 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1936 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1938 p
+= ETH_GSTRING_LEN
;
1944 static const struct ethtool_ops e1000_ethtool_ops
= {
1945 .get_settings
= e1000_get_settings
,
1946 .set_settings
= e1000_set_settings
,
1947 .get_drvinfo
= e1000_get_drvinfo
,
1948 .get_regs_len
= e1000_get_regs_len
,
1949 .get_regs
= e1000_get_regs
,
1950 .get_wol
= e1000_get_wol
,
1951 .set_wol
= e1000_set_wol
,
1952 .get_msglevel
= e1000_get_msglevel
,
1953 .set_msglevel
= e1000_set_msglevel
,
1954 .nway_reset
= e1000_nway_reset
,
1955 .get_link
= e1000_get_link
,
1956 .get_eeprom_len
= e1000_get_eeprom_len
,
1957 .get_eeprom
= e1000_get_eeprom
,
1958 .set_eeprom
= e1000_set_eeprom
,
1959 .get_ringparam
= e1000_get_ringparam
,
1960 .set_ringparam
= e1000_set_ringparam
,
1961 .get_pauseparam
= e1000_get_pauseparam
,
1962 .set_pauseparam
= e1000_set_pauseparam
,
1963 .get_rx_csum
= e1000_get_rx_csum
,
1964 .set_rx_csum
= e1000_set_rx_csum
,
1965 .get_tx_csum
= e1000_get_tx_csum
,
1966 .set_tx_csum
= e1000_set_tx_csum
,
1967 .get_sg
= ethtool_op_get_sg
,
1968 .set_sg
= ethtool_op_set_sg
,
1969 .get_tso
= ethtool_op_get_tso
,
1970 .set_tso
= e1000_set_tso
,
1971 .self_test
= e1000_diag_test
,
1972 .get_strings
= e1000_get_strings
,
1973 .phys_id
= e1000_phys_id
,
1974 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1975 .get_sset_count
= e1000e_get_sset_count
,
1976 .get_coalesce
= e1000_get_coalesce
,
1977 .set_coalesce
= e1000_set_coalesce
,
1980 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
1982 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);