htcleo: add Cotulla's fixes for non-android touchscreen!
[htc-linux.git] / kernel / fork.c
blobff6d443f99e34e62b88701bdfddf54a9baba55c8
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
75 #include <trace/events/sched.h>
78 * Protected counters by write_lock_irq(&tasklist_lock)
80 unsigned long total_forks; /* Handle normal Linux uptimes. */
81 int nr_threads; /* The idle threads do not count.. */
83 int max_threads; /* tunable limit on nr_threads */
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89 int nr_processes(void)
91 int cpu;
92 int total = 0;
94 for_each_possible_cpu(cpu)
95 total += per_cpu(process_counts, cpu);
97 return total;
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 gfp_t mask = GFP_KERNEL;
113 #endif
114 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 static inline void free_thread_info(struct thread_info *ti)
119 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
121 #endif
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
141 /* Notifier list called when a task struct is freed */
142 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
144 static void account_kernel_stack(struct thread_info *ti, int account)
146 struct zone *zone = page_zone(virt_to_page(ti));
148 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
151 void free_task(struct task_struct *tsk)
153 prop_local_destroy_single(&tsk->dirties);
154 account_kernel_stack(tsk->stack, -1);
155 free_thread_info(tsk->stack);
156 rt_mutex_debug_task_free(tsk);
157 ftrace_graph_exit_task(tsk);
158 free_task_struct(tsk);
160 EXPORT_SYMBOL(free_task);
162 int task_free_register(struct notifier_block *n)
164 return atomic_notifier_chain_register(&task_free_notifier, n);
166 EXPORT_SYMBOL(task_free_register);
168 int task_free_unregister(struct notifier_block *n)
170 return atomic_notifier_chain_unregister(&task_free_notifier, n);
172 EXPORT_SYMBOL(task_free_unregister);
174 void __put_task_struct(struct task_struct *tsk)
176 WARN_ON(!tsk->exit_state);
177 WARN_ON(atomic_read(&tsk->usage));
178 WARN_ON(tsk == current);
180 exit_creds(tsk);
181 delayacct_tsk_free(tsk);
183 atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
184 if (!profile_handoff_task(tsk))
185 free_task(tsk);
189 * macro override instead of weak attribute alias, to workaround
190 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
192 #ifndef arch_task_cache_init
193 #define arch_task_cache_init()
194 #endif
196 void __init fork_init(unsigned long mempages)
198 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
199 #ifndef ARCH_MIN_TASKALIGN
200 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
201 #endif
202 /* create a slab on which task_structs can be allocated */
203 task_struct_cachep =
204 kmem_cache_create("task_struct", sizeof(struct task_struct),
205 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
206 #endif
208 /* do the arch specific task caches init */
209 arch_task_cache_init();
212 * The default maximum number of threads is set to a safe
213 * value: the thread structures can take up at most half
214 * of memory.
216 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
219 * we need to allow at least 20 threads to boot a system
221 if(max_threads < 20)
222 max_threads = 20;
224 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
225 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
226 init_task.signal->rlim[RLIMIT_SIGPENDING] =
227 init_task.signal->rlim[RLIMIT_NPROC];
230 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
231 struct task_struct *src)
233 *dst = *src;
234 return 0;
237 static struct task_struct *dup_task_struct(struct task_struct *orig)
239 struct task_struct *tsk;
240 struct thread_info *ti;
241 unsigned long *stackend;
243 int err;
245 prepare_to_copy(orig);
247 tsk = alloc_task_struct();
248 if (!tsk)
249 return NULL;
251 ti = alloc_thread_info(tsk);
252 if (!ti) {
253 free_task_struct(tsk);
254 return NULL;
257 err = arch_dup_task_struct(tsk, orig);
258 if (err)
259 goto out;
261 tsk->stack = ti;
263 err = prop_local_init_single(&tsk->dirties);
264 if (err)
265 goto out;
267 setup_thread_stack(tsk, orig);
268 stackend = end_of_stack(tsk);
269 *stackend = STACK_END_MAGIC; /* for overflow detection */
271 #ifdef CONFIG_CC_STACKPROTECTOR
272 tsk->stack_canary = get_random_int();
273 #endif
275 /* One for us, one for whoever does the "release_task()" (usually parent) */
276 atomic_set(&tsk->usage,2);
277 atomic_set(&tsk->fs_excl, 0);
278 #ifdef CONFIG_BLK_DEV_IO_TRACE
279 tsk->btrace_seq = 0;
280 #endif
281 tsk->splice_pipe = NULL;
283 account_kernel_stack(ti, 1);
285 return tsk;
287 out:
288 free_thread_info(ti);
289 free_task_struct(tsk);
290 return NULL;
293 #ifdef CONFIG_MMU
294 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
296 struct vm_area_struct *mpnt, *tmp, **pprev;
297 struct rb_node **rb_link, *rb_parent;
298 int retval;
299 unsigned long charge;
300 struct mempolicy *pol;
302 down_write(&oldmm->mmap_sem);
303 flush_cache_dup_mm(oldmm);
305 * Not linked in yet - no deadlock potential:
307 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
309 mm->locked_vm = 0;
310 mm->mmap = NULL;
311 mm->mmap_cache = NULL;
312 mm->free_area_cache = oldmm->mmap_base;
313 mm->cached_hole_size = ~0UL;
314 mm->map_count = 0;
315 cpumask_clear(mm_cpumask(mm));
316 mm->mm_rb = RB_ROOT;
317 rb_link = &mm->mm_rb.rb_node;
318 rb_parent = NULL;
319 pprev = &mm->mmap;
320 retval = ksm_fork(mm, oldmm);
321 if (retval)
322 goto out;
324 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
325 struct file *file;
327 if (mpnt->vm_flags & VM_DONTCOPY) {
328 long pages = vma_pages(mpnt);
329 mm->total_vm -= pages;
330 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
331 -pages);
332 continue;
334 charge = 0;
335 if (mpnt->vm_flags & VM_ACCOUNT) {
336 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
337 if (security_vm_enough_memory(len))
338 goto fail_nomem;
339 charge = len;
341 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
342 if (!tmp)
343 goto fail_nomem;
344 *tmp = *mpnt;
345 pol = mpol_dup(vma_policy(mpnt));
346 retval = PTR_ERR(pol);
347 if (IS_ERR(pol))
348 goto fail_nomem_policy;
349 vma_set_policy(tmp, pol);
350 tmp->vm_flags &= ~VM_LOCKED;
351 tmp->vm_mm = mm;
352 tmp->vm_next = NULL;
353 anon_vma_link(tmp);
354 file = tmp->vm_file;
355 if (file) {
356 struct inode *inode = file->f_path.dentry->d_inode;
357 struct address_space *mapping = file->f_mapping;
359 get_file(file);
360 if (tmp->vm_flags & VM_DENYWRITE)
361 atomic_dec(&inode->i_writecount);
362 spin_lock(&mapping->i_mmap_lock);
363 if (tmp->vm_flags & VM_SHARED)
364 mapping->i_mmap_writable++;
365 tmp->vm_truncate_count = mpnt->vm_truncate_count;
366 flush_dcache_mmap_lock(mapping);
367 /* insert tmp into the share list, just after mpnt */
368 vma_prio_tree_add(tmp, mpnt);
369 flush_dcache_mmap_unlock(mapping);
370 spin_unlock(&mapping->i_mmap_lock);
374 * Clear hugetlb-related page reserves for children. This only
375 * affects MAP_PRIVATE mappings. Faults generated by the child
376 * are not guaranteed to succeed, even if read-only
378 if (is_vm_hugetlb_page(tmp))
379 reset_vma_resv_huge_pages(tmp);
382 * Link in the new vma and copy the page table entries.
384 *pprev = tmp;
385 pprev = &tmp->vm_next;
387 __vma_link_rb(mm, tmp, rb_link, rb_parent);
388 rb_link = &tmp->vm_rb.rb_right;
389 rb_parent = &tmp->vm_rb;
391 mm->map_count++;
392 retval = copy_page_range(mm, oldmm, mpnt);
394 if (tmp->vm_ops && tmp->vm_ops->open)
395 tmp->vm_ops->open(tmp);
397 if (retval)
398 goto out;
400 /* a new mm has just been created */
401 arch_dup_mmap(oldmm, mm);
402 retval = 0;
403 out:
404 up_write(&mm->mmap_sem);
405 flush_tlb_mm(oldmm);
406 up_write(&oldmm->mmap_sem);
407 return retval;
408 fail_nomem_policy:
409 kmem_cache_free(vm_area_cachep, tmp);
410 fail_nomem:
411 retval = -ENOMEM;
412 vm_unacct_memory(charge);
413 goto out;
416 static inline int mm_alloc_pgd(struct mm_struct * mm)
418 mm->pgd = pgd_alloc(mm);
419 if (unlikely(!mm->pgd))
420 return -ENOMEM;
421 return 0;
424 static inline void mm_free_pgd(struct mm_struct * mm)
426 pgd_free(mm, mm->pgd);
428 #else
429 #define dup_mmap(mm, oldmm) (0)
430 #define mm_alloc_pgd(mm) (0)
431 #define mm_free_pgd(mm)
432 #endif /* CONFIG_MMU */
434 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
436 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
437 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
439 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
441 static int __init coredump_filter_setup(char *s)
443 default_dump_filter =
444 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
445 MMF_DUMP_FILTER_MASK;
446 return 1;
449 __setup("coredump_filter=", coredump_filter_setup);
451 #include <linux/init_task.h>
453 static void mm_init_aio(struct mm_struct *mm)
455 #ifdef CONFIG_AIO
456 spin_lock_init(&mm->ioctx_lock);
457 INIT_HLIST_HEAD(&mm->ioctx_list);
458 #endif
461 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
463 atomic_set(&mm->mm_users, 1);
464 atomic_set(&mm->mm_count, 1);
465 init_rwsem(&mm->mmap_sem);
466 INIT_LIST_HEAD(&mm->mmlist);
467 mm->flags = (current->mm) ?
468 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
469 mm->core_state = NULL;
470 mm->nr_ptes = 0;
471 set_mm_counter(mm, file_rss, 0);
472 set_mm_counter(mm, anon_rss, 0);
473 spin_lock_init(&mm->page_table_lock);
474 mm->free_area_cache = TASK_UNMAPPED_BASE;
475 mm->cached_hole_size = ~0UL;
476 mm_init_aio(mm);
477 mm_init_owner(mm, p);
479 if (likely(!mm_alloc_pgd(mm))) {
480 mm->def_flags = 0;
481 mmu_notifier_mm_init(mm);
482 return mm;
485 free_mm(mm);
486 return NULL;
490 * Allocate and initialize an mm_struct.
492 struct mm_struct * mm_alloc(void)
494 struct mm_struct * mm;
496 mm = allocate_mm();
497 if (mm) {
498 memset(mm, 0, sizeof(*mm));
499 mm = mm_init(mm, current);
501 return mm;
505 * Called when the last reference to the mm
506 * is dropped: either by a lazy thread or by
507 * mmput. Free the page directory and the mm.
509 void __mmdrop(struct mm_struct *mm)
511 BUG_ON(mm == &init_mm);
512 mm_free_pgd(mm);
513 destroy_context(mm);
514 mmu_notifier_mm_destroy(mm);
515 free_mm(mm);
517 EXPORT_SYMBOL_GPL(__mmdrop);
520 * Decrement the use count and release all resources for an mm.
522 void mmput(struct mm_struct *mm)
524 might_sleep();
526 if (atomic_dec_and_test(&mm->mm_users)) {
527 exit_aio(mm);
528 ksm_exit(mm);
529 exit_mmap(mm);
530 set_mm_exe_file(mm, NULL);
531 if (!list_empty(&mm->mmlist)) {
532 spin_lock(&mmlist_lock);
533 list_del(&mm->mmlist);
534 spin_unlock(&mmlist_lock);
536 put_swap_token(mm);
537 if (mm->binfmt)
538 module_put(mm->binfmt->module);
539 mmdrop(mm);
542 EXPORT_SYMBOL_GPL(mmput);
545 * get_task_mm - acquire a reference to the task's mm
547 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
548 * this kernel workthread has transiently adopted a user mm with use_mm,
549 * to do its AIO) is not set and if so returns a reference to it, after
550 * bumping up the use count. User must release the mm via mmput()
551 * after use. Typically used by /proc and ptrace.
553 struct mm_struct *get_task_mm(struct task_struct *task)
555 struct mm_struct *mm;
557 task_lock(task);
558 mm = task->mm;
559 if (mm) {
560 if (task->flags & PF_KTHREAD)
561 mm = NULL;
562 else
563 atomic_inc(&mm->mm_users);
565 task_unlock(task);
566 return mm;
568 EXPORT_SYMBOL_GPL(get_task_mm);
570 /* Please note the differences between mmput and mm_release.
571 * mmput is called whenever we stop holding onto a mm_struct,
572 * error success whatever.
574 * mm_release is called after a mm_struct has been removed
575 * from the current process.
577 * This difference is important for error handling, when we
578 * only half set up a mm_struct for a new process and need to restore
579 * the old one. Because we mmput the new mm_struct before
580 * restoring the old one. . .
581 * Eric Biederman 10 January 1998
583 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
585 struct completion *vfork_done = tsk->vfork_done;
587 /* Get rid of any futexes when releasing the mm */
588 #ifdef CONFIG_FUTEX
589 if (unlikely(tsk->robust_list)) {
590 exit_robust_list(tsk);
591 tsk->robust_list = NULL;
593 #ifdef CONFIG_COMPAT
594 if (unlikely(tsk->compat_robust_list)) {
595 compat_exit_robust_list(tsk);
596 tsk->compat_robust_list = NULL;
598 #endif
599 if (unlikely(!list_empty(&tsk->pi_state_list)))
600 exit_pi_state_list(tsk);
601 #endif
603 /* Get rid of any cached register state */
604 deactivate_mm(tsk, mm);
606 /* notify parent sleeping on vfork() */
607 if (vfork_done) {
608 tsk->vfork_done = NULL;
609 complete(vfork_done);
613 * If we're exiting normally, clear a user-space tid field if
614 * requested. We leave this alone when dying by signal, to leave
615 * the value intact in a core dump, and to save the unnecessary
616 * trouble otherwise. Userland only wants this done for a sys_exit.
618 if (tsk->clear_child_tid) {
619 if (!(tsk->flags & PF_SIGNALED) &&
620 atomic_read(&mm->mm_users) > 1) {
622 * We don't check the error code - if userspace has
623 * not set up a proper pointer then tough luck.
625 put_user(0, tsk->clear_child_tid);
626 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
627 1, NULL, NULL, 0);
629 tsk->clear_child_tid = NULL;
634 * Allocate a new mm structure and copy contents from the
635 * mm structure of the passed in task structure.
637 struct mm_struct *dup_mm(struct task_struct *tsk)
639 struct mm_struct *mm, *oldmm = current->mm;
640 int err;
642 if (!oldmm)
643 return NULL;
645 mm = allocate_mm();
646 if (!mm)
647 goto fail_nomem;
649 memcpy(mm, oldmm, sizeof(*mm));
651 /* Initializing for Swap token stuff */
652 mm->token_priority = 0;
653 mm->last_interval = 0;
655 if (!mm_init(mm, tsk))
656 goto fail_nomem;
658 if (init_new_context(tsk, mm))
659 goto fail_nocontext;
661 dup_mm_exe_file(oldmm, mm);
663 err = dup_mmap(mm, oldmm);
664 if (err)
665 goto free_pt;
667 mm->hiwater_rss = get_mm_rss(mm);
668 mm->hiwater_vm = mm->total_vm;
670 if (mm->binfmt && !try_module_get(mm->binfmt->module))
671 goto free_pt;
673 return mm;
675 free_pt:
676 /* don't put binfmt in mmput, we haven't got module yet */
677 mm->binfmt = NULL;
678 mmput(mm);
680 fail_nomem:
681 return NULL;
683 fail_nocontext:
685 * If init_new_context() failed, we cannot use mmput() to free the mm
686 * because it calls destroy_context()
688 mm_free_pgd(mm);
689 free_mm(mm);
690 return NULL;
693 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
695 struct mm_struct * mm, *oldmm;
696 int retval;
698 tsk->min_flt = tsk->maj_flt = 0;
699 tsk->nvcsw = tsk->nivcsw = 0;
700 #ifdef CONFIG_DETECT_HUNG_TASK
701 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
702 #endif
704 tsk->mm = NULL;
705 tsk->active_mm = NULL;
708 * Are we cloning a kernel thread?
710 * We need to steal a active VM for that..
712 oldmm = current->mm;
713 if (!oldmm)
714 return 0;
716 if (clone_flags & CLONE_VM) {
717 atomic_inc(&oldmm->mm_users);
718 mm = oldmm;
719 goto good_mm;
722 retval = -ENOMEM;
723 mm = dup_mm(tsk);
724 if (!mm)
725 goto fail_nomem;
727 good_mm:
728 /* Initializing for Swap token stuff */
729 mm->token_priority = 0;
730 mm->last_interval = 0;
732 tsk->mm = mm;
733 tsk->active_mm = mm;
734 return 0;
736 fail_nomem:
737 return retval;
740 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
742 struct fs_struct *fs = current->fs;
743 if (clone_flags & CLONE_FS) {
744 /* tsk->fs is already what we want */
745 write_lock(&fs->lock);
746 if (fs->in_exec) {
747 write_unlock(&fs->lock);
748 return -EAGAIN;
750 fs->users++;
751 write_unlock(&fs->lock);
752 return 0;
754 tsk->fs = copy_fs_struct(fs);
755 if (!tsk->fs)
756 return -ENOMEM;
757 return 0;
760 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
762 struct files_struct *oldf, *newf;
763 int error = 0;
766 * A background process may not have any files ...
768 oldf = current->files;
769 if (!oldf)
770 goto out;
772 if (clone_flags & CLONE_FILES) {
773 atomic_inc(&oldf->count);
774 goto out;
777 newf = dup_fd(oldf, &error);
778 if (!newf)
779 goto out;
781 tsk->files = newf;
782 error = 0;
783 out:
784 return error;
787 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
789 #ifdef CONFIG_BLOCK
790 struct io_context *ioc = current->io_context;
792 if (!ioc)
793 return 0;
795 * Share io context with parent, if CLONE_IO is set
797 if (clone_flags & CLONE_IO) {
798 tsk->io_context = ioc_task_link(ioc);
799 if (unlikely(!tsk->io_context))
800 return -ENOMEM;
801 } else if (ioprio_valid(ioc->ioprio)) {
802 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
803 if (unlikely(!tsk->io_context))
804 return -ENOMEM;
806 tsk->io_context->ioprio = ioc->ioprio;
808 #endif
809 return 0;
812 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
814 struct sighand_struct *sig;
816 if (clone_flags & CLONE_SIGHAND) {
817 atomic_inc(&current->sighand->count);
818 return 0;
820 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
821 rcu_assign_pointer(tsk->sighand, sig);
822 if (!sig)
823 return -ENOMEM;
824 atomic_set(&sig->count, 1);
825 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
826 return 0;
829 void __cleanup_sighand(struct sighand_struct *sighand)
831 if (atomic_dec_and_test(&sighand->count))
832 kmem_cache_free(sighand_cachep, sighand);
837 * Initialize POSIX timer handling for a thread group.
839 static void posix_cpu_timers_init_group(struct signal_struct *sig)
841 /* Thread group counters. */
842 thread_group_cputime_init(sig);
844 /* Expiration times and increments. */
845 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
846 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
847 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
848 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
850 /* Cached expiration times. */
851 sig->cputime_expires.prof_exp = cputime_zero;
852 sig->cputime_expires.virt_exp = cputime_zero;
853 sig->cputime_expires.sched_exp = 0;
855 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
856 sig->cputime_expires.prof_exp =
857 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
858 sig->cputimer.running = 1;
861 /* The timer lists. */
862 INIT_LIST_HEAD(&sig->cpu_timers[0]);
863 INIT_LIST_HEAD(&sig->cpu_timers[1]);
864 INIT_LIST_HEAD(&sig->cpu_timers[2]);
867 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
869 struct signal_struct *sig;
871 if (clone_flags & CLONE_THREAD)
872 return 0;
874 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
875 tsk->signal = sig;
876 if (!sig)
877 return -ENOMEM;
879 atomic_set(&sig->count, 1);
880 atomic_set(&sig->live, 1);
881 init_waitqueue_head(&sig->wait_chldexit);
882 sig->flags = 0;
883 if (clone_flags & CLONE_NEWPID)
884 sig->flags |= SIGNAL_UNKILLABLE;
885 sig->group_exit_code = 0;
886 sig->group_exit_task = NULL;
887 sig->group_stop_count = 0;
888 sig->curr_target = tsk;
889 init_sigpending(&sig->shared_pending);
890 INIT_LIST_HEAD(&sig->posix_timers);
892 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
893 sig->it_real_incr.tv64 = 0;
894 sig->real_timer.function = it_real_fn;
896 sig->leader = 0; /* session leadership doesn't inherit */
897 sig->tty_old_pgrp = NULL;
898 sig->tty = NULL;
900 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
901 sig->gtime = cputime_zero;
902 sig->cgtime = cputime_zero;
903 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
904 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
905 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
906 sig->maxrss = sig->cmaxrss = 0;
907 task_io_accounting_init(&sig->ioac);
908 sig->sum_sched_runtime = 0;
909 taskstats_tgid_init(sig);
911 task_lock(current->group_leader);
912 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
913 task_unlock(current->group_leader);
915 posix_cpu_timers_init_group(sig);
917 acct_init_pacct(&sig->pacct);
919 tty_audit_fork(sig);
921 sig->oom_adj = current->signal->oom_adj;
923 return 0;
926 void __cleanup_signal(struct signal_struct *sig)
928 thread_group_cputime_free(sig);
929 tty_kref_put(sig->tty);
930 kmem_cache_free(signal_cachep, sig);
933 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
935 unsigned long new_flags = p->flags;
937 new_flags &= ~PF_SUPERPRIV;
938 new_flags |= PF_FORKNOEXEC;
939 new_flags |= PF_STARTING;
940 p->flags = new_flags;
941 clear_freeze_flag(p);
944 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
946 current->clear_child_tid = tidptr;
948 return task_pid_vnr(current);
951 static void rt_mutex_init_task(struct task_struct *p)
953 spin_lock_init(&p->pi_lock);
954 #ifdef CONFIG_RT_MUTEXES
955 plist_head_init(&p->pi_waiters, &p->pi_lock);
956 p->pi_blocked_on = NULL;
957 #endif
960 #ifdef CONFIG_MM_OWNER
961 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
963 mm->owner = p;
965 #endif /* CONFIG_MM_OWNER */
968 * Initialize POSIX timer handling for a single task.
970 static void posix_cpu_timers_init(struct task_struct *tsk)
972 tsk->cputime_expires.prof_exp = cputime_zero;
973 tsk->cputime_expires.virt_exp = cputime_zero;
974 tsk->cputime_expires.sched_exp = 0;
975 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
976 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
977 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
981 * This creates a new process as a copy of the old one,
982 * but does not actually start it yet.
984 * It copies the registers, and all the appropriate
985 * parts of the process environment (as per the clone
986 * flags). The actual kick-off is left to the caller.
988 static struct task_struct *copy_process(unsigned long clone_flags,
989 unsigned long stack_start,
990 struct pt_regs *regs,
991 unsigned long stack_size,
992 int __user *child_tidptr,
993 struct pid *pid,
994 int trace)
996 int retval;
997 struct task_struct *p;
998 int cgroup_callbacks_done = 0;
1000 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1001 return ERR_PTR(-EINVAL);
1004 * Thread groups must share signals as well, and detached threads
1005 * can only be started up within the thread group.
1007 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1008 return ERR_PTR(-EINVAL);
1011 * Shared signal handlers imply shared VM. By way of the above,
1012 * thread groups also imply shared VM. Blocking this case allows
1013 * for various simplifications in other code.
1015 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1016 return ERR_PTR(-EINVAL);
1019 * Siblings of global init remain as zombies on exit since they are
1020 * not reaped by their parent (swapper). To solve this and to avoid
1021 * multi-rooted process trees, prevent global and container-inits
1022 * from creating siblings.
1024 if ((clone_flags & CLONE_PARENT) &&
1025 current->signal->flags & SIGNAL_UNKILLABLE)
1026 return ERR_PTR(-EINVAL);
1028 retval = security_task_create(clone_flags);
1029 if (retval)
1030 goto fork_out;
1032 retval = -ENOMEM;
1033 p = dup_task_struct(current);
1034 if (!p)
1035 goto fork_out;
1037 ftrace_graph_init_task(p);
1039 rt_mutex_init_task(p);
1041 #ifdef CONFIG_PROVE_LOCKING
1042 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1043 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1044 #endif
1045 retval = -EAGAIN;
1046 if (atomic_read(&p->real_cred->user->processes) >=
1047 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1048 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1049 p->real_cred->user != INIT_USER)
1050 goto bad_fork_free;
1053 retval = copy_creds(p, clone_flags);
1054 if (retval < 0)
1055 goto bad_fork_free;
1058 * If multiple threads are within copy_process(), then this check
1059 * triggers too late. This doesn't hurt, the check is only there
1060 * to stop root fork bombs.
1062 retval = -EAGAIN;
1063 if (nr_threads >= max_threads)
1064 goto bad_fork_cleanup_count;
1066 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1067 goto bad_fork_cleanup_count;
1069 p->did_exec = 0;
1070 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1071 copy_flags(clone_flags, p);
1072 INIT_LIST_HEAD(&p->children);
1073 INIT_LIST_HEAD(&p->sibling);
1074 rcu_copy_process(p);
1075 p->vfork_done = NULL;
1076 spin_lock_init(&p->alloc_lock);
1078 init_sigpending(&p->pending);
1080 p->utime = cputime_zero;
1081 p->stime = cputime_zero;
1082 p->gtime = cputime_zero;
1083 p->utimescaled = cputime_zero;
1084 p->stimescaled = cputime_zero;
1085 p->prev_utime = cputime_zero;
1086 p->prev_stime = cputime_zero;
1088 p->default_timer_slack_ns = current->timer_slack_ns;
1090 task_io_accounting_init(&p->ioac);
1091 acct_clear_integrals(p);
1093 posix_cpu_timers_init(p);
1095 p->lock_depth = -1; /* -1 = no lock */
1096 do_posix_clock_monotonic_gettime(&p->start_time);
1097 p->real_start_time = p->start_time;
1098 monotonic_to_bootbased(&p->real_start_time);
1099 p->io_context = NULL;
1100 p->audit_context = NULL;
1101 cgroup_fork(p);
1102 #ifdef CONFIG_NUMA
1103 p->mempolicy = mpol_dup(p->mempolicy);
1104 if (IS_ERR(p->mempolicy)) {
1105 retval = PTR_ERR(p->mempolicy);
1106 p->mempolicy = NULL;
1107 goto bad_fork_cleanup_cgroup;
1109 mpol_fix_fork_child_flag(p);
1110 #endif
1111 #ifdef CONFIG_TRACE_IRQFLAGS
1112 p->irq_events = 0;
1113 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1114 p->hardirqs_enabled = 1;
1115 #else
1116 p->hardirqs_enabled = 0;
1117 #endif
1118 p->hardirq_enable_ip = 0;
1119 p->hardirq_enable_event = 0;
1120 p->hardirq_disable_ip = _THIS_IP_;
1121 p->hardirq_disable_event = 0;
1122 p->softirqs_enabled = 1;
1123 p->softirq_enable_ip = _THIS_IP_;
1124 p->softirq_enable_event = 0;
1125 p->softirq_disable_ip = 0;
1126 p->softirq_disable_event = 0;
1127 p->hardirq_context = 0;
1128 p->softirq_context = 0;
1129 #endif
1130 #ifdef CONFIG_LOCKDEP
1131 p->lockdep_depth = 0; /* no locks held yet */
1132 p->curr_chain_key = 0;
1133 p->lockdep_recursion = 0;
1134 #endif
1136 #ifdef CONFIG_DEBUG_MUTEXES
1137 p->blocked_on = NULL; /* not blocked yet */
1138 #endif
1140 p->bts = NULL;
1142 /* Perform scheduler related setup. Assign this task to a CPU. */
1143 sched_fork(p, clone_flags);
1145 retval = perf_event_init_task(p);
1146 if (retval)
1147 goto bad_fork_cleanup_policy;
1149 if ((retval = audit_alloc(p)))
1150 goto bad_fork_cleanup_policy;
1151 /* copy all the process information */
1152 if ((retval = copy_semundo(clone_flags, p)))
1153 goto bad_fork_cleanup_audit;
1154 if ((retval = copy_files(clone_flags, p)))
1155 goto bad_fork_cleanup_semundo;
1156 if ((retval = copy_fs(clone_flags, p)))
1157 goto bad_fork_cleanup_files;
1158 if ((retval = copy_sighand(clone_flags, p)))
1159 goto bad_fork_cleanup_fs;
1160 if ((retval = copy_signal(clone_flags, p)))
1161 goto bad_fork_cleanup_sighand;
1162 if ((retval = copy_mm(clone_flags, p)))
1163 goto bad_fork_cleanup_signal;
1164 if ((retval = copy_namespaces(clone_flags, p)))
1165 goto bad_fork_cleanup_mm;
1166 if ((retval = copy_io(clone_flags, p)))
1167 goto bad_fork_cleanup_namespaces;
1168 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1169 if (retval)
1170 goto bad_fork_cleanup_io;
1172 if (pid != &init_struct_pid) {
1173 retval = -ENOMEM;
1174 pid = alloc_pid(p->nsproxy->pid_ns);
1175 if (!pid)
1176 goto bad_fork_cleanup_io;
1178 if (clone_flags & CLONE_NEWPID) {
1179 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1180 if (retval < 0)
1181 goto bad_fork_free_pid;
1185 p->pid = pid_nr(pid);
1186 p->tgid = p->pid;
1187 if (clone_flags & CLONE_THREAD)
1188 p->tgid = current->tgid;
1190 if (current->nsproxy != p->nsproxy) {
1191 retval = ns_cgroup_clone(p, pid);
1192 if (retval)
1193 goto bad_fork_free_pid;
1196 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1198 * Clear TID on mm_release()?
1200 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1201 #ifdef CONFIG_FUTEX
1202 p->robust_list = NULL;
1203 #ifdef CONFIG_COMPAT
1204 p->compat_robust_list = NULL;
1205 #endif
1206 INIT_LIST_HEAD(&p->pi_state_list);
1207 p->pi_state_cache = NULL;
1208 #endif
1210 * sigaltstack should be cleared when sharing the same VM
1212 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1213 p->sas_ss_sp = p->sas_ss_size = 0;
1216 * Syscall tracing should be turned off in the child regardless
1217 * of CLONE_PTRACE.
1219 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1220 #ifdef TIF_SYSCALL_EMU
1221 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1222 #endif
1223 clear_all_latency_tracing(p);
1225 /* ok, now we should be set up.. */
1226 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1227 p->pdeath_signal = 0;
1228 p->exit_state = 0;
1231 * Ok, make it visible to the rest of the system.
1232 * We dont wake it up yet.
1234 p->group_leader = p;
1235 INIT_LIST_HEAD(&p->thread_group);
1237 /* Now that the task is set up, run cgroup callbacks if
1238 * necessary. We need to run them before the task is visible
1239 * on the tasklist. */
1240 cgroup_fork_callbacks(p);
1241 cgroup_callbacks_done = 1;
1243 /* Need tasklist lock for parent etc handling! */
1244 write_lock_irq(&tasklist_lock);
1247 * The task hasn't been attached yet, so its cpus_allowed mask will
1248 * not be changed, nor will its assigned CPU.
1250 * The cpus_allowed mask of the parent may have changed after it was
1251 * copied first time - so re-copy it here, then check the child's CPU
1252 * to ensure it is on a valid CPU (and if not, just force it back to
1253 * parent's CPU). This avoids alot of nasty races.
1255 p->cpus_allowed = current->cpus_allowed;
1256 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1257 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1258 !cpu_online(task_cpu(p))))
1259 set_task_cpu(p, smp_processor_id());
1261 /* CLONE_PARENT re-uses the old parent */
1262 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1263 p->real_parent = current->real_parent;
1264 p->parent_exec_id = current->parent_exec_id;
1265 } else {
1266 p->real_parent = current;
1267 p->parent_exec_id = current->self_exec_id;
1270 spin_lock(&current->sighand->siglock);
1273 * Process group and session signals need to be delivered to just the
1274 * parent before the fork or both the parent and the child after the
1275 * fork. Restart if a signal comes in before we add the new process to
1276 * it's process group.
1277 * A fatal signal pending means that current will exit, so the new
1278 * thread can't slip out of an OOM kill (or normal SIGKILL).
1280 recalc_sigpending();
1281 if (signal_pending(current)) {
1282 spin_unlock(&current->sighand->siglock);
1283 write_unlock_irq(&tasklist_lock);
1284 retval = -ERESTARTNOINTR;
1285 goto bad_fork_free_pid;
1288 if (clone_flags & CLONE_THREAD) {
1289 atomic_inc(&current->signal->count);
1290 atomic_inc(&current->signal->live);
1291 p->group_leader = current->group_leader;
1292 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1295 if (likely(p->pid)) {
1296 list_add_tail(&p->sibling, &p->real_parent->children);
1297 tracehook_finish_clone(p, clone_flags, trace);
1299 if (thread_group_leader(p)) {
1300 if (clone_flags & CLONE_NEWPID)
1301 p->nsproxy->pid_ns->child_reaper = p;
1303 p->signal->leader_pid = pid;
1304 tty_kref_put(p->signal->tty);
1305 p->signal->tty = tty_kref_get(current->signal->tty);
1306 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1307 attach_pid(p, PIDTYPE_SID, task_session(current));
1308 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1309 __get_cpu_var(process_counts)++;
1311 attach_pid(p, PIDTYPE_PID, pid);
1312 nr_threads++;
1315 total_forks++;
1316 spin_unlock(&current->sighand->siglock);
1317 write_unlock_irq(&tasklist_lock);
1318 proc_fork_connector(p);
1319 cgroup_post_fork(p);
1320 perf_event_fork(p);
1321 return p;
1323 bad_fork_free_pid:
1324 if (pid != &init_struct_pid)
1325 free_pid(pid);
1326 bad_fork_cleanup_io:
1327 put_io_context(p->io_context);
1328 bad_fork_cleanup_namespaces:
1329 exit_task_namespaces(p);
1330 bad_fork_cleanup_mm:
1331 if (p->mm)
1332 mmput(p->mm);
1333 bad_fork_cleanup_signal:
1334 if (!(clone_flags & CLONE_THREAD))
1335 __cleanup_signal(p->signal);
1336 bad_fork_cleanup_sighand:
1337 __cleanup_sighand(p->sighand);
1338 bad_fork_cleanup_fs:
1339 exit_fs(p); /* blocking */
1340 bad_fork_cleanup_files:
1341 exit_files(p); /* blocking */
1342 bad_fork_cleanup_semundo:
1343 exit_sem(p);
1344 bad_fork_cleanup_audit:
1345 audit_free(p);
1346 bad_fork_cleanup_policy:
1347 perf_event_free_task(p);
1348 #ifdef CONFIG_NUMA
1349 mpol_put(p->mempolicy);
1350 bad_fork_cleanup_cgroup:
1351 #endif
1352 cgroup_exit(p, cgroup_callbacks_done);
1353 delayacct_tsk_free(p);
1354 module_put(task_thread_info(p)->exec_domain->module);
1355 bad_fork_cleanup_count:
1356 atomic_dec(&p->cred->user->processes);
1357 exit_creds(p);
1358 bad_fork_free:
1359 free_task(p);
1360 fork_out:
1361 return ERR_PTR(retval);
1364 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1366 memset(regs, 0, sizeof(struct pt_regs));
1367 return regs;
1370 struct task_struct * __cpuinit fork_idle(int cpu)
1372 struct task_struct *task;
1373 struct pt_regs regs;
1375 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1376 &init_struct_pid, 0);
1377 if (!IS_ERR(task))
1378 init_idle(task, cpu);
1380 return task;
1384 * Ok, this is the main fork-routine.
1386 * It copies the process, and if successful kick-starts
1387 * it and waits for it to finish using the VM if required.
1389 long do_fork(unsigned long clone_flags,
1390 unsigned long stack_start,
1391 struct pt_regs *regs,
1392 unsigned long stack_size,
1393 int __user *parent_tidptr,
1394 int __user *child_tidptr)
1396 struct task_struct *p;
1397 int trace = 0;
1398 long nr;
1401 * Do some preliminary argument and permissions checking before we
1402 * actually start allocating stuff
1404 if (clone_flags & CLONE_NEWUSER) {
1405 if (clone_flags & CLONE_THREAD)
1406 return -EINVAL;
1407 /* hopefully this check will go away when userns support is
1408 * complete
1410 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1411 !capable(CAP_SETGID))
1412 return -EPERM;
1416 * We hope to recycle these flags after 2.6.26
1418 if (unlikely(clone_flags & CLONE_STOPPED)) {
1419 static int __read_mostly count = 100;
1421 if (count > 0 && printk_ratelimit()) {
1422 char comm[TASK_COMM_LEN];
1424 count--;
1425 printk(KERN_INFO "fork(): process `%s' used deprecated "
1426 "clone flags 0x%lx\n",
1427 get_task_comm(comm, current),
1428 clone_flags & CLONE_STOPPED);
1433 * When called from kernel_thread, don't do user tracing stuff.
1435 if (likely(user_mode(regs)))
1436 trace = tracehook_prepare_clone(clone_flags);
1438 p = copy_process(clone_flags, stack_start, regs, stack_size,
1439 child_tidptr, NULL, trace);
1441 * Do this prior waking up the new thread - the thread pointer
1442 * might get invalid after that point, if the thread exits quickly.
1444 if (!IS_ERR(p)) {
1445 struct completion vfork;
1447 trace_sched_process_fork(current, p);
1449 nr = task_pid_vnr(p);
1451 if (clone_flags & CLONE_PARENT_SETTID)
1452 put_user(nr, parent_tidptr);
1454 if (clone_flags & CLONE_VFORK) {
1455 p->vfork_done = &vfork;
1456 init_completion(&vfork);
1459 audit_finish_fork(p);
1460 tracehook_report_clone(regs, clone_flags, nr, p);
1463 * We set PF_STARTING at creation in case tracing wants to
1464 * use this to distinguish a fully live task from one that
1465 * hasn't gotten to tracehook_report_clone() yet. Now we
1466 * clear it and set the child going.
1468 p->flags &= ~PF_STARTING;
1470 if (unlikely(clone_flags & CLONE_STOPPED)) {
1472 * We'll start up with an immediate SIGSTOP.
1474 sigaddset(&p->pending.signal, SIGSTOP);
1475 set_tsk_thread_flag(p, TIF_SIGPENDING);
1476 __set_task_state(p, TASK_STOPPED);
1477 } else {
1478 wake_up_new_task(p, clone_flags);
1481 tracehook_report_clone_complete(trace, regs,
1482 clone_flags, nr, p);
1484 if (clone_flags & CLONE_VFORK) {
1485 freezer_do_not_count();
1486 wait_for_completion(&vfork);
1487 freezer_count();
1488 tracehook_report_vfork_done(p, nr);
1490 } else {
1491 nr = PTR_ERR(p);
1493 return nr;
1496 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1497 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1498 #endif
1500 static void sighand_ctor(void *data)
1502 struct sighand_struct *sighand = data;
1504 spin_lock_init(&sighand->siglock);
1505 init_waitqueue_head(&sighand->signalfd_wqh);
1508 void __init proc_caches_init(void)
1510 sighand_cachep = kmem_cache_create("sighand_cache",
1511 sizeof(struct sighand_struct), 0,
1512 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1513 SLAB_NOTRACK, sighand_ctor);
1514 signal_cachep = kmem_cache_create("signal_cache",
1515 sizeof(struct signal_struct), 0,
1516 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1517 files_cachep = kmem_cache_create("files_cache",
1518 sizeof(struct files_struct), 0,
1519 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1520 fs_cachep = kmem_cache_create("fs_cache",
1521 sizeof(struct fs_struct), 0,
1522 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1523 mm_cachep = kmem_cache_create("mm_struct",
1524 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1525 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1526 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1527 mmap_init();
1531 * Check constraints on flags passed to the unshare system call and
1532 * force unsharing of additional process context as appropriate.
1534 static void check_unshare_flags(unsigned long *flags_ptr)
1537 * If unsharing a thread from a thread group, must also
1538 * unshare vm.
1540 if (*flags_ptr & CLONE_THREAD)
1541 *flags_ptr |= CLONE_VM;
1544 * If unsharing vm, must also unshare signal handlers.
1546 if (*flags_ptr & CLONE_VM)
1547 *flags_ptr |= CLONE_SIGHAND;
1550 * If unsharing signal handlers and the task was created
1551 * using CLONE_THREAD, then must unshare the thread
1553 if ((*flags_ptr & CLONE_SIGHAND) &&
1554 (atomic_read(&current->signal->count) > 1))
1555 *flags_ptr |= CLONE_THREAD;
1558 * If unsharing namespace, must also unshare filesystem information.
1560 if (*flags_ptr & CLONE_NEWNS)
1561 *flags_ptr |= CLONE_FS;
1565 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1567 static int unshare_thread(unsigned long unshare_flags)
1569 if (unshare_flags & CLONE_THREAD)
1570 return -EINVAL;
1572 return 0;
1576 * Unshare the filesystem structure if it is being shared
1578 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1580 struct fs_struct *fs = current->fs;
1582 if (!(unshare_flags & CLONE_FS) || !fs)
1583 return 0;
1585 /* don't need lock here; in the worst case we'll do useless copy */
1586 if (fs->users == 1)
1587 return 0;
1589 *new_fsp = copy_fs_struct(fs);
1590 if (!*new_fsp)
1591 return -ENOMEM;
1593 return 0;
1597 * Unsharing of sighand is not supported yet
1599 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1601 struct sighand_struct *sigh = current->sighand;
1603 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1604 return -EINVAL;
1605 else
1606 return 0;
1610 * Unshare vm if it is being shared
1612 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1614 struct mm_struct *mm = current->mm;
1616 if ((unshare_flags & CLONE_VM) &&
1617 (mm && atomic_read(&mm->mm_users) > 1)) {
1618 return -EINVAL;
1621 return 0;
1625 * Unshare file descriptor table if it is being shared
1627 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1629 struct files_struct *fd = current->files;
1630 int error = 0;
1632 if ((unshare_flags & CLONE_FILES) &&
1633 (fd && atomic_read(&fd->count) > 1)) {
1634 *new_fdp = dup_fd(fd, &error);
1635 if (!*new_fdp)
1636 return error;
1639 return 0;
1643 * unshare allows a process to 'unshare' part of the process
1644 * context which was originally shared using clone. copy_*
1645 * functions used by do_fork() cannot be used here directly
1646 * because they modify an inactive task_struct that is being
1647 * constructed. Here we are modifying the current, active,
1648 * task_struct.
1650 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1652 int err = 0;
1653 struct fs_struct *fs, *new_fs = NULL;
1654 struct sighand_struct *new_sigh = NULL;
1655 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1656 struct files_struct *fd, *new_fd = NULL;
1657 struct nsproxy *new_nsproxy = NULL;
1658 int do_sysvsem = 0;
1660 check_unshare_flags(&unshare_flags);
1662 /* Return -EINVAL for all unsupported flags */
1663 err = -EINVAL;
1664 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1665 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1666 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1667 goto bad_unshare_out;
1670 * CLONE_NEWIPC must also detach from the undolist: after switching
1671 * to a new ipc namespace, the semaphore arrays from the old
1672 * namespace are unreachable.
1674 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1675 do_sysvsem = 1;
1676 if ((err = unshare_thread(unshare_flags)))
1677 goto bad_unshare_out;
1678 if ((err = unshare_fs(unshare_flags, &new_fs)))
1679 goto bad_unshare_cleanup_thread;
1680 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1681 goto bad_unshare_cleanup_fs;
1682 if ((err = unshare_vm(unshare_flags, &new_mm)))
1683 goto bad_unshare_cleanup_sigh;
1684 if ((err = unshare_fd(unshare_flags, &new_fd)))
1685 goto bad_unshare_cleanup_vm;
1686 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1687 new_fs)))
1688 goto bad_unshare_cleanup_fd;
1690 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1691 if (do_sysvsem) {
1693 * CLONE_SYSVSEM is equivalent to sys_exit().
1695 exit_sem(current);
1698 if (new_nsproxy) {
1699 switch_task_namespaces(current, new_nsproxy);
1700 new_nsproxy = NULL;
1703 task_lock(current);
1705 if (new_fs) {
1706 fs = current->fs;
1707 write_lock(&fs->lock);
1708 current->fs = new_fs;
1709 if (--fs->users)
1710 new_fs = NULL;
1711 else
1712 new_fs = fs;
1713 write_unlock(&fs->lock);
1716 if (new_mm) {
1717 mm = current->mm;
1718 active_mm = current->active_mm;
1719 current->mm = new_mm;
1720 current->active_mm = new_mm;
1721 activate_mm(active_mm, new_mm);
1722 new_mm = mm;
1725 if (new_fd) {
1726 fd = current->files;
1727 current->files = new_fd;
1728 new_fd = fd;
1731 task_unlock(current);
1734 if (new_nsproxy)
1735 put_nsproxy(new_nsproxy);
1737 bad_unshare_cleanup_fd:
1738 if (new_fd)
1739 put_files_struct(new_fd);
1741 bad_unshare_cleanup_vm:
1742 if (new_mm)
1743 mmput(new_mm);
1745 bad_unshare_cleanup_sigh:
1746 if (new_sigh)
1747 if (atomic_dec_and_test(&new_sigh->count))
1748 kmem_cache_free(sighand_cachep, new_sigh);
1750 bad_unshare_cleanup_fs:
1751 if (new_fs)
1752 free_fs_struct(new_fs);
1754 bad_unshare_cleanup_thread:
1755 bad_unshare_out:
1756 return err;
1760 * Helper to unshare the files of the current task.
1761 * We don't want to expose copy_files internals to
1762 * the exec layer of the kernel.
1765 int unshare_files(struct files_struct **displaced)
1767 struct task_struct *task = current;
1768 struct files_struct *copy = NULL;
1769 int error;
1771 error = unshare_fd(CLONE_FILES, &copy);
1772 if (error || !copy) {
1773 *displaced = NULL;
1774 return error;
1776 *displaced = task->files;
1777 task_lock(task);
1778 task->files = copy;
1779 task_unlock(task);
1780 return 0;