htcleo: add Cotulla's fixes for non-android touchscreen!
[htc-linux.git] / kernel / futex.c
blobc6a80616fcfd05362953b53d5808ff163acf57cf
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Priority Inheritance state:
74 struct futex_pi_state {
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
79 struct list_head list;
82 * The PI object:
84 struct rt_mutex pi_mutex;
86 struct task_struct *owner;
87 atomic_t refcount;
89 union futex_key key;
92 /**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103 * we can wake only the relevant ones (hashed queues may be shared).
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107 * The order of wakup is always to make the first condition true, then
108 * the second.
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
113 struct futex_q {
114 struct plist_node list;
116 struct task_struct *task;
117 spinlock_t *lock_ptr;
118 union futex_key key;
119 struct futex_pi_state *pi_state;
120 struct rt_mutex_waiter *rt_waiter;
121 union futex_key *requeue_pi_key;
122 u32 bitset;
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
130 struct futex_hash_bucket {
131 spinlock_t lock;
132 struct plist_head chain;
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
138 * We hash on the keys returned from get_futex_key (see below).
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
149 * Return 1 if two futex_keys are equal, 0 otherwise.
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
153 return (key1 && key2
154 && key1->both.word == key2->both.word
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
164 static void get_futex_key_refs(union futex_key *key)
166 if (!key->both.ptr)
167 return;
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
183 static void drop_futex_key_refs(union futex_key *key)
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
188 return;
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
207 * Returns a negative error code or 0
208 * The key words are stored in *key on success.
210 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
211 * offset_within_page). For private mappings, it's (uaddr, current->mm).
212 * We can usually work out the index without swapping in the page.
214 * lock_page() might sleep, the caller should not hold a spinlock.
216 static int
217 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
219 unsigned long address = (unsigned long)uaddr;
220 struct mm_struct *mm = current->mm;
221 struct page *page;
222 int err;
223 struct vm_area_struct *vma;
226 * The futex address must be "naturally" aligned.
228 key->both.offset = address % PAGE_SIZE;
229 if (unlikely((address % sizeof(u32)) != 0))
230 return -EINVAL;
231 address -= key->both.offset;
234 * PROCESS_PRIVATE futexes are fast.
235 * As the mm cannot disappear under us and the 'key' only needs
236 * virtual address, we dont even have to find the underlying vma.
237 * Note : We do have to check 'uaddr' is a valid user address,
238 * but access_ok() should be faster than find_vma()
240 if (!fshared) {
241 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
242 return -EFAULT;
243 key->private.mm = mm;
244 key->private.address = address;
245 get_futex_key_refs(key);
246 return 0;
250 * The futex is hashed differently depending on whether
251 * it's in a shared or private mapping. So check vma first.
253 vma = find_extend_vma(mm, address);
254 if (unlikely(!vma))
255 return -EFAULT;
258 * Permissions.
260 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
261 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
264 * Private mappings are handled in a simple way.
266 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
267 * it's a read-only handle, it's expected that futexes attach to
268 * the object not the particular process. Therefore we use
269 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
270 * mappings of _writable_ handles.
272 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
273 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
274 key->private.mm = mm;
275 key->private.address = address;
276 get_futex_key_refs(key);
277 return 0;
280 again:
281 err = get_user_pages_fast(address, 1, 1, &page);
282 if (err < 0)
283 return err;
285 page = compound_head(page);
286 lock_page(page);
287 if (!page->mapping) {
288 unlock_page(page);
289 put_page(page);
290 goto again;
294 * Private mappings are handled in a simple way.
296 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
297 * it's a read-only handle, it's expected that futexes attach to
298 * the object not the particular process.
300 if (PageAnon(page)) {
301 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
302 key->private.mm = mm;
303 key->private.address = address;
304 } else {
305 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
306 key->shared.inode = page->mapping->host;
307 key->shared.pgoff = page->index;
310 get_futex_key_refs(key);
312 unlock_page(page);
313 put_page(page);
314 return 0;
317 static inline
318 void put_futex_key(int fshared, union futex_key *key)
320 drop_futex_key_refs(key);
324 * fault_in_user_writeable() - Fault in user address and verify RW access
325 * @uaddr: pointer to faulting user space address
327 * Slow path to fixup the fault we just took in the atomic write
328 * access to @uaddr.
330 * We have no generic implementation of a non destructive write to the
331 * user address. We know that we faulted in the atomic pagefault
332 * disabled section so we can as well avoid the #PF overhead by
333 * calling get_user_pages() right away.
335 static int fault_in_user_writeable(u32 __user *uaddr)
337 struct mm_struct *mm = current->mm;
338 int ret;
340 down_read(&mm->mmap_sem);
341 ret = get_user_pages(current, mm, (unsigned long)uaddr,
342 1, 1, 0, NULL, NULL);
343 up_read(&mm->mmap_sem);
345 return ret < 0 ? ret : 0;
349 * futex_top_waiter() - Return the highest priority waiter on a futex
350 * @hb: the hash bucket the futex_q's reside in
351 * @key: the futex key (to distinguish it from other futex futex_q's)
353 * Must be called with the hb lock held.
355 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
356 union futex_key *key)
358 struct futex_q *this;
360 plist_for_each_entry(this, &hb->chain, list) {
361 if (match_futex(&this->key, key))
362 return this;
364 return NULL;
367 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
369 u32 curval;
371 pagefault_disable();
372 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
373 pagefault_enable();
375 return curval;
378 static int get_futex_value_locked(u32 *dest, u32 __user *from)
380 int ret;
382 pagefault_disable();
383 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
384 pagefault_enable();
386 return ret ? -EFAULT : 0;
391 * PI code:
393 static int refill_pi_state_cache(void)
395 struct futex_pi_state *pi_state;
397 if (likely(current->pi_state_cache))
398 return 0;
400 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
402 if (!pi_state)
403 return -ENOMEM;
405 INIT_LIST_HEAD(&pi_state->list);
406 /* pi_mutex gets initialized later */
407 pi_state->owner = NULL;
408 atomic_set(&pi_state->refcount, 1);
409 pi_state->key = FUTEX_KEY_INIT;
411 current->pi_state_cache = pi_state;
413 return 0;
416 static struct futex_pi_state * alloc_pi_state(void)
418 struct futex_pi_state *pi_state = current->pi_state_cache;
420 WARN_ON(!pi_state);
421 current->pi_state_cache = NULL;
423 return pi_state;
426 static void free_pi_state(struct futex_pi_state *pi_state)
428 if (!atomic_dec_and_test(&pi_state->refcount))
429 return;
432 * If pi_state->owner is NULL, the owner is most probably dying
433 * and has cleaned up the pi_state already
435 if (pi_state->owner) {
436 spin_lock_irq(&pi_state->owner->pi_lock);
437 list_del_init(&pi_state->list);
438 spin_unlock_irq(&pi_state->owner->pi_lock);
440 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
443 if (current->pi_state_cache)
444 kfree(pi_state);
445 else {
447 * pi_state->list is already empty.
448 * clear pi_state->owner.
449 * refcount is at 0 - put it back to 1.
451 pi_state->owner = NULL;
452 atomic_set(&pi_state->refcount, 1);
453 current->pi_state_cache = pi_state;
458 * Look up the task based on what TID userspace gave us.
459 * We dont trust it.
461 static struct task_struct * futex_find_get_task(pid_t pid)
463 struct task_struct *p;
464 const struct cred *cred = current_cred(), *pcred;
466 rcu_read_lock();
467 p = find_task_by_vpid(pid);
468 if (!p) {
469 p = ERR_PTR(-ESRCH);
470 } else {
471 pcred = __task_cred(p);
472 if (cred->euid != pcred->euid &&
473 cred->euid != pcred->uid)
474 p = ERR_PTR(-ESRCH);
475 else
476 get_task_struct(p);
479 rcu_read_unlock();
481 return p;
485 * This task is holding PI mutexes at exit time => bad.
486 * Kernel cleans up PI-state, but userspace is likely hosed.
487 * (Robust-futex cleanup is separate and might save the day for userspace.)
489 void exit_pi_state_list(struct task_struct *curr)
491 struct list_head *next, *head = &curr->pi_state_list;
492 struct futex_pi_state *pi_state;
493 struct futex_hash_bucket *hb;
494 union futex_key key = FUTEX_KEY_INIT;
496 if (!futex_cmpxchg_enabled)
497 return;
499 * We are a ZOMBIE and nobody can enqueue itself on
500 * pi_state_list anymore, but we have to be careful
501 * versus waiters unqueueing themselves:
503 spin_lock_irq(&curr->pi_lock);
504 while (!list_empty(head)) {
506 next = head->next;
507 pi_state = list_entry(next, struct futex_pi_state, list);
508 key = pi_state->key;
509 hb = hash_futex(&key);
510 spin_unlock_irq(&curr->pi_lock);
512 spin_lock(&hb->lock);
514 spin_lock_irq(&curr->pi_lock);
516 * We dropped the pi-lock, so re-check whether this
517 * task still owns the PI-state:
519 if (head->next != next) {
520 spin_unlock(&hb->lock);
521 continue;
524 WARN_ON(pi_state->owner != curr);
525 WARN_ON(list_empty(&pi_state->list));
526 list_del_init(&pi_state->list);
527 pi_state->owner = NULL;
528 spin_unlock_irq(&curr->pi_lock);
530 rt_mutex_unlock(&pi_state->pi_mutex);
532 spin_unlock(&hb->lock);
534 spin_lock_irq(&curr->pi_lock);
536 spin_unlock_irq(&curr->pi_lock);
539 static int
540 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
541 union futex_key *key, struct futex_pi_state **ps)
543 struct futex_pi_state *pi_state = NULL;
544 struct futex_q *this, *next;
545 struct plist_head *head;
546 struct task_struct *p;
547 pid_t pid = uval & FUTEX_TID_MASK;
549 head = &hb->chain;
551 plist_for_each_entry_safe(this, next, head, list) {
552 if (match_futex(&this->key, key)) {
554 * Another waiter already exists - bump up
555 * the refcount and return its pi_state:
557 pi_state = this->pi_state;
559 * Userspace might have messed up non PI and PI futexes
561 if (unlikely(!pi_state))
562 return -EINVAL;
564 WARN_ON(!atomic_read(&pi_state->refcount));
567 * When pi_state->owner is NULL then the owner died
568 * and another waiter is on the fly. pi_state->owner
569 * is fixed up by the task which acquires
570 * pi_state->rt_mutex.
572 * We do not check for pid == 0 which can happen when
573 * the owner died and robust_list_exit() cleared the
574 * TID.
576 if (pid && pi_state->owner) {
578 * Bail out if user space manipulated the
579 * futex value.
581 if (pid != task_pid_vnr(pi_state->owner))
582 return -EINVAL;
585 atomic_inc(&pi_state->refcount);
586 *ps = pi_state;
588 return 0;
593 * We are the first waiter - try to look up the real owner and attach
594 * the new pi_state to it, but bail out when TID = 0
596 if (!pid)
597 return -ESRCH;
598 p = futex_find_get_task(pid);
599 if (IS_ERR(p))
600 return PTR_ERR(p);
603 * We need to look at the task state flags to figure out,
604 * whether the task is exiting. To protect against the do_exit
605 * change of the task flags, we do this protected by
606 * p->pi_lock:
608 spin_lock_irq(&p->pi_lock);
609 if (unlikely(p->flags & PF_EXITING)) {
611 * The task is on the way out. When PF_EXITPIDONE is
612 * set, we know that the task has finished the
613 * cleanup:
615 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
617 spin_unlock_irq(&p->pi_lock);
618 put_task_struct(p);
619 return ret;
622 pi_state = alloc_pi_state();
625 * Initialize the pi_mutex in locked state and make 'p'
626 * the owner of it:
628 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
630 /* Store the key for possible exit cleanups: */
631 pi_state->key = *key;
633 WARN_ON(!list_empty(&pi_state->list));
634 list_add(&pi_state->list, &p->pi_state_list);
635 pi_state->owner = p;
636 spin_unlock_irq(&p->pi_lock);
638 put_task_struct(p);
640 *ps = pi_state;
642 return 0;
646 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
647 * @uaddr: the pi futex user address
648 * @hb: the pi futex hash bucket
649 * @key: the futex key associated with uaddr and hb
650 * @ps: the pi_state pointer where we store the result of the
651 * lookup
652 * @task: the task to perform the atomic lock work for. This will
653 * be "current" except in the case of requeue pi.
654 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
656 * Returns:
657 * 0 - ready to wait
658 * 1 - acquired the lock
659 * <0 - error
661 * The hb->lock and futex_key refs shall be held by the caller.
663 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
664 union futex_key *key,
665 struct futex_pi_state **ps,
666 struct task_struct *task, int set_waiters)
668 int lock_taken, ret, ownerdied = 0;
669 u32 uval, newval, curval;
671 retry:
672 ret = lock_taken = 0;
675 * To avoid races, we attempt to take the lock here again
676 * (by doing a 0 -> TID atomic cmpxchg), while holding all
677 * the locks. It will most likely not succeed.
679 newval = task_pid_vnr(task);
680 if (set_waiters)
681 newval |= FUTEX_WAITERS;
683 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
685 if (unlikely(curval == -EFAULT))
686 return -EFAULT;
689 * Detect deadlocks.
691 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
692 return -EDEADLK;
695 * Surprise - we got the lock. Just return to userspace:
697 if (unlikely(!curval))
698 return 1;
700 uval = curval;
703 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
704 * to wake at the next unlock.
706 newval = curval | FUTEX_WAITERS;
709 * There are two cases, where a futex might have no owner (the
710 * owner TID is 0): OWNER_DIED. We take over the futex in this
711 * case. We also do an unconditional take over, when the owner
712 * of the futex died.
714 * This is safe as we are protected by the hash bucket lock !
716 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
717 /* Keep the OWNER_DIED bit */
718 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
719 ownerdied = 0;
720 lock_taken = 1;
723 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
725 if (unlikely(curval == -EFAULT))
726 return -EFAULT;
727 if (unlikely(curval != uval))
728 goto retry;
731 * We took the lock due to owner died take over.
733 if (unlikely(lock_taken))
734 return 1;
737 * We dont have the lock. Look up the PI state (or create it if
738 * we are the first waiter):
740 ret = lookup_pi_state(uval, hb, key, ps);
742 if (unlikely(ret)) {
743 switch (ret) {
744 case -ESRCH:
746 * No owner found for this futex. Check if the
747 * OWNER_DIED bit is set to figure out whether
748 * this is a robust futex or not.
750 if (get_futex_value_locked(&curval, uaddr))
751 return -EFAULT;
754 * We simply start over in case of a robust
755 * futex. The code above will take the futex
756 * and return happy.
758 if (curval & FUTEX_OWNER_DIED) {
759 ownerdied = 1;
760 goto retry;
762 default:
763 break;
767 return ret;
771 * The hash bucket lock must be held when this is called.
772 * Afterwards, the futex_q must not be accessed.
774 static void wake_futex(struct futex_q *q)
776 struct task_struct *p = q->task;
779 * We set q->lock_ptr = NULL _before_ we wake up the task. If
780 * a non futex wake up happens on another CPU then the task
781 * might exit and p would dereference a non existing task
782 * struct. Prevent this by holding a reference on p across the
783 * wake up.
785 get_task_struct(p);
787 plist_del(&q->list, &q->list.plist);
789 * The waiting task can free the futex_q as soon as
790 * q->lock_ptr = NULL is written, without taking any locks. A
791 * memory barrier is required here to prevent the following
792 * store to lock_ptr from getting ahead of the plist_del.
794 smp_wmb();
795 q->lock_ptr = NULL;
797 wake_up_state(p, TASK_NORMAL);
798 put_task_struct(p);
801 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
803 struct task_struct *new_owner;
804 struct futex_pi_state *pi_state = this->pi_state;
805 u32 curval, newval;
807 if (!pi_state)
808 return -EINVAL;
811 * If current does not own the pi_state then the futex is
812 * inconsistent and user space fiddled with the futex value.
814 if (pi_state->owner != current)
815 return -EINVAL;
817 spin_lock(&pi_state->pi_mutex.wait_lock);
818 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
821 * This happens when we have stolen the lock and the original
822 * pending owner did not enqueue itself back on the rt_mutex.
823 * Thats not a tragedy. We know that way, that a lock waiter
824 * is on the fly. We make the futex_q waiter the pending owner.
826 if (!new_owner)
827 new_owner = this->task;
830 * We pass it to the next owner. (The WAITERS bit is always
831 * kept enabled while there is PI state around. We must also
832 * preserve the owner died bit.)
834 if (!(uval & FUTEX_OWNER_DIED)) {
835 int ret = 0;
837 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
839 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
841 if (curval == -EFAULT)
842 ret = -EFAULT;
843 else if (curval != uval)
844 ret = -EINVAL;
845 if (ret) {
846 spin_unlock(&pi_state->pi_mutex.wait_lock);
847 return ret;
851 spin_lock_irq(&pi_state->owner->pi_lock);
852 WARN_ON(list_empty(&pi_state->list));
853 list_del_init(&pi_state->list);
854 spin_unlock_irq(&pi_state->owner->pi_lock);
856 spin_lock_irq(&new_owner->pi_lock);
857 WARN_ON(!list_empty(&pi_state->list));
858 list_add(&pi_state->list, &new_owner->pi_state_list);
859 pi_state->owner = new_owner;
860 spin_unlock_irq(&new_owner->pi_lock);
862 spin_unlock(&pi_state->pi_mutex.wait_lock);
863 rt_mutex_unlock(&pi_state->pi_mutex);
865 return 0;
868 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
870 u32 oldval;
873 * There is no waiter, so we unlock the futex. The owner died
874 * bit has not to be preserved here. We are the owner:
876 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
878 if (oldval == -EFAULT)
879 return oldval;
880 if (oldval != uval)
881 return -EAGAIN;
883 return 0;
887 * Express the locking dependencies for lockdep:
889 static inline void
890 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
892 if (hb1 <= hb2) {
893 spin_lock(&hb1->lock);
894 if (hb1 < hb2)
895 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
896 } else { /* hb1 > hb2 */
897 spin_lock(&hb2->lock);
898 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
902 static inline void
903 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
905 spin_unlock(&hb1->lock);
906 if (hb1 != hb2)
907 spin_unlock(&hb2->lock);
911 * Wake up waiters matching bitset queued on this futex (uaddr).
913 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
915 struct futex_hash_bucket *hb;
916 struct futex_q *this, *next;
917 struct plist_head *head;
918 union futex_key key = FUTEX_KEY_INIT;
919 int ret;
921 if (!bitset)
922 return -EINVAL;
924 ret = get_futex_key(uaddr, fshared, &key);
925 if (unlikely(ret != 0))
926 goto out;
928 hb = hash_futex(&key);
929 spin_lock(&hb->lock);
930 head = &hb->chain;
932 plist_for_each_entry_safe(this, next, head, list) {
933 if (match_futex (&this->key, &key)) {
934 if (this->pi_state || this->rt_waiter) {
935 ret = -EINVAL;
936 break;
939 /* Check if one of the bits is set in both bitsets */
940 if (!(this->bitset & bitset))
941 continue;
943 wake_futex(this);
944 if (++ret >= nr_wake)
945 break;
949 spin_unlock(&hb->lock);
950 put_futex_key(fshared, &key);
951 out:
952 return ret;
956 * Wake up all waiters hashed on the physical page that is mapped
957 * to this virtual address:
959 static int
960 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
961 int nr_wake, int nr_wake2, int op)
963 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
964 struct futex_hash_bucket *hb1, *hb2;
965 struct plist_head *head;
966 struct futex_q *this, *next;
967 int ret, op_ret;
969 retry:
970 ret = get_futex_key(uaddr1, fshared, &key1);
971 if (unlikely(ret != 0))
972 goto out;
973 ret = get_futex_key(uaddr2, fshared, &key2);
974 if (unlikely(ret != 0))
975 goto out_put_key1;
977 hb1 = hash_futex(&key1);
978 hb2 = hash_futex(&key2);
980 retry_private:
981 double_lock_hb(hb1, hb2);
982 op_ret = futex_atomic_op_inuser(op, uaddr2);
983 if (unlikely(op_ret < 0)) {
985 double_unlock_hb(hb1, hb2);
987 #ifndef CONFIG_MMU
989 * we don't get EFAULT from MMU faults if we don't have an MMU,
990 * but we might get them from range checking
992 ret = op_ret;
993 goto out_put_keys;
994 #endif
996 if (unlikely(op_ret != -EFAULT)) {
997 ret = op_ret;
998 goto out_put_keys;
1001 ret = fault_in_user_writeable(uaddr2);
1002 if (ret)
1003 goto out_put_keys;
1005 if (!fshared)
1006 goto retry_private;
1008 put_futex_key(fshared, &key2);
1009 put_futex_key(fshared, &key1);
1010 goto retry;
1013 head = &hb1->chain;
1015 plist_for_each_entry_safe(this, next, head, list) {
1016 if (match_futex (&this->key, &key1)) {
1017 wake_futex(this);
1018 if (++ret >= nr_wake)
1019 break;
1023 if (op_ret > 0) {
1024 head = &hb2->chain;
1026 op_ret = 0;
1027 plist_for_each_entry_safe(this, next, head, list) {
1028 if (match_futex (&this->key, &key2)) {
1029 wake_futex(this);
1030 if (++op_ret >= nr_wake2)
1031 break;
1034 ret += op_ret;
1037 double_unlock_hb(hb1, hb2);
1038 out_put_keys:
1039 put_futex_key(fshared, &key2);
1040 out_put_key1:
1041 put_futex_key(fshared, &key1);
1042 out:
1043 return ret;
1047 * requeue_futex() - Requeue a futex_q from one hb to another
1048 * @q: the futex_q to requeue
1049 * @hb1: the source hash_bucket
1050 * @hb2: the target hash_bucket
1051 * @key2: the new key for the requeued futex_q
1053 static inline
1054 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1055 struct futex_hash_bucket *hb2, union futex_key *key2)
1059 * If key1 and key2 hash to the same bucket, no need to
1060 * requeue.
1062 if (likely(&hb1->chain != &hb2->chain)) {
1063 plist_del(&q->list, &hb1->chain);
1064 plist_add(&q->list, &hb2->chain);
1065 q->lock_ptr = &hb2->lock;
1066 #ifdef CONFIG_DEBUG_PI_LIST
1067 q->list.plist.lock = &hb2->lock;
1068 #endif
1070 get_futex_key_refs(key2);
1071 q->key = *key2;
1075 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1076 * @q: the futex_q
1077 * @key: the key of the requeue target futex
1078 * @hb: the hash_bucket of the requeue target futex
1080 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1081 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1082 * to the requeue target futex so the waiter can detect the wakeup on the right
1083 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1084 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1085 * to protect access to the pi_state to fixup the owner later. Must be called
1086 * with both q->lock_ptr and hb->lock held.
1088 static inline
1089 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1090 struct futex_hash_bucket *hb)
1092 get_futex_key_refs(key);
1093 q->key = *key;
1095 WARN_ON(plist_node_empty(&q->list));
1096 plist_del(&q->list, &q->list.plist);
1098 WARN_ON(!q->rt_waiter);
1099 q->rt_waiter = NULL;
1101 q->lock_ptr = &hb->lock;
1102 #ifdef CONFIG_DEBUG_PI_LIST
1103 q->list.plist.lock = &hb->lock;
1104 #endif
1106 wake_up_state(q->task, TASK_NORMAL);
1110 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1111 * @pifutex: the user address of the to futex
1112 * @hb1: the from futex hash bucket, must be locked by the caller
1113 * @hb2: the to futex hash bucket, must be locked by the caller
1114 * @key1: the from futex key
1115 * @key2: the to futex key
1116 * @ps: address to store the pi_state pointer
1117 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1119 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1120 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1121 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1122 * hb1 and hb2 must be held by the caller.
1124 * Returns:
1125 * 0 - failed to acquire the lock atomicly
1126 * 1 - acquired the lock
1127 * <0 - error
1129 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1130 struct futex_hash_bucket *hb1,
1131 struct futex_hash_bucket *hb2,
1132 union futex_key *key1, union futex_key *key2,
1133 struct futex_pi_state **ps, int set_waiters)
1135 struct futex_q *top_waiter = NULL;
1136 u32 curval;
1137 int ret;
1139 if (get_futex_value_locked(&curval, pifutex))
1140 return -EFAULT;
1143 * Find the top_waiter and determine if there are additional waiters.
1144 * If the caller intends to requeue more than 1 waiter to pifutex,
1145 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1146 * as we have means to handle the possible fault. If not, don't set
1147 * the bit unecessarily as it will force the subsequent unlock to enter
1148 * the kernel.
1150 top_waiter = futex_top_waiter(hb1, key1);
1152 /* There are no waiters, nothing for us to do. */
1153 if (!top_waiter)
1154 return 0;
1156 /* Ensure we requeue to the expected futex. */
1157 if (!match_futex(top_waiter->requeue_pi_key, key2))
1158 return -EINVAL;
1161 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1162 * the contended case or if set_waiters is 1. The pi_state is returned
1163 * in ps in contended cases.
1165 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1166 set_waiters);
1167 if (ret == 1)
1168 requeue_pi_wake_futex(top_waiter, key2, hb2);
1170 return ret;
1174 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1175 * uaddr1: source futex user address
1176 * uaddr2: target futex user address
1177 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1178 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1179 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1180 * pi futex (pi to pi requeue is not supported)
1182 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1183 * uaddr2 atomically on behalf of the top waiter.
1185 * Returns:
1186 * >=0 - on success, the number of tasks requeued or woken
1187 * <0 - on error
1189 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1190 int nr_wake, int nr_requeue, u32 *cmpval,
1191 int requeue_pi)
1193 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1194 int drop_count = 0, task_count = 0, ret;
1195 struct futex_pi_state *pi_state = NULL;
1196 struct futex_hash_bucket *hb1, *hb2;
1197 struct plist_head *head1;
1198 struct futex_q *this, *next;
1199 u32 curval2;
1201 if (requeue_pi) {
1203 * requeue_pi requires a pi_state, try to allocate it now
1204 * without any locks in case it fails.
1206 if (refill_pi_state_cache())
1207 return -ENOMEM;
1209 * requeue_pi must wake as many tasks as it can, up to nr_wake
1210 * + nr_requeue, since it acquires the rt_mutex prior to
1211 * returning to userspace, so as to not leave the rt_mutex with
1212 * waiters and no owner. However, second and third wake-ups
1213 * cannot be predicted as they involve race conditions with the
1214 * first wake and a fault while looking up the pi_state. Both
1215 * pthread_cond_signal() and pthread_cond_broadcast() should
1216 * use nr_wake=1.
1218 if (nr_wake != 1)
1219 return -EINVAL;
1222 retry:
1223 if (pi_state != NULL) {
1225 * We will have to lookup the pi_state again, so free this one
1226 * to keep the accounting correct.
1228 free_pi_state(pi_state);
1229 pi_state = NULL;
1232 ret = get_futex_key(uaddr1, fshared, &key1);
1233 if (unlikely(ret != 0))
1234 goto out;
1235 ret = get_futex_key(uaddr2, fshared, &key2);
1236 if (unlikely(ret != 0))
1237 goto out_put_key1;
1239 hb1 = hash_futex(&key1);
1240 hb2 = hash_futex(&key2);
1242 retry_private:
1243 double_lock_hb(hb1, hb2);
1245 if (likely(cmpval != NULL)) {
1246 u32 curval;
1248 ret = get_futex_value_locked(&curval, uaddr1);
1250 if (unlikely(ret)) {
1251 double_unlock_hb(hb1, hb2);
1253 ret = get_user(curval, uaddr1);
1254 if (ret)
1255 goto out_put_keys;
1257 if (!fshared)
1258 goto retry_private;
1260 put_futex_key(fshared, &key2);
1261 put_futex_key(fshared, &key1);
1262 goto retry;
1264 if (curval != *cmpval) {
1265 ret = -EAGAIN;
1266 goto out_unlock;
1270 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1272 * Attempt to acquire uaddr2 and wake the top waiter. If we
1273 * intend to requeue waiters, force setting the FUTEX_WAITERS
1274 * bit. We force this here where we are able to easily handle
1275 * faults rather in the requeue loop below.
1277 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1278 &key2, &pi_state, nr_requeue);
1281 * At this point the top_waiter has either taken uaddr2 or is
1282 * waiting on it. If the former, then the pi_state will not
1283 * exist yet, look it up one more time to ensure we have a
1284 * reference to it.
1286 if (ret == 1) {
1287 WARN_ON(pi_state);
1288 drop_count++;
1289 task_count++;
1290 ret = get_futex_value_locked(&curval2, uaddr2);
1291 if (!ret)
1292 ret = lookup_pi_state(curval2, hb2, &key2,
1293 &pi_state);
1296 switch (ret) {
1297 case 0:
1298 break;
1299 case -EFAULT:
1300 double_unlock_hb(hb1, hb2);
1301 put_futex_key(fshared, &key2);
1302 put_futex_key(fshared, &key1);
1303 ret = fault_in_user_writeable(uaddr2);
1304 if (!ret)
1305 goto retry;
1306 goto out;
1307 case -EAGAIN:
1308 /* The owner was exiting, try again. */
1309 double_unlock_hb(hb1, hb2);
1310 put_futex_key(fshared, &key2);
1311 put_futex_key(fshared, &key1);
1312 cond_resched();
1313 goto retry;
1314 default:
1315 goto out_unlock;
1319 head1 = &hb1->chain;
1320 plist_for_each_entry_safe(this, next, head1, list) {
1321 if (task_count - nr_wake >= nr_requeue)
1322 break;
1324 if (!match_futex(&this->key, &key1))
1325 continue;
1328 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1329 * be paired with each other and no other futex ops.
1331 if ((requeue_pi && !this->rt_waiter) ||
1332 (!requeue_pi && this->rt_waiter)) {
1333 ret = -EINVAL;
1334 break;
1338 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1339 * lock, we already woke the top_waiter. If not, it will be
1340 * woken by futex_unlock_pi().
1342 if (++task_count <= nr_wake && !requeue_pi) {
1343 wake_futex(this);
1344 continue;
1347 /* Ensure we requeue to the expected futex for requeue_pi. */
1348 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1349 ret = -EINVAL;
1350 break;
1354 * Requeue nr_requeue waiters and possibly one more in the case
1355 * of requeue_pi if we couldn't acquire the lock atomically.
1357 if (requeue_pi) {
1358 /* Prepare the waiter to take the rt_mutex. */
1359 atomic_inc(&pi_state->refcount);
1360 this->pi_state = pi_state;
1361 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1362 this->rt_waiter,
1363 this->task, 1);
1364 if (ret == 1) {
1365 /* We got the lock. */
1366 requeue_pi_wake_futex(this, &key2, hb2);
1367 drop_count++;
1368 continue;
1369 } else if (ret) {
1370 /* -EDEADLK */
1371 this->pi_state = NULL;
1372 free_pi_state(pi_state);
1373 goto out_unlock;
1376 requeue_futex(this, hb1, hb2, &key2);
1377 drop_count++;
1380 out_unlock:
1381 double_unlock_hb(hb1, hb2);
1384 * drop_futex_key_refs() must be called outside the spinlocks. During
1385 * the requeue we moved futex_q's from the hash bucket at key1 to the
1386 * one at key2 and updated their key pointer. We no longer need to
1387 * hold the references to key1.
1389 while (--drop_count >= 0)
1390 drop_futex_key_refs(&key1);
1392 out_put_keys:
1393 put_futex_key(fshared, &key2);
1394 out_put_key1:
1395 put_futex_key(fshared, &key1);
1396 out:
1397 if (pi_state != NULL)
1398 free_pi_state(pi_state);
1399 return ret ? ret : task_count;
1402 /* The key must be already stored in q->key. */
1403 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1405 struct futex_hash_bucket *hb;
1407 get_futex_key_refs(&q->key);
1408 hb = hash_futex(&q->key);
1409 q->lock_ptr = &hb->lock;
1411 spin_lock(&hb->lock);
1412 return hb;
1415 static inline void
1416 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1418 spin_unlock(&hb->lock);
1419 drop_futex_key_refs(&q->key);
1423 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1424 * @q: The futex_q to enqueue
1425 * @hb: The destination hash bucket
1427 * The hb->lock must be held by the caller, and is released here. A call to
1428 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1429 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1430 * or nothing if the unqueue is done as part of the wake process and the unqueue
1431 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1432 * an example).
1434 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1436 int prio;
1439 * The priority used to register this element is
1440 * - either the real thread-priority for the real-time threads
1441 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1442 * - or MAX_RT_PRIO for non-RT threads.
1443 * Thus, all RT-threads are woken first in priority order, and
1444 * the others are woken last, in FIFO order.
1446 prio = min(current->normal_prio, MAX_RT_PRIO);
1448 plist_node_init(&q->list, prio);
1449 #ifdef CONFIG_DEBUG_PI_LIST
1450 q->list.plist.lock = &hb->lock;
1451 #endif
1452 plist_add(&q->list, &hb->chain);
1453 q->task = current;
1454 spin_unlock(&hb->lock);
1458 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1459 * @q: The futex_q to unqueue
1461 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1462 * be paired with exactly one earlier call to queue_me().
1464 * Returns:
1465 * 1 - if the futex_q was still queued (and we removed unqueued it)
1466 * 0 - if the futex_q was already removed by the waking thread
1468 static int unqueue_me(struct futex_q *q)
1470 spinlock_t *lock_ptr;
1471 int ret = 0;
1473 /* In the common case we don't take the spinlock, which is nice. */
1474 retry:
1475 lock_ptr = q->lock_ptr;
1476 barrier();
1477 if (lock_ptr != NULL) {
1478 spin_lock(lock_ptr);
1480 * q->lock_ptr can change between reading it and
1481 * spin_lock(), causing us to take the wrong lock. This
1482 * corrects the race condition.
1484 * Reasoning goes like this: if we have the wrong lock,
1485 * q->lock_ptr must have changed (maybe several times)
1486 * between reading it and the spin_lock(). It can
1487 * change again after the spin_lock() but only if it was
1488 * already changed before the spin_lock(). It cannot,
1489 * however, change back to the original value. Therefore
1490 * we can detect whether we acquired the correct lock.
1492 if (unlikely(lock_ptr != q->lock_ptr)) {
1493 spin_unlock(lock_ptr);
1494 goto retry;
1496 WARN_ON(plist_node_empty(&q->list));
1497 plist_del(&q->list, &q->list.plist);
1499 BUG_ON(q->pi_state);
1501 spin_unlock(lock_ptr);
1502 ret = 1;
1505 drop_futex_key_refs(&q->key);
1506 return ret;
1510 * PI futexes can not be requeued and must remove themself from the
1511 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1512 * and dropped here.
1514 static void unqueue_me_pi(struct futex_q *q)
1516 WARN_ON(plist_node_empty(&q->list));
1517 plist_del(&q->list, &q->list.plist);
1519 BUG_ON(!q->pi_state);
1520 free_pi_state(q->pi_state);
1521 q->pi_state = NULL;
1523 spin_unlock(q->lock_ptr);
1525 drop_futex_key_refs(&q->key);
1529 * Fixup the pi_state owner with the new owner.
1531 * Must be called with hash bucket lock held and mm->sem held for non
1532 * private futexes.
1534 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1535 struct task_struct *newowner, int fshared)
1537 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1538 struct futex_pi_state *pi_state = q->pi_state;
1539 struct task_struct *oldowner = pi_state->owner;
1540 u32 uval, curval, newval;
1541 int ret;
1543 /* Owner died? */
1544 if (!pi_state->owner)
1545 newtid |= FUTEX_OWNER_DIED;
1548 * We are here either because we stole the rtmutex from the
1549 * pending owner or we are the pending owner which failed to
1550 * get the rtmutex. We have to replace the pending owner TID
1551 * in the user space variable. This must be atomic as we have
1552 * to preserve the owner died bit here.
1554 * Note: We write the user space value _before_ changing the pi_state
1555 * because we can fault here. Imagine swapped out pages or a fork
1556 * that marked all the anonymous memory readonly for cow.
1558 * Modifying pi_state _before_ the user space value would
1559 * leave the pi_state in an inconsistent state when we fault
1560 * here, because we need to drop the hash bucket lock to
1561 * handle the fault. This might be observed in the PID check
1562 * in lookup_pi_state.
1564 retry:
1565 if (get_futex_value_locked(&uval, uaddr))
1566 goto handle_fault;
1568 while (1) {
1569 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1571 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1573 if (curval == -EFAULT)
1574 goto handle_fault;
1575 if (curval == uval)
1576 break;
1577 uval = curval;
1581 * We fixed up user space. Now we need to fix the pi_state
1582 * itself.
1584 if (pi_state->owner != NULL) {
1585 spin_lock_irq(&pi_state->owner->pi_lock);
1586 WARN_ON(list_empty(&pi_state->list));
1587 list_del_init(&pi_state->list);
1588 spin_unlock_irq(&pi_state->owner->pi_lock);
1591 pi_state->owner = newowner;
1593 spin_lock_irq(&newowner->pi_lock);
1594 WARN_ON(!list_empty(&pi_state->list));
1595 list_add(&pi_state->list, &newowner->pi_state_list);
1596 spin_unlock_irq(&newowner->pi_lock);
1597 return 0;
1600 * To handle the page fault we need to drop the hash bucket
1601 * lock here. That gives the other task (either the pending
1602 * owner itself or the task which stole the rtmutex) the
1603 * chance to try the fixup of the pi_state. So once we are
1604 * back from handling the fault we need to check the pi_state
1605 * after reacquiring the hash bucket lock and before trying to
1606 * do another fixup. When the fixup has been done already we
1607 * simply return.
1609 handle_fault:
1610 spin_unlock(q->lock_ptr);
1612 ret = fault_in_user_writeable(uaddr);
1614 spin_lock(q->lock_ptr);
1617 * Check if someone else fixed it for us:
1619 if (pi_state->owner != oldowner)
1620 return 0;
1622 if (ret)
1623 return ret;
1625 goto retry;
1629 * In case we must use restart_block to restart a futex_wait,
1630 * we encode in the 'flags' shared capability
1632 #define FLAGS_SHARED 0x01
1633 #define FLAGS_CLOCKRT 0x02
1634 #define FLAGS_HAS_TIMEOUT 0x04
1636 static long futex_wait_restart(struct restart_block *restart);
1639 * fixup_owner() - Post lock pi_state and corner case management
1640 * @uaddr: user address of the futex
1641 * @fshared: whether the futex is shared (1) or not (0)
1642 * @q: futex_q (contains pi_state and access to the rt_mutex)
1643 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1645 * After attempting to lock an rt_mutex, this function is called to cleanup
1646 * the pi_state owner as well as handle race conditions that may allow us to
1647 * acquire the lock. Must be called with the hb lock held.
1649 * Returns:
1650 * 1 - success, lock taken
1651 * 0 - success, lock not taken
1652 * <0 - on error (-EFAULT)
1654 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1655 int locked)
1657 struct task_struct *owner;
1658 int ret = 0;
1660 if (locked) {
1662 * Got the lock. We might not be the anticipated owner if we
1663 * did a lock-steal - fix up the PI-state in that case:
1665 if (q->pi_state->owner != current)
1666 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1667 goto out;
1671 * Catch the rare case, where the lock was released when we were on the
1672 * way back before we locked the hash bucket.
1674 if (q->pi_state->owner == current) {
1676 * Try to get the rt_mutex now. This might fail as some other
1677 * task acquired the rt_mutex after we removed ourself from the
1678 * rt_mutex waiters list.
1680 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1681 locked = 1;
1682 goto out;
1686 * pi_state is incorrect, some other task did a lock steal and
1687 * we returned due to timeout or signal without taking the
1688 * rt_mutex. Too late. We can access the rt_mutex_owner without
1689 * locking, as the other task is now blocked on the hash bucket
1690 * lock. Fix the state up.
1692 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1693 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1694 goto out;
1698 * Paranoia check. If we did not take the lock, then we should not be
1699 * the owner, nor the pending owner, of the rt_mutex.
1701 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1702 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1703 "pi-state %p\n", ret,
1704 q->pi_state->pi_mutex.owner,
1705 q->pi_state->owner);
1707 out:
1708 return ret ? ret : locked;
1712 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1713 * @hb: the futex hash bucket, must be locked by the caller
1714 * @q: the futex_q to queue up on
1715 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1717 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1718 struct hrtimer_sleeper *timeout)
1721 * The task state is guaranteed to be set before another task can
1722 * wake it. set_current_state() is implemented using set_mb() and
1723 * queue_me() calls spin_unlock() upon completion, both serializing
1724 * access to the hash list and forcing another memory barrier.
1726 set_current_state(TASK_INTERRUPTIBLE);
1727 queue_me(q, hb);
1729 /* Arm the timer */
1730 if (timeout) {
1731 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1732 if (!hrtimer_active(&timeout->timer))
1733 timeout->task = NULL;
1737 * If we have been removed from the hash list, then another task
1738 * has tried to wake us, and we can skip the call to schedule().
1740 if (likely(!plist_node_empty(&q->list))) {
1742 * If the timer has already expired, current will already be
1743 * flagged for rescheduling. Only call schedule if there
1744 * is no timeout, or if it has yet to expire.
1746 if (!timeout || timeout->task)
1747 schedule();
1749 __set_current_state(TASK_RUNNING);
1753 * futex_wait_setup() - Prepare to wait on a futex
1754 * @uaddr: the futex userspace address
1755 * @val: the expected value
1756 * @fshared: whether the futex is shared (1) or not (0)
1757 * @q: the associated futex_q
1758 * @hb: storage for hash_bucket pointer to be returned to caller
1760 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1761 * compare it with the expected value. Handle atomic faults internally.
1762 * Return with the hb lock held and a q.key reference on success, and unlocked
1763 * with no q.key reference on failure.
1765 * Returns:
1766 * 0 - uaddr contains val and hb has been locked
1767 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1769 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1770 struct futex_q *q, struct futex_hash_bucket **hb)
1772 u32 uval;
1773 int ret;
1776 * Access the page AFTER the hash-bucket is locked.
1777 * Order is important:
1779 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1780 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1782 * The basic logical guarantee of a futex is that it blocks ONLY
1783 * if cond(var) is known to be true at the time of blocking, for
1784 * any cond. If we queued after testing *uaddr, that would open
1785 * a race condition where we could block indefinitely with
1786 * cond(var) false, which would violate the guarantee.
1788 * A consequence is that futex_wait() can return zero and absorb
1789 * a wakeup when *uaddr != val on entry to the syscall. This is
1790 * rare, but normal.
1792 retry:
1793 q->key = FUTEX_KEY_INIT;
1794 ret = get_futex_key(uaddr, fshared, &q->key);
1795 if (unlikely(ret != 0))
1796 return ret;
1798 retry_private:
1799 *hb = queue_lock(q);
1801 ret = get_futex_value_locked(&uval, uaddr);
1803 if (ret) {
1804 queue_unlock(q, *hb);
1806 ret = get_user(uval, uaddr);
1807 if (ret)
1808 goto out;
1810 if (!fshared)
1811 goto retry_private;
1813 put_futex_key(fshared, &q->key);
1814 goto retry;
1817 if (uval != val) {
1818 queue_unlock(q, *hb);
1819 ret = -EWOULDBLOCK;
1822 out:
1823 if (ret)
1824 put_futex_key(fshared, &q->key);
1825 return ret;
1828 static int futex_wait(u32 __user *uaddr, int fshared,
1829 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1831 struct hrtimer_sleeper timeout, *to = NULL;
1832 struct restart_block *restart;
1833 struct futex_hash_bucket *hb;
1834 struct futex_q q;
1835 int ret;
1837 if (!bitset)
1838 return -EINVAL;
1840 q.pi_state = NULL;
1841 q.bitset = bitset;
1842 q.rt_waiter = NULL;
1843 q.requeue_pi_key = NULL;
1845 if (abs_time) {
1846 to = &timeout;
1848 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1849 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1850 hrtimer_init_sleeper(to, current);
1851 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1852 current->timer_slack_ns);
1855 retry:
1856 /* Prepare to wait on uaddr. */
1857 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1858 if (ret)
1859 goto out;
1861 /* queue_me and wait for wakeup, timeout, or a signal. */
1862 futex_wait_queue_me(hb, &q, to);
1864 /* If we were woken (and unqueued), we succeeded, whatever. */
1865 ret = 0;
1866 if (!unqueue_me(&q))
1867 goto out_put_key;
1868 ret = -ETIMEDOUT;
1869 if (to && !to->task)
1870 goto out_put_key;
1873 * We expect signal_pending(current), but we might be the
1874 * victim of a spurious wakeup as well.
1876 if (!signal_pending(current)) {
1877 put_futex_key(fshared, &q.key);
1878 goto retry;
1881 ret = -ERESTARTSYS;
1882 if (!abs_time)
1883 goto out_put_key;
1885 restart = &current_thread_info()->restart_block;
1886 restart->fn = futex_wait_restart;
1887 restart->futex.uaddr = (u32 *)uaddr;
1888 restart->futex.val = val;
1889 restart->futex.time = abs_time->tv64;
1890 restart->futex.bitset = bitset;
1891 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1893 if (fshared)
1894 restart->futex.flags |= FLAGS_SHARED;
1895 if (clockrt)
1896 restart->futex.flags |= FLAGS_CLOCKRT;
1898 ret = -ERESTART_RESTARTBLOCK;
1900 out_put_key:
1901 put_futex_key(fshared, &q.key);
1902 out:
1903 if (to) {
1904 hrtimer_cancel(&to->timer);
1905 destroy_hrtimer_on_stack(&to->timer);
1907 return ret;
1911 static long futex_wait_restart(struct restart_block *restart)
1913 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1914 int fshared = 0;
1915 ktime_t t, *tp = NULL;
1917 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1918 t.tv64 = restart->futex.time;
1919 tp = &t;
1921 restart->fn = do_no_restart_syscall;
1922 if (restart->futex.flags & FLAGS_SHARED)
1923 fshared = 1;
1924 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1925 restart->futex.bitset,
1926 restart->futex.flags & FLAGS_CLOCKRT);
1931 * Userspace tried a 0 -> TID atomic transition of the futex value
1932 * and failed. The kernel side here does the whole locking operation:
1933 * if there are waiters then it will block, it does PI, etc. (Due to
1934 * races the kernel might see a 0 value of the futex too.)
1936 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1937 int detect, ktime_t *time, int trylock)
1939 struct hrtimer_sleeper timeout, *to = NULL;
1940 struct futex_hash_bucket *hb;
1941 struct futex_q q;
1942 int res, ret;
1944 if (refill_pi_state_cache())
1945 return -ENOMEM;
1947 if (time) {
1948 to = &timeout;
1949 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1950 HRTIMER_MODE_ABS);
1951 hrtimer_init_sleeper(to, current);
1952 hrtimer_set_expires(&to->timer, *time);
1955 q.pi_state = NULL;
1956 q.rt_waiter = NULL;
1957 q.requeue_pi_key = NULL;
1958 retry:
1959 q.key = FUTEX_KEY_INIT;
1960 ret = get_futex_key(uaddr, fshared, &q.key);
1961 if (unlikely(ret != 0))
1962 goto out;
1964 retry_private:
1965 hb = queue_lock(&q);
1967 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1968 if (unlikely(ret)) {
1969 switch (ret) {
1970 case 1:
1971 /* We got the lock. */
1972 ret = 0;
1973 goto out_unlock_put_key;
1974 case -EFAULT:
1975 goto uaddr_faulted;
1976 case -EAGAIN:
1978 * Task is exiting and we just wait for the
1979 * exit to complete.
1981 queue_unlock(&q, hb);
1982 put_futex_key(fshared, &q.key);
1983 cond_resched();
1984 goto retry;
1985 default:
1986 goto out_unlock_put_key;
1991 * Only actually queue now that the atomic ops are done:
1993 queue_me(&q, hb);
1995 WARN_ON(!q.pi_state);
1997 * Block on the PI mutex:
1999 if (!trylock)
2000 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2001 else {
2002 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2003 /* Fixup the trylock return value: */
2004 ret = ret ? 0 : -EWOULDBLOCK;
2007 spin_lock(q.lock_ptr);
2009 * Fixup the pi_state owner and possibly acquire the lock if we
2010 * haven't already.
2012 res = fixup_owner(uaddr, fshared, &q, !ret);
2014 * If fixup_owner() returned an error, proprogate that. If it acquired
2015 * the lock, clear our -ETIMEDOUT or -EINTR.
2017 if (res)
2018 ret = (res < 0) ? res : 0;
2021 * If fixup_owner() faulted and was unable to handle the fault, unlock
2022 * it and return the fault to userspace.
2024 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2025 rt_mutex_unlock(&q.pi_state->pi_mutex);
2027 /* Unqueue and drop the lock */
2028 unqueue_me_pi(&q);
2030 goto out_put_key;
2032 out_unlock_put_key:
2033 queue_unlock(&q, hb);
2035 out_put_key:
2036 put_futex_key(fshared, &q.key);
2037 out:
2038 if (to)
2039 destroy_hrtimer_on_stack(&to->timer);
2040 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2042 uaddr_faulted:
2043 queue_unlock(&q, hb);
2045 ret = fault_in_user_writeable(uaddr);
2046 if (ret)
2047 goto out_put_key;
2049 if (!fshared)
2050 goto retry_private;
2052 put_futex_key(fshared, &q.key);
2053 goto retry;
2057 * Userspace attempted a TID -> 0 atomic transition, and failed.
2058 * This is the in-kernel slowpath: we look up the PI state (if any),
2059 * and do the rt-mutex unlock.
2061 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2063 struct futex_hash_bucket *hb;
2064 struct futex_q *this, *next;
2065 u32 uval;
2066 struct plist_head *head;
2067 union futex_key key = FUTEX_KEY_INIT;
2068 int ret;
2070 retry:
2071 if (get_user(uval, uaddr))
2072 return -EFAULT;
2074 * We release only a lock we actually own:
2076 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2077 return -EPERM;
2079 ret = get_futex_key(uaddr, fshared, &key);
2080 if (unlikely(ret != 0))
2081 goto out;
2083 hb = hash_futex(&key);
2084 spin_lock(&hb->lock);
2087 * To avoid races, try to do the TID -> 0 atomic transition
2088 * again. If it succeeds then we can return without waking
2089 * anyone else up:
2091 if (!(uval & FUTEX_OWNER_DIED))
2092 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2095 if (unlikely(uval == -EFAULT))
2096 goto pi_faulted;
2098 * Rare case: we managed to release the lock atomically,
2099 * no need to wake anyone else up:
2101 if (unlikely(uval == task_pid_vnr(current)))
2102 goto out_unlock;
2105 * Ok, other tasks may need to be woken up - check waiters
2106 * and do the wakeup if necessary:
2108 head = &hb->chain;
2110 plist_for_each_entry_safe(this, next, head, list) {
2111 if (!match_futex (&this->key, &key))
2112 continue;
2113 ret = wake_futex_pi(uaddr, uval, this);
2115 * The atomic access to the futex value
2116 * generated a pagefault, so retry the
2117 * user-access and the wakeup:
2119 if (ret == -EFAULT)
2120 goto pi_faulted;
2121 goto out_unlock;
2124 * No waiters - kernel unlocks the futex:
2126 if (!(uval & FUTEX_OWNER_DIED)) {
2127 ret = unlock_futex_pi(uaddr, uval);
2128 if (ret == -EFAULT)
2129 goto pi_faulted;
2132 out_unlock:
2133 spin_unlock(&hb->lock);
2134 put_futex_key(fshared, &key);
2136 out:
2137 return ret;
2139 pi_faulted:
2140 spin_unlock(&hb->lock);
2141 put_futex_key(fshared, &key);
2143 ret = fault_in_user_writeable(uaddr);
2144 if (!ret)
2145 goto retry;
2147 return ret;
2151 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2152 * @hb: the hash_bucket futex_q was original enqueued on
2153 * @q: the futex_q woken while waiting to be requeued
2154 * @key2: the futex_key of the requeue target futex
2155 * @timeout: the timeout associated with the wait (NULL if none)
2157 * Detect if the task was woken on the initial futex as opposed to the requeue
2158 * target futex. If so, determine if it was a timeout or a signal that caused
2159 * the wakeup and return the appropriate error code to the caller. Must be
2160 * called with the hb lock held.
2162 * Returns
2163 * 0 - no early wakeup detected
2164 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2166 static inline
2167 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2168 struct futex_q *q, union futex_key *key2,
2169 struct hrtimer_sleeper *timeout)
2171 int ret = 0;
2174 * With the hb lock held, we avoid races while we process the wakeup.
2175 * We only need to hold hb (and not hb2) to ensure atomicity as the
2176 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2177 * It can't be requeued from uaddr2 to something else since we don't
2178 * support a PI aware source futex for requeue.
2180 if (!match_futex(&q->key, key2)) {
2181 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2183 * We were woken prior to requeue by a timeout or a signal.
2184 * Unqueue the futex_q and determine which it was.
2186 plist_del(&q->list, &q->list.plist);
2188 /* Handle spurious wakeups gracefully */
2189 ret = -EWOULDBLOCK;
2190 if (timeout && !timeout->task)
2191 ret = -ETIMEDOUT;
2192 else if (signal_pending(current))
2193 ret = -ERESTARTNOINTR;
2195 return ret;
2199 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2200 * @uaddr: the futex we initially wait on (non-pi)
2201 * @fshared: whether the futexes are shared (1) or not (0). They must be
2202 * the same type, no requeueing from private to shared, etc.
2203 * @val: the expected value of uaddr
2204 * @abs_time: absolute timeout
2205 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2206 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2207 * @uaddr2: the pi futex we will take prior to returning to user-space
2209 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2210 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2211 * complete the acquisition of the rt_mutex prior to returning to userspace.
2212 * This ensures the rt_mutex maintains an owner when it has waiters; without
2213 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2214 * need to.
2216 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2217 * via the following:
2218 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2219 * 2) wakeup on uaddr2 after a requeue
2220 * 3) signal
2221 * 4) timeout
2223 * If 3, cleanup and return -ERESTARTNOINTR.
2225 * If 2, we may then block on trying to take the rt_mutex and return via:
2226 * 5) successful lock
2227 * 6) signal
2228 * 7) timeout
2229 * 8) other lock acquisition failure
2231 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2233 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2235 * Returns:
2236 * 0 - On success
2237 * <0 - On error
2239 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2240 u32 val, ktime_t *abs_time, u32 bitset,
2241 int clockrt, u32 __user *uaddr2)
2243 struct hrtimer_sleeper timeout, *to = NULL;
2244 struct rt_mutex_waiter rt_waiter;
2245 struct rt_mutex *pi_mutex = NULL;
2246 struct futex_hash_bucket *hb;
2247 union futex_key key2;
2248 struct futex_q q;
2249 int res, ret;
2251 if (!bitset)
2252 return -EINVAL;
2254 if (abs_time) {
2255 to = &timeout;
2256 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2257 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2258 hrtimer_init_sleeper(to, current);
2259 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2260 current->timer_slack_ns);
2264 * The waiter is allocated on our stack, manipulated by the requeue
2265 * code while we sleep on uaddr.
2267 debug_rt_mutex_init_waiter(&rt_waiter);
2268 rt_waiter.task = NULL;
2270 key2 = FUTEX_KEY_INIT;
2271 ret = get_futex_key(uaddr2, fshared, &key2);
2272 if (unlikely(ret != 0))
2273 goto out;
2275 q.pi_state = NULL;
2276 q.bitset = bitset;
2277 q.rt_waiter = &rt_waiter;
2278 q.requeue_pi_key = &key2;
2280 /* Prepare to wait on uaddr. */
2281 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2282 if (ret)
2283 goto out_key2;
2285 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2286 futex_wait_queue_me(hb, &q, to);
2288 spin_lock(&hb->lock);
2289 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2290 spin_unlock(&hb->lock);
2291 if (ret)
2292 goto out_put_keys;
2295 * In order for us to be here, we know our q.key == key2, and since
2296 * we took the hb->lock above, we also know that futex_requeue() has
2297 * completed and we no longer have to concern ourselves with a wakeup
2298 * race with the atomic proxy lock acquition by the requeue code.
2301 /* Check if the requeue code acquired the second futex for us. */
2302 if (!q.rt_waiter) {
2304 * Got the lock. We might not be the anticipated owner if we
2305 * did a lock-steal - fix up the PI-state in that case.
2307 if (q.pi_state && (q.pi_state->owner != current)) {
2308 spin_lock(q.lock_ptr);
2309 ret = fixup_pi_state_owner(uaddr2, &q, current,
2310 fshared);
2311 spin_unlock(q.lock_ptr);
2313 } else {
2315 * We have been woken up by futex_unlock_pi(), a timeout, or a
2316 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2317 * the pi_state.
2319 WARN_ON(!&q.pi_state);
2320 pi_mutex = &q.pi_state->pi_mutex;
2321 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2322 debug_rt_mutex_free_waiter(&rt_waiter);
2324 spin_lock(q.lock_ptr);
2326 * Fixup the pi_state owner and possibly acquire the lock if we
2327 * haven't already.
2329 res = fixup_owner(uaddr2, fshared, &q, !ret);
2331 * If fixup_owner() returned an error, proprogate that. If it
2332 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2334 if (res)
2335 ret = (res < 0) ? res : 0;
2337 /* Unqueue and drop the lock. */
2338 unqueue_me_pi(&q);
2342 * If fixup_pi_state_owner() faulted and was unable to handle the
2343 * fault, unlock the rt_mutex and return the fault to userspace.
2345 if (ret == -EFAULT) {
2346 if (rt_mutex_owner(pi_mutex) == current)
2347 rt_mutex_unlock(pi_mutex);
2348 } else if (ret == -EINTR) {
2350 * We've already been requeued, but cannot restart by calling
2351 * futex_lock_pi() directly. We could restart this syscall, but
2352 * it would detect that the user space "val" changed and return
2353 * -EWOULDBLOCK. Save the overhead of the restart and return
2354 * -EWOULDBLOCK directly.
2356 ret = -EWOULDBLOCK;
2359 out_put_keys:
2360 put_futex_key(fshared, &q.key);
2361 out_key2:
2362 put_futex_key(fshared, &key2);
2364 out:
2365 if (to) {
2366 hrtimer_cancel(&to->timer);
2367 destroy_hrtimer_on_stack(&to->timer);
2369 return ret;
2373 * Support for robust futexes: the kernel cleans up held futexes at
2374 * thread exit time.
2376 * Implementation: user-space maintains a per-thread list of locks it
2377 * is holding. Upon do_exit(), the kernel carefully walks this list,
2378 * and marks all locks that are owned by this thread with the
2379 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2380 * always manipulated with the lock held, so the list is private and
2381 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2382 * field, to allow the kernel to clean up if the thread dies after
2383 * acquiring the lock, but just before it could have added itself to
2384 * the list. There can only be one such pending lock.
2388 * sys_set_robust_list() - Set the robust-futex list head of a task
2389 * @head: pointer to the list-head
2390 * @len: length of the list-head, as userspace expects
2392 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2393 size_t, len)
2395 if (!futex_cmpxchg_enabled)
2396 return -ENOSYS;
2398 * The kernel knows only one size for now:
2400 if (unlikely(len != sizeof(*head)))
2401 return -EINVAL;
2403 current->robust_list = head;
2405 return 0;
2409 * sys_get_robust_list() - Get the robust-futex list head of a task
2410 * @pid: pid of the process [zero for current task]
2411 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2412 * @len_ptr: pointer to a length field, the kernel fills in the header size
2414 SYSCALL_DEFINE3(get_robust_list, int, pid,
2415 struct robust_list_head __user * __user *, head_ptr,
2416 size_t __user *, len_ptr)
2418 struct robust_list_head __user *head;
2419 unsigned long ret;
2420 const struct cred *cred = current_cred(), *pcred;
2422 if (!futex_cmpxchg_enabled)
2423 return -ENOSYS;
2425 if (!pid)
2426 head = current->robust_list;
2427 else {
2428 struct task_struct *p;
2430 ret = -ESRCH;
2431 rcu_read_lock();
2432 p = find_task_by_vpid(pid);
2433 if (!p)
2434 goto err_unlock;
2435 ret = -EPERM;
2436 pcred = __task_cred(p);
2437 if (cred->euid != pcred->euid &&
2438 cred->euid != pcred->uid &&
2439 !capable(CAP_SYS_PTRACE))
2440 goto err_unlock;
2441 head = p->robust_list;
2442 rcu_read_unlock();
2445 if (put_user(sizeof(*head), len_ptr))
2446 return -EFAULT;
2447 return put_user(head, head_ptr);
2449 err_unlock:
2450 rcu_read_unlock();
2452 return ret;
2456 * Process a futex-list entry, check whether it's owned by the
2457 * dying task, and do notification if so:
2459 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2461 u32 uval, nval, mval;
2463 retry:
2464 if (get_user(uval, uaddr))
2465 return -1;
2467 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2469 * Ok, this dying thread is truly holding a futex
2470 * of interest. Set the OWNER_DIED bit atomically
2471 * via cmpxchg, and if the value had FUTEX_WAITERS
2472 * set, wake up a waiter (if any). (We have to do a
2473 * futex_wake() even if OWNER_DIED is already set -
2474 * to handle the rare but possible case of recursive
2475 * thread-death.) The rest of the cleanup is done in
2476 * userspace.
2478 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2479 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2481 if (nval == -EFAULT)
2482 return -1;
2484 if (nval != uval)
2485 goto retry;
2488 * Wake robust non-PI futexes here. The wakeup of
2489 * PI futexes happens in exit_pi_state():
2491 if (!pi && (uval & FUTEX_WAITERS))
2492 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2494 return 0;
2498 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2500 static inline int fetch_robust_entry(struct robust_list __user **entry,
2501 struct robust_list __user * __user *head,
2502 int *pi)
2504 unsigned long uentry;
2506 if (get_user(uentry, (unsigned long __user *)head))
2507 return -EFAULT;
2509 *entry = (void __user *)(uentry & ~1UL);
2510 *pi = uentry & 1;
2512 return 0;
2516 * Walk curr->robust_list (very carefully, it's a userspace list!)
2517 * and mark any locks found there dead, and notify any waiters.
2519 * We silently return on any sign of list-walking problem.
2521 void exit_robust_list(struct task_struct *curr)
2523 struct robust_list_head __user *head = curr->robust_list;
2524 struct robust_list __user *entry, *next_entry, *pending;
2525 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2526 unsigned long futex_offset;
2527 int rc;
2529 if (!futex_cmpxchg_enabled)
2530 return;
2533 * Fetch the list head (which was registered earlier, via
2534 * sys_set_robust_list()):
2536 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2537 return;
2539 * Fetch the relative futex offset:
2541 if (get_user(futex_offset, &head->futex_offset))
2542 return;
2544 * Fetch any possibly pending lock-add first, and handle it
2545 * if it exists:
2547 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2548 return;
2550 next_entry = NULL; /* avoid warning with gcc */
2551 while (entry != &head->list) {
2553 * Fetch the next entry in the list before calling
2554 * handle_futex_death:
2556 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2558 * A pending lock might already be on the list, so
2559 * don't process it twice:
2561 if (entry != pending)
2562 if (handle_futex_death((void __user *)entry + futex_offset,
2563 curr, pi))
2564 return;
2565 if (rc)
2566 return;
2567 entry = next_entry;
2568 pi = next_pi;
2570 * Avoid excessively long or circular lists:
2572 if (!--limit)
2573 break;
2575 cond_resched();
2578 if (pending)
2579 handle_futex_death((void __user *)pending + futex_offset,
2580 curr, pip);
2583 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2584 u32 __user *uaddr2, u32 val2, u32 val3)
2586 int clockrt, ret = -ENOSYS;
2587 int cmd = op & FUTEX_CMD_MASK;
2588 int fshared = 0;
2590 if (!(op & FUTEX_PRIVATE_FLAG))
2591 fshared = 1;
2593 clockrt = op & FUTEX_CLOCK_REALTIME;
2594 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2595 return -ENOSYS;
2597 switch (cmd) {
2598 case FUTEX_WAIT:
2599 val3 = FUTEX_BITSET_MATCH_ANY;
2600 case FUTEX_WAIT_BITSET:
2601 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2602 break;
2603 case FUTEX_WAKE:
2604 val3 = FUTEX_BITSET_MATCH_ANY;
2605 case FUTEX_WAKE_BITSET:
2606 ret = futex_wake(uaddr, fshared, val, val3);
2607 break;
2608 case FUTEX_REQUEUE:
2609 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2610 break;
2611 case FUTEX_CMP_REQUEUE:
2612 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2614 break;
2615 case FUTEX_WAKE_OP:
2616 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2617 break;
2618 case FUTEX_LOCK_PI:
2619 if (futex_cmpxchg_enabled)
2620 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2621 break;
2622 case FUTEX_UNLOCK_PI:
2623 if (futex_cmpxchg_enabled)
2624 ret = futex_unlock_pi(uaddr, fshared);
2625 break;
2626 case FUTEX_TRYLOCK_PI:
2627 if (futex_cmpxchg_enabled)
2628 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2629 break;
2630 case FUTEX_WAIT_REQUEUE_PI:
2631 val3 = FUTEX_BITSET_MATCH_ANY;
2632 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2633 clockrt, uaddr2);
2634 break;
2635 case FUTEX_CMP_REQUEUE_PI:
2636 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2638 break;
2639 default:
2640 ret = -ENOSYS;
2642 return ret;
2646 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2647 struct timespec __user *, utime, u32 __user *, uaddr2,
2648 u32, val3)
2650 struct timespec ts;
2651 ktime_t t, *tp = NULL;
2652 u32 val2 = 0;
2653 int cmd = op & FUTEX_CMD_MASK;
2655 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2656 cmd == FUTEX_WAIT_BITSET ||
2657 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2658 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2659 return -EFAULT;
2660 if (!timespec_valid(&ts))
2661 return -EINVAL;
2663 t = timespec_to_ktime(ts);
2664 if (cmd == FUTEX_WAIT)
2665 t = ktime_add_safe(ktime_get(), t);
2666 tp = &t;
2669 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2670 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2672 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2673 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2674 val2 = (u32) (unsigned long) utime;
2676 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2679 static int __init futex_init(void)
2681 u32 curval;
2682 int i;
2685 * This will fail and we want it. Some arch implementations do
2686 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2687 * functionality. We want to know that before we call in any
2688 * of the complex code paths. Also we want to prevent
2689 * registration of robust lists in that case. NULL is
2690 * guaranteed to fault and we get -EFAULT on functional
2691 * implementation, the non functional ones will return
2692 * -ENOSYS.
2694 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2695 if (curval == -EFAULT)
2696 futex_cmpxchg_enabled = 1;
2698 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2699 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2700 spin_lock_init(&futex_queues[i].lock);
2703 return 0;
2705 __initcall(futex_init);