htcleo: add Cotulla's fixes for non-android touchscreen!
[htc-linux.git] / kernel / sched.c
bloba7ee0eb5009cb640bc4ef5a0de8899538d819465
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group.children);
319 #endif
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group;
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
349 struct task_group *tg;
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
378 #else
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
383 return NULL;
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
393 u64 exec_clock;
394 u64 min_vruntime;
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
399 struct list_head tasks;
400 struct list_head *balance_iterator;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity *curr, *next, *last;
408 unsigned int nr_spread_over;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
424 #ifdef CONFIG_SMP
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
436 unsigned long h_load;
439 * this cpu's part of tg->shares
441 unsigned long shares;
444 * load.weight at the time we set shares
446 unsigned long rq_weight;
447 #endif
448 #endif
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
485 #ifdef CONFIG_SMP
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain;
517 #endif
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned long last_tick_seen;
539 unsigned char in_nohz_recently;
540 #endif
541 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load;
543 unsigned long nr_load_updates;
544 u64 nr_switches;
545 u64 nr_migrations_in;
547 struct cfs_rq cfs;
548 struct rt_rq rt;
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
564 unsigned long nr_uninterruptible;
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
570 u64 clock;
572 atomic_t nr_iowait;
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
587 unsigned long avg_load_per_task;
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
641 static inline int cpu_of(struct rq *rq)
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
666 inline void update_rq_clock(struct rq *rq)
668 rq->clock = sched_clock_cpu(cpu_of(rq));
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
681 * runqueue_is_locked
682 * @cpu: the processor in question.
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
688 int runqueue_is_locked(int cpu)
690 return spin_is_locked(&cpu_rq(cpu)->lock);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
700 enum {
701 #include "sched_features.h"
704 #undef SCHED_FEAT
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
713 #undef SCHED_FEAT
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
724 #undef SCHED_FEAT
726 static int sched_feat_show(struct seq_file *m, void *v)
728 int i;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
735 seq_puts(m, "\n");
737 return 0;
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
749 if (cnt > 63)
750 cnt = 63;
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
755 buf[cnt] = 0;
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
774 if (!sched_feat_names[i])
775 return -EINVAL;
777 filp->f_pos += cnt;
779 return cnt;
782 static int sched_feat_open(struct inode *inode, struct file *filp)
784 return single_open(filp, sched_feat_show, NULL);
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
826 unsigned int sysctl_sched_shares_thresh = 4;
829 * period over which we average the RT time consumption, measured
830 * in ms.
832 * default: 1s
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
840 unsigned int sysctl_sched_rt_period = 1000000;
842 static __read_mostly int scheduler_running;
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
848 int sysctl_sched_rt_runtime = 950000;
850 static inline u64 global_rt_period(void)
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
855 static inline u64 global_rt_runtime(void)
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
870 static inline int task_current(struct rq *rq, struct task_struct *p)
872 return rq->curr == p;
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
878 return task_current(rq, p);
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898 spin_unlock_irq(&rq->lock);
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 #ifdef CONFIG_SMP
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 spin_unlock_irq(&rq->lock);
923 #else
924 spin_unlock(&rq->lock);
925 #endif
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 #ifdef CONFIG_SMP
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 spin_unlock(&rq->lock);
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
969 struct rq *rq;
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 spin_unlock_irqrestore(&rq->lock, *flags);
981 void task_rq_unlock_wait(struct task_struct *p)
983 struct rq *rq = task_rq(p);
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 spin_unlock_wait(&rq->lock);
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
992 spin_unlock(&rq->lock);
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
998 spin_unlock_irqrestore(&rq->lock, *flags);
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1007 struct rq *rq;
1009 local_irq_disable();
1010 rq = this_rq();
1011 spin_lock(&rq->lock);
1013 return rq;
1016 #ifdef CONFIG_SCHED_HRTICK
1018 * Use HR-timers to deliver accurate preemption points.
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1033 static inline int hrtick_enabled(struct rq *rq)
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1042 static void hrtick_clear(struct rq *rq)
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058 spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 spin_unlock(&rq->lock);
1063 return HRTIMER_NORESTART;
1066 #ifdef CONFIG_SMP
1068 * called from hardirq (IPI) context
1070 static void __hrtick_start(void *arg)
1072 struct rq *rq = arg;
1074 spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 spin_unlock(&rq->lock);
1081 * Called to set the hrtick timer state.
1083 * called with rq->lock held and irqs disabled
1085 static void hrtick_start(struct rq *rq, u64 delay)
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090 hrtimer_set_expires(timer, time);
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 int cpu = (int)(long)hcpu;
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1116 return NOTIFY_DONE;
1119 static __init void init_hrtick(void)
1121 hotcpu_notifier(hotplug_hrtick, 0);
1123 #else
1125 * Called to set the hrtick timer state.
1127 * called with rq->lock held and irqs disabled
1129 static void hrtick_start(struct rq *rq, u64 delay)
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (test_tsk_need_resched(p))
1187 return;
1189 set_tsk_need_resched(p);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_need_resched(rq->idle);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 static u64 sched_avg_period(void)
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1259 static void sched_avg_update(struct rq *rq)
1261 s64 period = sched_avg_period();
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1278 assert_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1307 u64 tmp;
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426 CPUACCT_STAT_NSTATS,
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_add(&rq->load, load);
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 update_load_sub(&rq->load, load);
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 struct task_group *parent, *child;
1459 int ret;
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1472 continue;
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1485 return ret;
1488 static int tg_nop(struct task_group *tg, void *data)
1490 return 0;
1492 #endif
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1498 return cpu_rq(cpu)->load.weight;
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1508 static unsigned long source_load(int cpu, int type)
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1516 return min(rq->cpu_load[type-1], total);
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1523 static unsigned long target_load(int cpu, int type)
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1531 return max(rq->cpu_load[type-1], total);
1534 static struct sched_group *group_of(int cpu)
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1538 if (!sd)
1539 return NULL;
1541 return sd->groups;
1544 static unsigned long power_of(int cpu)
1546 struct sched_group *group = group_of(cpu);
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1551 return group->cpu_power;
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1566 return rq->avg_load_per_task;
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1571 static __read_mostly unsigned long *update_shares_data;
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1576 * Calculate and set the cpu's group shares.
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1605 spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1618 static int tg_shares_up(struct task_group *tg, void *data)
1620 unsigned long weight, rq_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1626 if (!tg->se[0])
1627 return 0;
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1641 if (!weight)
1642 weight = NICE_0_LOAD;
1644 rq_weight += weight;
1645 shares += tg->cfs_rq[i]->shares;
1648 if ((!shares && rq_weight) || shares > tg->shares)
1649 shares = tg->shares;
1651 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652 shares = tg->shares;
1654 for_each_cpu(i, sched_domain_span(sd))
1655 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1657 local_irq_restore(flags);
1659 return 0;
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
1667 static int tg_load_down(struct task_group *tg, void *data)
1669 unsigned long load;
1670 long cpu = (long)data;
1672 if (!tg->parent) {
1673 load = cpu_rq(cpu)->load.weight;
1674 } else {
1675 load = tg->parent->cfs_rq[cpu]->h_load;
1676 load *= tg->cfs_rq[cpu]->shares;
1677 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 tg->cfs_rq[cpu]->h_load = load;
1682 return 0;
1685 static void update_shares(struct sched_domain *sd)
1687 s64 elapsed;
1688 u64 now;
1690 if (root_task_group_empty())
1691 return;
1693 now = cpu_clock(raw_smp_processor_id());
1694 elapsed = now - sd->last_update;
1696 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697 sd->last_update = now;
1698 walk_tg_tree(tg_nop, tg_shares_up, sd);
1702 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1704 if (root_task_group_empty())
1705 return;
1707 spin_unlock(&rq->lock);
1708 update_shares(sd);
1709 spin_lock(&rq->lock);
1712 static void update_h_load(long cpu)
1714 if (root_task_group_empty())
1715 return;
1717 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 #else
1722 static inline void update_shares(struct sched_domain *sd)
1726 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1730 #endif
1732 #ifdef CONFIG_PREEMPT
1734 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
1744 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(this_rq->lock)
1746 __acquires(busiest->lock)
1747 __acquires(this_rq->lock)
1749 spin_unlock(&this_rq->lock);
1750 double_rq_lock(this_rq, busiest);
1752 return 1;
1755 #else
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1763 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1768 int ret = 0;
1770 if (unlikely(!spin_trylock(&busiest->lock))) {
1771 if (busiest < this_rq) {
1772 spin_unlock(&this_rq->lock);
1773 spin_lock(&busiest->lock);
1774 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775 ret = 1;
1776 } else
1777 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1779 return ret;
1782 #endif /* CONFIG_PREEMPT */
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1787 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq->lock);
1792 BUG_ON(1);
1795 return _double_lock_balance(this_rq, busiest);
1798 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799 __releases(busiest->lock)
1801 spin_unlock(&busiest->lock);
1802 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1804 #endif
1806 #ifdef CONFIG_FAIR_GROUP_SCHED
1807 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809 #ifdef CONFIG_SMP
1810 cfs_rq->shares = shares;
1811 #endif
1813 #endif
1815 static void calc_load_account_active(struct rq *this_rq);
1816 static void update_sysctl(void);
1818 #include "sched_stats.h"
1819 #include "sched_idletask.c"
1820 #include "sched_fair.c"
1821 #include "sched_rt.c"
1822 #ifdef CONFIG_SCHED_DEBUG
1823 # include "sched_debug.c"
1824 #endif
1826 #define sched_class_highest (&rt_sched_class)
1827 #define for_each_class(class) \
1828 for (class = sched_class_highest; class; class = class->next)
1830 static void inc_nr_running(struct rq *rq)
1832 rq->nr_running++;
1835 static void dec_nr_running(struct rq *rq)
1837 rq->nr_running--;
1840 static void set_load_weight(struct task_struct *p)
1842 if (task_has_rt_policy(p)) {
1843 p->se.load.weight = prio_to_weight[0] * 2;
1844 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1845 return;
1849 * SCHED_IDLE tasks get minimal weight:
1851 if (p->policy == SCHED_IDLE) {
1852 p->se.load.weight = WEIGHT_IDLEPRIO;
1853 p->se.load.inv_weight = WMULT_IDLEPRIO;
1854 return;
1857 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1858 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1861 static void update_avg(u64 *avg, u64 sample)
1863 s64 diff = sample - *avg;
1864 *avg += diff >> 3;
1867 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1869 if (wakeup)
1870 p->se.start_runtime = p->se.sum_exec_runtime;
1872 sched_info_queued(p);
1873 p->sched_class->enqueue_task(rq, p, wakeup);
1874 p->se.on_rq = 1;
1877 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1879 if (sleep) {
1880 if (p->se.last_wakeup) {
1881 update_avg(&p->se.avg_overlap,
1882 p->se.sum_exec_runtime - p->se.last_wakeup);
1883 p->se.last_wakeup = 0;
1884 } else {
1885 update_avg(&p->se.avg_wakeup,
1886 sysctl_sched_wakeup_granularity);
1890 sched_info_dequeued(p);
1891 p->sched_class->dequeue_task(rq, p, sleep);
1892 p->se.on_rq = 0;
1896 * __normal_prio - return the priority that is based on the static prio
1898 static inline int __normal_prio(struct task_struct *p)
1900 return p->static_prio;
1904 * Calculate the expected normal priority: i.e. priority
1905 * without taking RT-inheritance into account. Might be
1906 * boosted by interactivity modifiers. Changes upon fork,
1907 * setprio syscalls, and whenever the interactivity
1908 * estimator recalculates.
1910 static inline int normal_prio(struct task_struct *p)
1912 int prio;
1914 if (task_has_rt_policy(p))
1915 prio = MAX_RT_PRIO-1 - p->rt_priority;
1916 else
1917 prio = __normal_prio(p);
1918 return prio;
1922 * Calculate the current priority, i.e. the priority
1923 * taken into account by the scheduler. This value might
1924 * be boosted by RT tasks, or might be boosted by
1925 * interactivity modifiers. Will be RT if the task got
1926 * RT-boosted. If not then it returns p->normal_prio.
1928 static int effective_prio(struct task_struct *p)
1930 p->normal_prio = normal_prio(p);
1932 * If we are RT tasks or we were boosted to RT priority,
1933 * keep the priority unchanged. Otherwise, update priority
1934 * to the normal priority:
1936 if (!rt_prio(p->prio))
1937 return p->normal_prio;
1938 return p->prio;
1942 * activate_task - move a task to the runqueue.
1944 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1946 if (task_contributes_to_load(p))
1947 rq->nr_uninterruptible--;
1949 enqueue_task(rq, p, wakeup);
1950 inc_nr_running(rq);
1954 * deactivate_task - remove a task from the runqueue.
1956 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1958 if (task_contributes_to_load(p))
1959 rq->nr_uninterruptible++;
1961 dequeue_task(rq, p, sleep);
1962 dec_nr_running(rq);
1966 * task_curr - is this task currently executing on a CPU?
1967 * @p: the task in question.
1969 inline int task_curr(const struct task_struct *p)
1971 return cpu_curr(task_cpu(p)) == p;
1974 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1976 set_task_rq(p, cpu);
1977 #ifdef CONFIG_SMP
1979 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1980 * successfuly executed on another CPU. We must ensure that updates of
1981 * per-task data have been completed by this moment.
1983 smp_wmb();
1984 task_thread_info(p)->cpu = cpu;
1985 #endif
1988 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1989 const struct sched_class *prev_class,
1990 int oldprio, int running)
1992 if (prev_class != p->sched_class) {
1993 if (prev_class->switched_from)
1994 prev_class->switched_from(rq, p, running);
1995 p->sched_class->switched_to(rq, p, running);
1996 } else
1997 p->sched_class->prio_changed(rq, p, oldprio, running);
2001 * kthread_bind - bind a just-created kthread to a cpu.
2002 * @p: thread created by kthread_create().
2003 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2005 * Description: This function is equivalent to set_cpus_allowed(),
2006 * except that @cpu doesn't need to be online, and the thread must be
2007 * stopped (i.e., just returned from kthread_create()).
2009 * Function lives here instead of kthread.c because it messes with
2010 * scheduler internals which require locking.
2012 void kthread_bind(struct task_struct *p, unsigned int cpu)
2014 struct rq *rq = cpu_rq(cpu);
2015 unsigned long flags;
2017 /* Must have done schedule() in kthread() before we set_task_cpu */
2018 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2019 WARN_ON(1);
2020 return;
2023 spin_lock_irqsave(&rq->lock, flags);
2024 set_task_cpu(p, cpu);
2025 p->cpus_allowed = cpumask_of_cpu(cpu);
2026 p->rt.nr_cpus_allowed = 1;
2027 p->flags |= PF_THREAD_BOUND;
2028 spin_unlock_irqrestore(&rq->lock, flags);
2030 EXPORT_SYMBOL(kthread_bind);
2032 #ifdef CONFIG_SMP
2034 * Is this task likely cache-hot:
2036 static int
2037 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2039 s64 delta;
2041 if (p->sched_class != &fair_sched_class)
2042 return 0;
2045 * Buddy candidates are cache hot:
2047 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2048 (&p->se == cfs_rq_of(&p->se)->next ||
2049 &p->se == cfs_rq_of(&p->se)->last))
2050 return 1;
2052 if (sysctl_sched_migration_cost == -1)
2053 return 1;
2054 if (sysctl_sched_migration_cost == 0)
2055 return 0;
2057 delta = now - p->se.exec_start;
2059 return delta < (s64)sysctl_sched_migration_cost;
2063 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2065 int old_cpu = task_cpu(p);
2066 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2067 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2068 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2069 u64 clock_offset;
2071 clock_offset = old_rq->clock - new_rq->clock;
2073 trace_sched_migrate_task(p, new_cpu);
2075 #ifdef CONFIG_SCHEDSTATS
2076 if (p->se.wait_start)
2077 p->se.wait_start -= clock_offset;
2078 if (p->se.sleep_start)
2079 p->se.sleep_start -= clock_offset;
2080 if (p->se.block_start)
2081 p->se.block_start -= clock_offset;
2082 #endif
2083 if (old_cpu != new_cpu) {
2084 p->se.nr_migrations++;
2085 new_rq->nr_migrations_in++;
2086 #ifdef CONFIG_SCHEDSTATS
2087 if (task_hot(p, old_rq->clock, NULL))
2088 schedstat_inc(p, se.nr_forced2_migrations);
2089 #endif
2090 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2091 1, 1, NULL, 0);
2093 p->se.vruntime -= old_cfsrq->min_vruntime -
2094 new_cfsrq->min_vruntime;
2096 __set_task_cpu(p, new_cpu);
2099 struct migration_req {
2100 struct list_head list;
2102 struct task_struct *task;
2103 int dest_cpu;
2105 struct completion done;
2109 * The task's runqueue lock must be held.
2110 * Returns true if you have to wait for migration thread.
2112 static int
2113 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2115 struct rq *rq = task_rq(p);
2118 * If the task is not on a runqueue (and not running), then
2119 * the next wake-up will properly place the task.
2121 if (!p->se.on_rq && !task_running(rq, p))
2122 return 0;
2124 init_completion(&req->done);
2125 req->task = p;
2126 req->dest_cpu = dest_cpu;
2127 list_add(&req->list, &rq->migration_queue);
2129 return 1;
2133 * wait_task_context_switch - wait for a thread to complete at least one
2134 * context switch.
2136 * @p must not be current.
2138 void wait_task_context_switch(struct task_struct *p)
2140 unsigned long nvcsw, nivcsw, flags;
2141 int running;
2142 struct rq *rq;
2144 nvcsw = p->nvcsw;
2145 nivcsw = p->nivcsw;
2146 for (;;) {
2148 * The runqueue is assigned before the actual context
2149 * switch. We need to take the runqueue lock.
2151 * We could check initially without the lock but it is
2152 * very likely that we need to take the lock in every
2153 * iteration.
2155 rq = task_rq_lock(p, &flags);
2156 running = task_running(rq, p);
2157 task_rq_unlock(rq, &flags);
2159 if (likely(!running))
2160 break;
2162 * The switch count is incremented before the actual
2163 * context switch. We thus wait for two switches to be
2164 * sure at least one completed.
2166 if ((p->nvcsw - nvcsw) > 1)
2167 break;
2168 if ((p->nivcsw - nivcsw) > 1)
2169 break;
2171 cpu_relax();
2176 * wait_task_inactive - wait for a thread to unschedule.
2178 * If @match_state is nonzero, it's the @p->state value just checked and
2179 * not expected to change. If it changes, i.e. @p might have woken up,
2180 * then return zero. When we succeed in waiting for @p to be off its CPU,
2181 * we return a positive number (its total switch count). If a second call
2182 * a short while later returns the same number, the caller can be sure that
2183 * @p has remained unscheduled the whole time.
2185 * The caller must ensure that the task *will* unschedule sometime soon,
2186 * else this function might spin for a *long* time. This function can't
2187 * be called with interrupts off, or it may introduce deadlock with
2188 * smp_call_function() if an IPI is sent by the same process we are
2189 * waiting to become inactive.
2191 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2193 unsigned long flags;
2194 int running, on_rq;
2195 unsigned long ncsw;
2196 struct rq *rq;
2198 for (;;) {
2200 * We do the initial early heuristics without holding
2201 * any task-queue locks at all. We'll only try to get
2202 * the runqueue lock when things look like they will
2203 * work out!
2205 rq = task_rq(p);
2208 * If the task is actively running on another CPU
2209 * still, just relax and busy-wait without holding
2210 * any locks.
2212 * NOTE! Since we don't hold any locks, it's not
2213 * even sure that "rq" stays as the right runqueue!
2214 * But we don't care, since "task_running()" will
2215 * return false if the runqueue has changed and p
2216 * is actually now running somewhere else!
2218 while (task_running(rq, p)) {
2219 if (match_state && unlikely(p->state != match_state))
2220 return 0;
2221 cpu_relax();
2225 * Ok, time to look more closely! We need the rq
2226 * lock now, to be *sure*. If we're wrong, we'll
2227 * just go back and repeat.
2229 rq = task_rq_lock(p, &flags);
2230 trace_sched_wait_task(rq, p);
2231 running = task_running(rq, p);
2232 on_rq = p->se.on_rq;
2233 ncsw = 0;
2234 if (!match_state || p->state == match_state)
2235 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2236 task_rq_unlock(rq, &flags);
2239 * If it changed from the expected state, bail out now.
2241 if (unlikely(!ncsw))
2242 break;
2245 * Was it really running after all now that we
2246 * checked with the proper locks actually held?
2248 * Oops. Go back and try again..
2250 if (unlikely(running)) {
2251 cpu_relax();
2252 continue;
2256 * It's not enough that it's not actively running,
2257 * it must be off the runqueue _entirely_, and not
2258 * preempted!
2260 * So if it was still runnable (but just not actively
2261 * running right now), it's preempted, and we should
2262 * yield - it could be a while.
2264 if (unlikely(on_rq)) {
2265 schedule_timeout_uninterruptible(1);
2266 continue;
2270 * Ahh, all good. It wasn't running, and it wasn't
2271 * runnable, which means that it will never become
2272 * running in the future either. We're all done!
2274 break;
2277 return ncsw;
2280 /***
2281 * kick_process - kick a running thread to enter/exit the kernel
2282 * @p: the to-be-kicked thread
2284 * Cause a process which is running on another CPU to enter
2285 * kernel-mode, without any delay. (to get signals handled.)
2287 * NOTE: this function doesnt have to take the runqueue lock,
2288 * because all it wants to ensure is that the remote task enters
2289 * the kernel. If the IPI races and the task has been migrated
2290 * to another CPU then no harm is done and the purpose has been
2291 * achieved as well.
2293 void kick_process(struct task_struct *p)
2295 int cpu;
2297 preempt_disable();
2298 cpu = task_cpu(p);
2299 if ((cpu != smp_processor_id()) && task_curr(p))
2300 smp_send_reschedule(cpu);
2301 preempt_enable();
2303 EXPORT_SYMBOL_GPL(kick_process);
2304 #endif /* CONFIG_SMP */
2307 * task_oncpu_function_call - call a function on the cpu on which a task runs
2308 * @p: the task to evaluate
2309 * @func: the function to be called
2310 * @info: the function call argument
2312 * Calls the function @func when the task is currently running. This might
2313 * be on the current CPU, which just calls the function directly
2315 void task_oncpu_function_call(struct task_struct *p,
2316 void (*func) (void *info), void *info)
2318 int cpu;
2320 preempt_disable();
2321 cpu = task_cpu(p);
2322 if (task_curr(p))
2323 smp_call_function_single(cpu, func, info, 1);
2324 preempt_enable();
2327 /***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2339 * returns failure only if the task is already active.
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2342 int wake_flags)
2344 int cpu, orig_cpu, this_cpu, success = 0;
2345 unsigned long flags;
2346 struct rq *rq, *orig_rq;
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 wake_flags &= ~WF_SYNC;
2351 this_cpu = get_cpu();
2353 smp_wmb();
2354 rq = orig_rq = task_rq_lock(p, &flags);
2355 update_rq_clock(rq);
2356 if (!(p->state & state))
2357 goto out;
2359 if (p->se.on_rq)
2360 goto out_running;
2362 cpu = task_cpu(p);
2363 orig_cpu = cpu;
2365 #ifdef CONFIG_SMP
2366 if (unlikely(task_running(rq, p)))
2367 goto out_activate;
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
2373 * First fix up the nr_uninterruptible count:
2375 if (task_contributes_to_load(p))
2376 rq->nr_uninterruptible--;
2377 p->state = TASK_WAKING;
2378 task_rq_unlock(rq, &flags);
2380 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2381 if (cpu != orig_cpu)
2382 set_task_cpu(p, cpu);
2384 rq = task_rq_lock(p, &flags);
2386 if (rq != orig_rq)
2387 update_rq_clock(rq);
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
2392 #ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2405 #endif /* CONFIG_SCHEDSTATS */
2407 out_activate:
2408 #endif /* CONFIG_SMP */
2409 schedstat_inc(p, se.nr_wakeups);
2410 if (wake_flags & WF_SYNC)
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
2418 activate_task(rq, p, 1);
2419 success = 1;
2422 * Only attribute actual wakeups done by this task.
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2434 se->last_wakeup = se->sum_exec_runtime;
2437 out_running:
2438 trace_sched_wakeup(rq, p, success);
2439 check_preempt_curr(rq, p, wake_flags);
2441 p->state = TASK_RUNNING;
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2456 #endif
2457 out:
2458 task_rq_unlock(rq, &flags);
2459 put_cpu();
2461 return success;
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2475 int wake_up_process(struct task_struct *p)
2477 return try_to_wake_up(p, TASK_ALL, 0);
2479 EXPORT_SYMBOL(wake_up_process);
2481 int wake_up_state(struct task_struct *p, unsigned int state)
2483 return try_to_wake_up(p, state, 0);
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2490 * __sched_fork() is basic setup used by init_idle() too:
2492 static void __sched_fork(struct task_struct *p)
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
2496 p->se.prev_sum_exec_runtime = 0;
2497 p->se.nr_migrations = 0;
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2502 p->se.avg_running = 0;
2504 #ifdef CONFIG_SCHEDSTATS
2505 p->se.wait_start = 0;
2506 p->se.wait_max = 0;
2507 p->se.wait_count = 0;
2508 p->se.wait_sum = 0;
2510 p->se.sleep_start = 0;
2511 p->se.sleep_max = 0;
2512 p->se.sum_sleep_runtime = 0;
2514 p->se.block_start = 0;
2515 p->se.block_max = 0;
2516 p->se.exec_max = 0;
2517 p->se.slice_max = 0;
2519 p->se.nr_migrations_cold = 0;
2520 p->se.nr_failed_migrations_affine = 0;
2521 p->se.nr_failed_migrations_running = 0;
2522 p->se.nr_failed_migrations_hot = 0;
2523 p->se.nr_forced_migrations = 0;
2524 p->se.nr_forced2_migrations = 0;
2526 p->se.nr_wakeups = 0;
2527 p->se.nr_wakeups_sync = 0;
2528 p->se.nr_wakeups_migrate = 0;
2529 p->se.nr_wakeups_local = 0;
2530 p->se.nr_wakeups_remote = 0;
2531 p->se.nr_wakeups_affine = 0;
2532 p->se.nr_wakeups_affine_attempts = 0;
2533 p->se.nr_wakeups_passive = 0;
2534 p->se.nr_wakeups_idle = 0;
2536 #endif
2538 INIT_LIST_HEAD(&p->rt.run_list);
2539 p->se.on_rq = 0;
2540 INIT_LIST_HEAD(&p->se.group_node);
2542 #ifdef CONFIG_PREEMPT_NOTIFIERS
2543 INIT_HLIST_HEAD(&p->preempt_notifiers);
2544 #endif
2547 * We mark the process as running here, but have not actually
2548 * inserted it onto the runqueue yet. This guarantees that
2549 * nobody will actually run it, and a signal or other external
2550 * event cannot wake it up and insert it on the runqueue either.
2552 p->state = TASK_RUNNING;
2556 * fork()/clone()-time setup:
2558 void sched_fork(struct task_struct *p, int clone_flags)
2560 int cpu = get_cpu();
2562 __sched_fork(p);
2565 * Revert to default priority/policy on fork if requested.
2567 if (unlikely(p->sched_reset_on_fork)) {
2568 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2569 p->policy = SCHED_NORMAL;
2570 p->normal_prio = p->static_prio;
2573 if (PRIO_TO_NICE(p->static_prio) < 0) {
2574 p->static_prio = NICE_TO_PRIO(0);
2575 p->normal_prio = p->static_prio;
2576 set_load_weight(p);
2580 * We don't need the reset flag anymore after the fork. It has
2581 * fulfilled its duty:
2583 p->sched_reset_on_fork = 0;
2587 * Make sure we do not leak PI boosting priority to the child.
2589 p->prio = current->normal_prio;
2591 if (!rt_prio(p->prio))
2592 p->sched_class = &fair_sched_class;
2594 #ifdef CONFIG_SMP
2595 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2596 #endif
2597 set_task_cpu(p, cpu);
2599 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2600 if (likely(sched_info_on()))
2601 memset(&p->sched_info, 0, sizeof(p->sched_info));
2602 #endif
2603 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2604 p->oncpu = 0;
2605 #endif
2606 #ifdef CONFIG_PREEMPT
2607 /* Want to start with kernel preemption disabled. */
2608 task_thread_info(p)->preempt_count = 1;
2609 #endif
2610 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2612 put_cpu();
2616 * wake_up_new_task - wake up a newly created task for the first time.
2618 * This function will do some initial scheduler statistics housekeeping
2619 * that must be done for every newly created context, then puts the task
2620 * on the runqueue and wakes it.
2622 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2624 unsigned long flags;
2625 struct rq *rq;
2627 rq = task_rq_lock(p, &flags);
2628 BUG_ON(p->state != TASK_RUNNING);
2629 update_rq_clock(rq);
2631 if (!p->sched_class->task_new || !current->se.on_rq) {
2632 activate_task(rq, p, 0);
2633 } else {
2635 * Let the scheduling class do new task startup
2636 * management (if any):
2638 p->sched_class->task_new(rq, p);
2639 inc_nr_running(rq);
2641 trace_sched_wakeup_new(rq, p, 1);
2642 check_preempt_curr(rq, p, WF_FORK);
2643 #ifdef CONFIG_SMP
2644 if (p->sched_class->task_wake_up)
2645 p->sched_class->task_wake_up(rq, p);
2646 #endif
2647 task_rq_unlock(rq, &flags);
2650 #ifdef CONFIG_PREEMPT_NOTIFIERS
2653 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2654 * @notifier: notifier struct to register
2656 void preempt_notifier_register(struct preempt_notifier *notifier)
2658 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2660 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2663 * preempt_notifier_unregister - no longer interested in preemption notifications
2664 * @notifier: notifier struct to unregister
2666 * This is safe to call from within a preemption notifier.
2668 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2670 hlist_del(&notifier->link);
2672 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2674 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676 struct preempt_notifier *notifier;
2677 struct hlist_node *node;
2679 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2680 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2683 static void
2684 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2685 struct task_struct *next)
2687 struct preempt_notifier *notifier;
2688 struct hlist_node *node;
2690 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2691 notifier->ops->sched_out(notifier, next);
2694 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2696 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2700 static void
2701 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2702 struct task_struct *next)
2706 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2709 * prepare_task_switch - prepare to switch tasks
2710 * @rq: the runqueue preparing to switch
2711 * @prev: the current task that is being switched out
2712 * @next: the task we are going to switch to.
2714 * This is called with the rq lock held and interrupts off. It must
2715 * be paired with a subsequent finish_task_switch after the context
2716 * switch.
2718 * prepare_task_switch sets up locking and calls architecture specific
2719 * hooks.
2721 static inline void
2722 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2723 struct task_struct *next)
2725 fire_sched_out_preempt_notifiers(prev, next);
2726 prepare_lock_switch(rq, next);
2727 prepare_arch_switch(next);
2731 * finish_task_switch - clean up after a task-switch
2732 * @rq: runqueue associated with task-switch
2733 * @prev: the thread we just switched away from.
2735 * finish_task_switch must be called after the context switch, paired
2736 * with a prepare_task_switch call before the context switch.
2737 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2738 * and do any other architecture-specific cleanup actions.
2740 * Note that we may have delayed dropping an mm in context_switch(). If
2741 * so, we finish that here outside of the runqueue lock. (Doing it
2742 * with the lock held can cause deadlocks; see schedule() for
2743 * details.)
2745 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2746 __releases(rq->lock)
2748 struct mm_struct *mm = rq->prev_mm;
2749 long prev_state;
2751 rq->prev_mm = NULL;
2754 * A task struct has one reference for the use as "current".
2755 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2756 * schedule one last time. The schedule call will never return, and
2757 * the scheduled task must drop that reference.
2758 * The test for TASK_DEAD must occur while the runqueue locks are
2759 * still held, otherwise prev could be scheduled on another cpu, die
2760 * there before we look at prev->state, and then the reference would
2761 * be dropped twice.
2762 * Manfred Spraul <manfred@colorfullife.com>
2764 prev_state = prev->state;
2765 finish_arch_switch(prev);
2766 perf_event_task_sched_in(current, cpu_of(rq));
2767 finish_lock_switch(rq, prev);
2769 fire_sched_in_preempt_notifiers(current);
2770 if (mm)
2771 mmdrop(mm);
2772 if (unlikely(prev_state == TASK_DEAD)) {
2774 * Remove function-return probe instances associated with this
2775 * task and put them back on the free list.
2777 kprobe_flush_task(prev);
2778 put_task_struct(prev);
2782 #ifdef CONFIG_SMP
2784 /* assumes rq->lock is held */
2785 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2787 if (prev->sched_class->pre_schedule)
2788 prev->sched_class->pre_schedule(rq, prev);
2791 /* rq->lock is NOT held, but preemption is disabled */
2792 static inline void post_schedule(struct rq *rq)
2794 if (rq->post_schedule) {
2795 unsigned long flags;
2797 spin_lock_irqsave(&rq->lock, flags);
2798 if (rq->curr->sched_class->post_schedule)
2799 rq->curr->sched_class->post_schedule(rq);
2800 spin_unlock_irqrestore(&rq->lock, flags);
2802 rq->post_schedule = 0;
2806 #else
2808 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2812 static inline void post_schedule(struct rq *rq)
2816 #endif
2819 * schedule_tail - first thing a freshly forked thread must call.
2820 * @prev: the thread we just switched away from.
2822 asmlinkage void schedule_tail(struct task_struct *prev)
2823 __releases(rq->lock)
2825 struct rq *rq = this_rq();
2827 finish_task_switch(rq, prev);
2830 * FIXME: do we need to worry about rq being invalidated by the
2831 * task_switch?
2833 post_schedule(rq);
2835 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2836 /* In this case, finish_task_switch does not reenable preemption */
2837 preempt_enable();
2838 #endif
2839 if (current->set_child_tid)
2840 put_user(task_pid_vnr(current), current->set_child_tid);
2844 * context_switch - switch to the new MM and the new
2845 * thread's register state.
2847 static inline void
2848 context_switch(struct rq *rq, struct task_struct *prev,
2849 struct task_struct *next)
2851 struct mm_struct *mm, *oldmm;
2853 prepare_task_switch(rq, prev, next);
2854 trace_sched_switch(rq, prev, next);
2855 mm = next->mm;
2856 oldmm = prev->active_mm;
2858 * For paravirt, this is coupled with an exit in switch_to to
2859 * combine the page table reload and the switch backend into
2860 * one hypercall.
2862 arch_start_context_switch(prev);
2864 if (unlikely(!mm)) {
2865 next->active_mm = oldmm;
2866 atomic_inc(&oldmm->mm_count);
2867 enter_lazy_tlb(oldmm, next);
2868 } else
2869 switch_mm(oldmm, mm, next);
2871 if (unlikely(!prev->mm)) {
2872 prev->active_mm = NULL;
2873 rq->prev_mm = oldmm;
2876 * Since the runqueue lock will be released by the next
2877 * task (which is an invalid locking op but in the case
2878 * of the scheduler it's an obvious special-case), so we
2879 * do an early lockdep release here:
2881 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2882 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2883 #endif
2885 /* Here we just switch the register state and the stack. */
2886 switch_to(prev, next, prev);
2888 barrier();
2890 * this_rq must be evaluated again because prev may have moved
2891 * CPUs since it called schedule(), thus the 'rq' on its stack
2892 * frame will be invalid.
2894 finish_task_switch(this_rq(), prev);
2898 * nr_running, nr_uninterruptible and nr_context_switches:
2900 * externally visible scheduler statistics: current number of runnable
2901 * threads, current number of uninterruptible-sleeping threads, total
2902 * number of context switches performed since bootup.
2904 unsigned long nr_running(void)
2906 unsigned long i, sum = 0;
2908 for_each_online_cpu(i)
2909 sum += cpu_rq(i)->nr_running;
2911 return sum;
2913 EXPORT_SYMBOL_GPL(nr_running);
2915 unsigned long nr_uninterruptible(void)
2917 unsigned long i, sum = 0;
2919 for_each_possible_cpu(i)
2920 sum += cpu_rq(i)->nr_uninterruptible;
2923 * Since we read the counters lockless, it might be slightly
2924 * inaccurate. Do not allow it to go below zero though:
2926 if (unlikely((long)sum < 0))
2927 sum = 0;
2929 return sum;
2932 unsigned long long nr_context_switches(void)
2934 int i;
2935 unsigned long long sum = 0;
2937 for_each_possible_cpu(i)
2938 sum += cpu_rq(i)->nr_switches;
2940 return sum;
2943 unsigned long nr_iowait(void)
2945 unsigned long i, sum = 0;
2947 for_each_possible_cpu(i)
2948 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2950 return sum;
2953 unsigned long nr_iowait_cpu(void)
2955 struct rq *this = this_rq();
2956 return atomic_read(&this->nr_iowait);
2959 unsigned long this_cpu_load(void)
2961 struct rq *this = this_rq();
2962 return this->cpu_load[0];
2966 /* Variables and functions for calc_load */
2967 static atomic_long_t calc_load_tasks;
2968 static unsigned long calc_load_update;
2969 unsigned long avenrun[3];
2970 EXPORT_SYMBOL(avenrun);
2973 * get_avenrun - get the load average array
2974 * @loads: pointer to dest load array
2975 * @offset: offset to add
2976 * @shift: shift count to shift the result left
2978 * These values are estimates at best, so no need for locking.
2980 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2982 loads[0] = (avenrun[0] + offset) << shift;
2983 loads[1] = (avenrun[1] + offset) << shift;
2984 loads[2] = (avenrun[2] + offset) << shift;
2987 static unsigned long
2988 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2990 load *= exp;
2991 load += active * (FIXED_1 - exp);
2992 return load >> FSHIFT;
2996 * calc_load - update the avenrun load estimates 10 ticks after the
2997 * CPUs have updated calc_load_tasks.
2999 void calc_global_load(void)
3001 unsigned long upd = calc_load_update + 10;
3002 long active;
3004 if (time_before(jiffies, upd))
3005 return;
3007 active = atomic_long_read(&calc_load_tasks);
3008 active = active > 0 ? active * FIXED_1 : 0;
3010 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3011 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3012 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3014 calc_load_update += LOAD_FREQ;
3018 * Either called from update_cpu_load() or from a cpu going idle
3020 static void calc_load_account_active(struct rq *this_rq)
3022 long nr_active, delta;
3024 nr_active = this_rq->nr_running;
3025 nr_active += (long) this_rq->nr_uninterruptible;
3027 if (nr_active != this_rq->calc_load_active) {
3028 delta = nr_active - this_rq->calc_load_active;
3029 this_rq->calc_load_active = nr_active;
3030 atomic_long_add(delta, &calc_load_tasks);
3035 * Externally visible per-cpu scheduler statistics:
3036 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3038 u64 cpu_nr_migrations(int cpu)
3040 return cpu_rq(cpu)->nr_migrations_in;
3044 * Update rq->cpu_load[] statistics. This function is usually called every
3045 * scheduler tick (TICK_NSEC).
3047 static void update_cpu_load(struct rq *this_rq)
3049 unsigned long this_load = this_rq->load.weight;
3050 int i, scale;
3052 this_rq->nr_load_updates++;
3054 /* Update our load: */
3055 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3056 unsigned long old_load, new_load;
3058 /* scale is effectively 1 << i now, and >> i divides by scale */
3060 old_load = this_rq->cpu_load[i];
3061 new_load = this_load;
3063 * Round up the averaging division if load is increasing. This
3064 * prevents us from getting stuck on 9 if the load is 10, for
3065 * example.
3067 if (new_load > old_load)
3068 new_load += scale-1;
3069 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3072 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3073 this_rq->calc_load_update += LOAD_FREQ;
3074 calc_load_account_active(this_rq);
3078 #ifdef CONFIG_SMP
3081 * double_rq_lock - safely lock two runqueues
3083 * Note this does not disable interrupts like task_rq_lock,
3084 * you need to do so manually before calling.
3086 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3087 __acquires(rq1->lock)
3088 __acquires(rq2->lock)
3090 BUG_ON(!irqs_disabled());
3091 if (rq1 == rq2) {
3092 spin_lock(&rq1->lock);
3093 __acquire(rq2->lock); /* Fake it out ;) */
3094 } else {
3095 if (rq1 < rq2) {
3096 spin_lock(&rq1->lock);
3097 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3098 } else {
3099 spin_lock(&rq2->lock);
3100 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3103 update_rq_clock(rq1);
3104 update_rq_clock(rq2);
3108 * double_rq_unlock - safely unlock two runqueues
3110 * Note this does not restore interrupts like task_rq_unlock,
3111 * you need to do so manually after calling.
3113 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3114 __releases(rq1->lock)
3115 __releases(rq2->lock)
3117 spin_unlock(&rq1->lock);
3118 if (rq1 != rq2)
3119 spin_unlock(&rq2->lock);
3120 else
3121 __release(rq2->lock);
3125 * If dest_cpu is allowed for this process, migrate the task to it.
3126 * This is accomplished by forcing the cpu_allowed mask to only
3127 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3128 * the cpu_allowed mask is restored.
3130 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3132 struct migration_req req;
3133 unsigned long flags;
3134 struct rq *rq;
3136 rq = task_rq_lock(p, &flags);
3137 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3138 || unlikely(!cpu_active(dest_cpu)))
3139 goto out;
3141 /* force the process onto the specified CPU */
3142 if (migrate_task(p, dest_cpu, &req)) {
3143 /* Need to wait for migration thread (might exit: take ref). */
3144 struct task_struct *mt = rq->migration_thread;
3146 get_task_struct(mt);
3147 task_rq_unlock(rq, &flags);
3148 wake_up_process(mt);
3149 put_task_struct(mt);
3150 wait_for_completion(&req.done);
3152 return;
3154 out:
3155 task_rq_unlock(rq, &flags);
3159 * sched_exec - execve() is a valuable balancing opportunity, because at
3160 * this point the task has the smallest effective memory and cache footprint.
3162 void sched_exec(void)
3164 int new_cpu, this_cpu = get_cpu();
3165 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3166 put_cpu();
3167 if (new_cpu != this_cpu)
3168 sched_migrate_task(current, new_cpu);
3172 * pull_task - move a task from a remote runqueue to the local runqueue.
3173 * Both runqueues must be locked.
3175 static void pull_task(struct rq *src_rq, struct task_struct *p,
3176 struct rq *this_rq, int this_cpu)
3178 deactivate_task(src_rq, p, 0);
3179 set_task_cpu(p, this_cpu);
3180 activate_task(this_rq, p, 0);
3181 check_preempt_curr(this_rq, p, 0);
3185 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3187 static
3188 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3189 struct sched_domain *sd, enum cpu_idle_type idle,
3190 int *all_pinned)
3192 int tsk_cache_hot = 0;
3194 * We do not migrate tasks that are:
3195 * 1) running (obviously), or
3196 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3197 * 3) are cache-hot on their current CPU.
3199 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3200 schedstat_inc(p, se.nr_failed_migrations_affine);
3201 return 0;
3203 *all_pinned = 0;
3205 if (task_running(rq, p)) {
3206 schedstat_inc(p, se.nr_failed_migrations_running);
3207 return 0;
3211 * Aggressive migration if:
3212 * 1) task is cache cold, or
3213 * 2) too many balance attempts have failed.
3216 tsk_cache_hot = task_hot(p, rq->clock, sd);
3217 if (!tsk_cache_hot ||
3218 sd->nr_balance_failed > sd->cache_nice_tries) {
3219 #ifdef CONFIG_SCHEDSTATS
3220 if (tsk_cache_hot) {
3221 schedstat_inc(sd, lb_hot_gained[idle]);
3222 schedstat_inc(p, se.nr_forced_migrations);
3224 #endif
3225 return 1;
3228 if (tsk_cache_hot) {
3229 schedstat_inc(p, se.nr_failed_migrations_hot);
3230 return 0;
3232 return 1;
3235 static unsigned long
3236 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3237 unsigned long max_load_move, struct sched_domain *sd,
3238 enum cpu_idle_type idle, int *all_pinned,
3239 int *this_best_prio, struct rq_iterator *iterator)
3241 int loops = 0, pulled = 0, pinned = 0;
3242 struct task_struct *p;
3243 long rem_load_move = max_load_move;
3245 if (max_load_move == 0)
3246 goto out;
3248 pinned = 1;
3251 * Start the load-balancing iterator:
3253 p = iterator->start(iterator->arg);
3254 next:
3255 if (!p || loops++ > sysctl_sched_nr_migrate)
3256 goto out;
3258 if ((p->se.load.weight >> 1) > rem_load_move ||
3259 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3260 p = iterator->next(iterator->arg);
3261 goto next;
3264 pull_task(busiest, p, this_rq, this_cpu);
3265 pulled++;
3266 rem_load_move -= p->se.load.weight;
3268 #ifdef CONFIG_PREEMPT
3270 * NEWIDLE balancing is a source of latency, so preemptible kernels
3271 * will stop after the first task is pulled to minimize the critical
3272 * section.
3274 if (idle == CPU_NEWLY_IDLE)
3275 goto out;
3276 #endif
3279 * We only want to steal up to the prescribed amount of weighted load.
3281 if (rem_load_move > 0) {
3282 if (p->prio < *this_best_prio)
3283 *this_best_prio = p->prio;
3284 p = iterator->next(iterator->arg);
3285 goto next;
3287 out:
3289 * Right now, this is one of only two places pull_task() is called,
3290 * so we can safely collect pull_task() stats here rather than
3291 * inside pull_task().
3293 schedstat_add(sd, lb_gained[idle], pulled);
3295 if (all_pinned)
3296 *all_pinned = pinned;
3298 return max_load_move - rem_load_move;
3302 * move_tasks tries to move up to max_load_move weighted load from busiest to
3303 * this_rq, as part of a balancing operation within domain "sd".
3304 * Returns 1 if successful and 0 otherwise.
3306 * Called with both runqueues locked.
3308 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3309 unsigned long max_load_move,
3310 struct sched_domain *sd, enum cpu_idle_type idle,
3311 int *all_pinned)
3313 const struct sched_class *class = sched_class_highest;
3314 unsigned long total_load_moved = 0;
3315 int this_best_prio = this_rq->curr->prio;
3317 do {
3318 total_load_moved +=
3319 class->load_balance(this_rq, this_cpu, busiest,
3320 max_load_move - total_load_moved,
3321 sd, idle, all_pinned, &this_best_prio);
3322 class = class->next;
3324 #ifdef CONFIG_PREEMPT
3326 * NEWIDLE balancing is a source of latency, so preemptible
3327 * kernels will stop after the first task is pulled to minimize
3328 * the critical section.
3330 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3331 break;
3332 #endif
3333 } while (class && max_load_move > total_load_moved);
3335 return total_load_moved > 0;
3338 static int
3339 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3340 struct sched_domain *sd, enum cpu_idle_type idle,
3341 struct rq_iterator *iterator)
3343 struct task_struct *p = iterator->start(iterator->arg);
3344 int pinned = 0;
3346 while (p) {
3347 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3348 pull_task(busiest, p, this_rq, this_cpu);
3350 * Right now, this is only the second place pull_task()
3351 * is called, so we can safely collect pull_task()
3352 * stats here rather than inside pull_task().
3354 schedstat_inc(sd, lb_gained[idle]);
3356 return 1;
3358 p = iterator->next(iterator->arg);
3361 return 0;
3365 * move_one_task tries to move exactly one task from busiest to this_rq, as
3366 * part of active balancing operations within "domain".
3367 * Returns 1 if successful and 0 otherwise.
3369 * Called with both runqueues locked.
3371 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3372 struct sched_domain *sd, enum cpu_idle_type idle)
3374 const struct sched_class *class;
3376 for_each_class(class) {
3377 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3378 return 1;
3381 return 0;
3383 /********** Helpers for find_busiest_group ************************/
3385 * sd_lb_stats - Structure to store the statistics of a sched_domain
3386 * during load balancing.
3388 struct sd_lb_stats {
3389 struct sched_group *busiest; /* Busiest group in this sd */
3390 struct sched_group *this; /* Local group in this sd */
3391 unsigned long total_load; /* Total load of all groups in sd */
3392 unsigned long total_pwr; /* Total power of all groups in sd */
3393 unsigned long avg_load; /* Average load across all groups in sd */
3395 /** Statistics of this group */
3396 unsigned long this_load;
3397 unsigned long this_load_per_task;
3398 unsigned long this_nr_running;
3400 /* Statistics of the busiest group */
3401 unsigned long max_load;
3402 unsigned long busiest_load_per_task;
3403 unsigned long busiest_nr_running;
3404 unsigned long busiest_group_capacity;
3406 int group_imb; /* Is there imbalance in this sd */
3407 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3408 int power_savings_balance; /* Is powersave balance needed for this sd */
3409 struct sched_group *group_min; /* Least loaded group in sd */
3410 struct sched_group *group_leader; /* Group which relieves group_min */
3411 unsigned long min_load_per_task; /* load_per_task in group_min */
3412 unsigned long leader_nr_running; /* Nr running of group_leader */
3413 unsigned long min_nr_running; /* Nr running of group_min */
3414 #endif
3418 * sg_lb_stats - stats of a sched_group required for load_balancing
3420 struct sg_lb_stats {
3421 unsigned long avg_load; /*Avg load across the CPUs of the group */
3422 unsigned long group_load; /* Total load over the CPUs of the group */
3423 unsigned long sum_nr_running; /* Nr tasks running in the group */
3424 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3425 unsigned long group_capacity;
3426 int group_imb; /* Is there an imbalance in the group ? */
3430 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3431 * @group: The group whose first cpu is to be returned.
3433 static inline unsigned int group_first_cpu(struct sched_group *group)
3435 return cpumask_first(sched_group_cpus(group));
3439 * get_sd_load_idx - Obtain the load index for a given sched domain.
3440 * @sd: The sched_domain whose load_idx is to be obtained.
3441 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3443 static inline int get_sd_load_idx(struct sched_domain *sd,
3444 enum cpu_idle_type idle)
3446 int load_idx;
3448 switch (idle) {
3449 case CPU_NOT_IDLE:
3450 load_idx = sd->busy_idx;
3451 break;
3453 case CPU_NEWLY_IDLE:
3454 load_idx = sd->newidle_idx;
3455 break;
3456 default:
3457 load_idx = sd->idle_idx;
3458 break;
3461 return load_idx;
3465 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3467 * init_sd_power_savings_stats - Initialize power savings statistics for
3468 * the given sched_domain, during load balancing.
3470 * @sd: Sched domain whose power-savings statistics are to be initialized.
3471 * @sds: Variable containing the statistics for sd.
3472 * @idle: Idle status of the CPU at which we're performing load-balancing.
3474 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3475 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3478 * Busy processors will not participate in power savings
3479 * balance.
3481 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3482 sds->power_savings_balance = 0;
3483 else {
3484 sds->power_savings_balance = 1;
3485 sds->min_nr_running = ULONG_MAX;
3486 sds->leader_nr_running = 0;
3491 * update_sd_power_savings_stats - Update the power saving stats for a
3492 * sched_domain while performing load balancing.
3494 * @group: sched_group belonging to the sched_domain under consideration.
3495 * @sds: Variable containing the statistics of the sched_domain
3496 * @local_group: Does group contain the CPU for which we're performing
3497 * load balancing ?
3498 * @sgs: Variable containing the statistics of the group.
3500 static inline void update_sd_power_savings_stats(struct sched_group *group,
3501 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3504 if (!sds->power_savings_balance)
3505 return;
3508 * If the local group is idle or completely loaded
3509 * no need to do power savings balance at this domain
3511 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3512 !sds->this_nr_running))
3513 sds->power_savings_balance = 0;
3516 * If a group is already running at full capacity or idle,
3517 * don't include that group in power savings calculations
3519 if (!sds->power_savings_balance ||
3520 sgs->sum_nr_running >= sgs->group_capacity ||
3521 !sgs->sum_nr_running)
3522 return;
3525 * Calculate the group which has the least non-idle load.
3526 * This is the group from where we need to pick up the load
3527 * for saving power
3529 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3530 (sgs->sum_nr_running == sds->min_nr_running &&
3531 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3532 sds->group_min = group;
3533 sds->min_nr_running = sgs->sum_nr_running;
3534 sds->min_load_per_task = sgs->sum_weighted_load /
3535 sgs->sum_nr_running;
3539 * Calculate the group which is almost near its
3540 * capacity but still has some space to pick up some load
3541 * from other group and save more power
3543 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3544 return;
3546 if (sgs->sum_nr_running > sds->leader_nr_running ||
3547 (sgs->sum_nr_running == sds->leader_nr_running &&
3548 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3549 sds->group_leader = group;
3550 sds->leader_nr_running = sgs->sum_nr_running;
3555 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3556 * @sds: Variable containing the statistics of the sched_domain
3557 * under consideration.
3558 * @this_cpu: Cpu at which we're currently performing load-balancing.
3559 * @imbalance: Variable to store the imbalance.
3561 * Description:
3562 * Check if we have potential to perform some power-savings balance.
3563 * If yes, set the busiest group to be the least loaded group in the
3564 * sched_domain, so that it's CPUs can be put to idle.
3566 * Returns 1 if there is potential to perform power-savings balance.
3567 * Else returns 0.
3569 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3570 int this_cpu, unsigned long *imbalance)
3572 if (!sds->power_savings_balance)
3573 return 0;
3575 if (sds->this != sds->group_leader ||
3576 sds->group_leader == sds->group_min)
3577 return 0;
3579 *imbalance = sds->min_load_per_task;
3580 sds->busiest = sds->group_min;
3582 return 1;
3585 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3586 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3587 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3589 return;
3592 static inline void update_sd_power_savings_stats(struct sched_group *group,
3593 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3595 return;
3598 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3599 int this_cpu, unsigned long *imbalance)
3601 return 0;
3603 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3606 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3608 return SCHED_LOAD_SCALE;
3611 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3613 return default_scale_freq_power(sd, cpu);
3616 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3618 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3619 unsigned long smt_gain = sd->smt_gain;
3621 smt_gain /= weight;
3623 return smt_gain;
3626 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3628 return default_scale_smt_power(sd, cpu);
3631 unsigned long scale_rt_power(int cpu)
3633 struct rq *rq = cpu_rq(cpu);
3634 u64 total, available;
3636 sched_avg_update(rq);
3638 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3639 available = total - rq->rt_avg;
3641 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3642 total = SCHED_LOAD_SCALE;
3644 total >>= SCHED_LOAD_SHIFT;
3646 return div_u64(available, total);
3649 static void update_cpu_power(struct sched_domain *sd, int cpu)
3651 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3652 unsigned long power = SCHED_LOAD_SCALE;
3653 struct sched_group *sdg = sd->groups;
3655 if (sched_feat(ARCH_POWER))
3656 power *= arch_scale_freq_power(sd, cpu);
3657 else
3658 power *= default_scale_freq_power(sd, cpu);
3660 power >>= SCHED_LOAD_SHIFT;
3662 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3663 if (sched_feat(ARCH_POWER))
3664 power *= arch_scale_smt_power(sd, cpu);
3665 else
3666 power *= default_scale_smt_power(sd, cpu);
3668 power >>= SCHED_LOAD_SHIFT;
3671 power *= scale_rt_power(cpu);
3672 power >>= SCHED_LOAD_SHIFT;
3674 if (!power)
3675 power = 1;
3677 sdg->cpu_power = power;
3680 static void update_group_power(struct sched_domain *sd, int cpu)
3682 struct sched_domain *child = sd->child;
3683 struct sched_group *group, *sdg = sd->groups;
3684 unsigned long power;
3686 if (!child) {
3687 update_cpu_power(sd, cpu);
3688 return;
3691 power = 0;
3693 group = child->groups;
3694 do {
3695 power += group->cpu_power;
3696 group = group->next;
3697 } while (group != child->groups);
3699 sdg->cpu_power = power;
3703 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3704 * @sd: The sched_domain whose statistics are to be updated.
3705 * @group: sched_group whose statistics are to be updated.
3706 * @this_cpu: Cpu for which load balance is currently performed.
3707 * @idle: Idle status of this_cpu
3708 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3709 * @sd_idle: Idle status of the sched_domain containing group.
3710 * @local_group: Does group contain this_cpu.
3711 * @cpus: Set of cpus considered for load balancing.
3712 * @balance: Should we balance.
3713 * @sgs: variable to hold the statistics for this group.
3715 static inline void update_sg_lb_stats(struct sched_domain *sd,
3716 struct sched_group *group, int this_cpu,
3717 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3718 int local_group, const struct cpumask *cpus,
3719 int *balance, struct sg_lb_stats *sgs)
3721 unsigned long load, max_cpu_load, min_cpu_load;
3722 int i;
3723 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3724 unsigned long avg_load_per_task = 0;
3726 if (local_group) {
3727 balance_cpu = group_first_cpu(group);
3728 if (balance_cpu == this_cpu)
3729 update_group_power(sd, this_cpu);
3732 /* Tally up the load of all CPUs in the group */
3733 max_cpu_load = 0;
3734 min_cpu_load = ~0UL;
3736 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3737 struct rq *rq = cpu_rq(i);
3739 if (*sd_idle && rq->nr_running)
3740 *sd_idle = 0;
3742 /* Bias balancing toward cpus of our domain */
3743 if (local_group) {
3744 if (idle_cpu(i) && !first_idle_cpu) {
3745 first_idle_cpu = 1;
3746 balance_cpu = i;
3749 load = target_load(i, load_idx);
3750 } else {
3751 load = source_load(i, load_idx);
3752 if (load > max_cpu_load)
3753 max_cpu_load = load;
3754 if (min_cpu_load > load)
3755 min_cpu_load = load;
3758 sgs->group_load += load;
3759 sgs->sum_nr_running += rq->nr_running;
3760 sgs->sum_weighted_load += weighted_cpuload(i);
3765 * First idle cpu or the first cpu(busiest) in this sched group
3766 * is eligible for doing load balancing at this and above
3767 * domains. In the newly idle case, we will allow all the cpu's
3768 * to do the newly idle load balance.
3770 if (idle != CPU_NEWLY_IDLE && local_group &&
3771 balance_cpu != this_cpu && balance) {
3772 *balance = 0;
3773 return;
3776 /* Adjust by relative CPU power of the group */
3777 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3780 * Consider the group unbalanced when the imbalance is larger
3781 * than the average weight of two tasks.
3783 * APZ: with cgroup the avg task weight can vary wildly and
3784 * might not be a suitable number - should we keep a
3785 * normalized nr_running number somewhere that negates
3786 * the hierarchy?
3788 if (sgs->sum_nr_running)
3789 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3791 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3792 sgs->group_imb = 1;
3794 sgs->group_capacity =
3795 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3799 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3800 * @sd: sched_domain whose statistics are to be updated.
3801 * @this_cpu: Cpu for which load balance is currently performed.
3802 * @idle: Idle status of this_cpu
3803 * @sd_idle: Idle status of the sched_domain containing group.
3804 * @cpus: Set of cpus considered for load balancing.
3805 * @balance: Should we balance.
3806 * @sds: variable to hold the statistics for this sched_domain.
3808 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3809 enum cpu_idle_type idle, int *sd_idle,
3810 const struct cpumask *cpus, int *balance,
3811 struct sd_lb_stats *sds)
3813 struct sched_domain *child = sd->child;
3814 struct sched_group *group = sd->groups;
3815 struct sg_lb_stats sgs;
3816 int load_idx, prefer_sibling = 0;
3818 if (child && child->flags & SD_PREFER_SIBLING)
3819 prefer_sibling = 1;
3821 init_sd_power_savings_stats(sd, sds, idle);
3822 load_idx = get_sd_load_idx(sd, idle);
3824 do {
3825 int local_group;
3827 local_group = cpumask_test_cpu(this_cpu,
3828 sched_group_cpus(group));
3829 memset(&sgs, 0, sizeof(sgs));
3830 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3831 local_group, cpus, balance, &sgs);
3833 if (local_group && balance && !(*balance))
3834 return;
3836 sds->total_load += sgs.group_load;
3837 sds->total_pwr += group->cpu_power;
3840 * In case the child domain prefers tasks go to siblings
3841 * first, lower the group capacity to one so that we'll try
3842 * and move all the excess tasks away.
3844 if (prefer_sibling)
3845 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3847 if (local_group) {
3848 sds->this_load = sgs.avg_load;
3849 sds->this = group;
3850 sds->this_nr_running = sgs.sum_nr_running;
3851 sds->this_load_per_task = sgs.sum_weighted_load;
3852 } else if (sgs.avg_load > sds->max_load &&
3853 (sgs.sum_nr_running > sgs.group_capacity ||
3854 sgs.group_imb)) {
3855 sds->max_load = sgs.avg_load;
3856 sds->busiest = group;
3857 sds->busiest_nr_running = sgs.sum_nr_running;
3858 sds->busiest_group_capacity = sgs.group_capacity;
3859 sds->busiest_load_per_task = sgs.sum_weighted_load;
3860 sds->group_imb = sgs.group_imb;
3863 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3864 group = group->next;
3865 } while (group != sd->groups);
3869 * fix_small_imbalance - Calculate the minor imbalance that exists
3870 * amongst the groups of a sched_domain, during
3871 * load balancing.
3872 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3873 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3874 * @imbalance: Variable to store the imbalance.
3876 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3877 int this_cpu, unsigned long *imbalance)
3879 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3880 unsigned int imbn = 2;
3881 unsigned long scaled_busy_load_per_task;
3883 if (sds->this_nr_running) {
3884 sds->this_load_per_task /= sds->this_nr_running;
3885 if (sds->busiest_load_per_task >
3886 sds->this_load_per_task)
3887 imbn = 1;
3888 } else
3889 sds->this_load_per_task =
3890 cpu_avg_load_per_task(this_cpu);
3892 scaled_busy_load_per_task = sds->busiest_load_per_task
3893 * SCHED_LOAD_SCALE;
3894 scaled_busy_load_per_task /= sds->busiest->cpu_power;
3896 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3897 (scaled_busy_load_per_task * imbn)) {
3898 *imbalance = sds->busiest_load_per_task;
3899 return;
3903 * OK, we don't have enough imbalance to justify moving tasks,
3904 * however we may be able to increase total CPU power used by
3905 * moving them.
3908 pwr_now += sds->busiest->cpu_power *
3909 min(sds->busiest_load_per_task, sds->max_load);
3910 pwr_now += sds->this->cpu_power *
3911 min(sds->this_load_per_task, sds->this_load);
3912 pwr_now /= SCHED_LOAD_SCALE;
3914 /* Amount of load we'd subtract */
3915 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3916 sds->busiest->cpu_power;
3917 if (sds->max_load > tmp)
3918 pwr_move += sds->busiest->cpu_power *
3919 min(sds->busiest_load_per_task, sds->max_load - tmp);
3921 /* Amount of load we'd add */
3922 if (sds->max_load * sds->busiest->cpu_power <
3923 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3924 tmp = (sds->max_load * sds->busiest->cpu_power) /
3925 sds->this->cpu_power;
3926 else
3927 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3928 sds->this->cpu_power;
3929 pwr_move += sds->this->cpu_power *
3930 min(sds->this_load_per_task, sds->this_load + tmp);
3931 pwr_move /= SCHED_LOAD_SCALE;
3933 /* Move if we gain throughput */
3934 if (pwr_move > pwr_now)
3935 *imbalance = sds->busiest_load_per_task;
3939 * calculate_imbalance - Calculate the amount of imbalance present within the
3940 * groups of a given sched_domain during load balance.
3941 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3942 * @this_cpu: Cpu for which currently load balance is being performed.
3943 * @imbalance: The variable to store the imbalance.
3945 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3946 unsigned long *imbalance)
3948 unsigned long max_pull, load_above_capacity = ~0UL;
3950 sds->busiest_load_per_task /= sds->busiest_nr_running;
3951 if (sds->group_imb) {
3952 sds->busiest_load_per_task =
3953 min(sds->busiest_load_per_task, sds->avg_load);
3957 * In the presence of smp nice balancing, certain scenarios can have
3958 * max load less than avg load(as we skip the groups at or below
3959 * its cpu_power, while calculating max_load..)
3961 if (sds->max_load < sds->avg_load) {
3962 *imbalance = 0;
3963 return fix_small_imbalance(sds, this_cpu, imbalance);
3966 if (!sds->group_imb) {
3968 * Don't want to pull so many tasks that a group would go idle.
3970 load_above_capacity = (sds->busiest_nr_running -
3971 sds->busiest_group_capacity);
3973 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3975 load_above_capacity /= sds->busiest->cpu_power;
3979 * We're trying to get all the cpus to the average_load, so we don't
3980 * want to push ourselves above the average load, nor do we wish to
3981 * reduce the max loaded cpu below the average load. At the same time,
3982 * we also don't want to reduce the group load below the group capacity
3983 * (so that we can implement power-savings policies etc). Thus we look
3984 * for the minimum possible imbalance.
3985 * Be careful of negative numbers as they'll appear as very large values
3986 * with unsigned longs.
3988 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3990 /* How much load to actually move to equalise the imbalance */
3991 *imbalance = min(max_pull * sds->busiest->cpu_power,
3992 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3993 / SCHED_LOAD_SCALE;
3996 * if *imbalance is less than the average load per runnable task
3997 * there is no gaurantee that any tasks will be moved so we'll have
3998 * a think about bumping its value to force at least one task to be
3999 * moved
4001 if (*imbalance < sds->busiest_load_per_task)
4002 return fix_small_imbalance(sds, this_cpu, imbalance);
4005 /******* find_busiest_group() helpers end here *********************/
4008 * find_busiest_group - Returns the busiest group within the sched_domain
4009 * if there is an imbalance. If there isn't an imbalance, and
4010 * the user has opted for power-savings, it returns a group whose
4011 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4012 * such a group exists.
4014 * Also calculates the amount of weighted load which should be moved
4015 * to restore balance.
4017 * @sd: The sched_domain whose busiest group is to be returned.
4018 * @this_cpu: The cpu for which load balancing is currently being performed.
4019 * @imbalance: Variable which stores amount of weighted load which should
4020 * be moved to restore balance/put a group to idle.
4021 * @idle: The idle status of this_cpu.
4022 * @sd_idle: The idleness of sd
4023 * @cpus: The set of CPUs under consideration for load-balancing.
4024 * @balance: Pointer to a variable indicating if this_cpu
4025 * is the appropriate cpu to perform load balancing at this_level.
4027 * Returns: - the busiest group if imbalance exists.
4028 * - If no imbalance and user has opted for power-savings balance,
4029 * return the least loaded group whose CPUs can be
4030 * put to idle by rebalancing its tasks onto our group.
4032 static struct sched_group *
4033 find_busiest_group(struct sched_domain *sd, int this_cpu,
4034 unsigned long *imbalance, enum cpu_idle_type idle,
4035 int *sd_idle, const struct cpumask *cpus, int *balance)
4037 struct sd_lb_stats sds;
4039 memset(&sds, 0, sizeof(sds));
4042 * Compute the various statistics relavent for load balancing at
4043 * this level.
4045 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4046 balance, &sds);
4048 /* Cases where imbalance does not exist from POV of this_cpu */
4049 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4050 * at this level.
4051 * 2) There is no busy sibling group to pull from.
4052 * 3) This group is the busiest group.
4053 * 4) This group is more busy than the avg busieness at this
4054 * sched_domain.
4055 * 5) The imbalance is within the specified limit.
4057 if (balance && !(*balance))
4058 goto ret;
4060 if (!sds.busiest || sds.busiest_nr_running == 0)
4061 goto out_balanced;
4063 if (sds.this_load >= sds.max_load)
4064 goto out_balanced;
4066 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4068 if (sds.this_load >= sds.avg_load)
4069 goto out_balanced;
4071 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4072 goto out_balanced;
4074 /* Looks like there is an imbalance. Compute it */
4075 calculate_imbalance(&sds, this_cpu, imbalance);
4076 return sds.busiest;
4078 out_balanced:
4080 * There is no obvious imbalance. But check if we can do some balancing
4081 * to save power.
4083 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4084 return sds.busiest;
4085 ret:
4086 *imbalance = 0;
4087 return NULL;
4091 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4093 static struct rq *
4094 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4095 unsigned long imbalance, const struct cpumask *cpus)
4097 struct rq *busiest = NULL, *rq;
4098 unsigned long max_load = 0;
4099 int i;
4101 for_each_cpu(i, sched_group_cpus(group)) {
4102 unsigned long power = power_of(i);
4103 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4104 unsigned long wl;
4106 if (!cpumask_test_cpu(i, cpus))
4107 continue;
4109 rq = cpu_rq(i);
4110 wl = weighted_cpuload(i);
4113 * When comparing with imbalance, use weighted_cpuload()
4114 * which is not scaled with the cpu power.
4116 if (capacity && rq->nr_running == 1 && wl > imbalance)
4117 continue;
4120 * For the load comparisons with the other cpu's, consider
4121 * the weighted_cpuload() scaled with the cpu power, so that
4122 * the load can be moved away from the cpu that is potentially
4123 * running at a lower capacity.
4125 wl = (wl * SCHED_LOAD_SCALE) / power;
4127 if (wl > max_load) {
4128 max_load = wl;
4129 busiest = rq;
4133 return busiest;
4137 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4138 * so long as it is large enough.
4140 #define MAX_PINNED_INTERVAL 512
4142 /* Working cpumask for load_balance and load_balance_newidle. */
4143 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4146 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4147 * tasks if there is an imbalance.
4149 static int load_balance(int this_cpu, struct rq *this_rq,
4150 struct sched_domain *sd, enum cpu_idle_type idle,
4151 int *balance)
4153 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4154 struct sched_group *group;
4155 unsigned long imbalance;
4156 struct rq *busiest;
4157 unsigned long flags;
4158 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4160 cpumask_copy(cpus, cpu_active_mask);
4163 * When power savings policy is enabled for the parent domain, idle
4164 * sibling can pick up load irrespective of busy siblings. In this case,
4165 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4166 * portraying it as CPU_NOT_IDLE.
4168 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4169 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4170 sd_idle = 1;
4172 schedstat_inc(sd, lb_count[idle]);
4174 redo:
4175 update_shares(sd);
4176 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4177 cpus, balance);
4179 if (*balance == 0)
4180 goto out_balanced;
4182 if (!group) {
4183 schedstat_inc(sd, lb_nobusyg[idle]);
4184 goto out_balanced;
4187 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4188 if (!busiest) {
4189 schedstat_inc(sd, lb_nobusyq[idle]);
4190 goto out_balanced;
4193 BUG_ON(busiest == this_rq);
4195 schedstat_add(sd, lb_imbalance[idle], imbalance);
4197 ld_moved = 0;
4198 if (busiest->nr_running > 1) {
4200 * Attempt to move tasks. If find_busiest_group has found
4201 * an imbalance but busiest->nr_running <= 1, the group is
4202 * still unbalanced. ld_moved simply stays zero, so it is
4203 * correctly treated as an imbalance.
4205 local_irq_save(flags);
4206 double_rq_lock(this_rq, busiest);
4207 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4208 imbalance, sd, idle, &all_pinned);
4209 double_rq_unlock(this_rq, busiest);
4210 local_irq_restore(flags);
4213 * some other cpu did the load balance for us.
4215 if (ld_moved && this_cpu != smp_processor_id())
4216 resched_cpu(this_cpu);
4218 /* All tasks on this runqueue were pinned by CPU affinity */
4219 if (unlikely(all_pinned)) {
4220 cpumask_clear_cpu(cpu_of(busiest), cpus);
4221 if (!cpumask_empty(cpus))
4222 goto redo;
4223 goto out_balanced;
4227 if (!ld_moved) {
4228 schedstat_inc(sd, lb_failed[idle]);
4229 sd->nr_balance_failed++;
4231 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4233 spin_lock_irqsave(&busiest->lock, flags);
4235 /* don't kick the migration_thread, if the curr
4236 * task on busiest cpu can't be moved to this_cpu
4238 if (!cpumask_test_cpu(this_cpu,
4239 &busiest->curr->cpus_allowed)) {
4240 spin_unlock_irqrestore(&busiest->lock, flags);
4241 all_pinned = 1;
4242 goto out_one_pinned;
4245 if (!busiest->active_balance) {
4246 busiest->active_balance = 1;
4247 busiest->push_cpu = this_cpu;
4248 active_balance = 1;
4250 spin_unlock_irqrestore(&busiest->lock, flags);
4251 if (active_balance)
4252 wake_up_process(busiest->migration_thread);
4255 * We've kicked active balancing, reset the failure
4256 * counter.
4258 sd->nr_balance_failed = sd->cache_nice_tries+1;
4260 } else
4261 sd->nr_balance_failed = 0;
4263 if (likely(!active_balance)) {
4264 /* We were unbalanced, so reset the balancing interval */
4265 sd->balance_interval = sd->min_interval;
4266 } else {
4268 * If we've begun active balancing, start to back off. This
4269 * case may not be covered by the all_pinned logic if there
4270 * is only 1 task on the busy runqueue (because we don't call
4271 * move_tasks).
4273 if (sd->balance_interval < sd->max_interval)
4274 sd->balance_interval *= 2;
4277 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4278 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4279 ld_moved = -1;
4281 goto out;
4283 out_balanced:
4284 schedstat_inc(sd, lb_balanced[idle]);
4286 sd->nr_balance_failed = 0;
4288 out_one_pinned:
4289 /* tune up the balancing interval */
4290 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4291 (sd->balance_interval < sd->max_interval))
4292 sd->balance_interval *= 2;
4294 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4295 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4296 ld_moved = -1;
4297 else
4298 ld_moved = 0;
4299 out:
4300 if (ld_moved)
4301 update_shares(sd);
4302 return ld_moved;
4306 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4307 * tasks if there is an imbalance.
4309 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4310 * this_rq is locked.
4312 static int
4313 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4315 struct sched_group *group;
4316 struct rq *busiest = NULL;
4317 unsigned long imbalance;
4318 int ld_moved = 0;
4319 int sd_idle = 0;
4320 int all_pinned = 0;
4321 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4323 cpumask_copy(cpus, cpu_active_mask);
4326 * When power savings policy is enabled for the parent domain, idle
4327 * sibling can pick up load irrespective of busy siblings. In this case,
4328 * let the state of idle sibling percolate up as IDLE, instead of
4329 * portraying it as CPU_NOT_IDLE.
4331 if (sd->flags & SD_SHARE_CPUPOWER &&
4332 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4333 sd_idle = 1;
4335 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4336 redo:
4337 update_shares_locked(this_rq, sd);
4338 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4339 &sd_idle, cpus, NULL);
4340 if (!group) {
4341 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4342 goto out_balanced;
4345 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4346 if (!busiest) {
4347 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4348 goto out_balanced;
4351 BUG_ON(busiest == this_rq);
4353 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4355 ld_moved = 0;
4356 if (busiest->nr_running > 1) {
4357 /* Attempt to move tasks */
4358 double_lock_balance(this_rq, busiest);
4359 /* this_rq->clock is already updated */
4360 update_rq_clock(busiest);
4361 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4362 imbalance, sd, CPU_NEWLY_IDLE,
4363 &all_pinned);
4364 double_unlock_balance(this_rq, busiest);
4366 if (unlikely(all_pinned)) {
4367 cpumask_clear_cpu(cpu_of(busiest), cpus);
4368 if (!cpumask_empty(cpus))
4369 goto redo;
4373 if (!ld_moved) {
4374 int active_balance = 0;
4376 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4377 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4378 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4379 return -1;
4381 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4382 return -1;
4384 if (sd->nr_balance_failed++ < 2)
4385 return -1;
4388 * The only task running in a non-idle cpu can be moved to this
4389 * cpu in an attempt to completely freeup the other CPU
4390 * package. The same method used to move task in load_balance()
4391 * have been extended for load_balance_newidle() to speedup
4392 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4394 * The package power saving logic comes from
4395 * find_busiest_group(). If there are no imbalance, then
4396 * f_b_g() will return NULL. However when sched_mc={1,2} then
4397 * f_b_g() will select a group from which a running task may be
4398 * pulled to this cpu in order to make the other package idle.
4399 * If there is no opportunity to make a package idle and if
4400 * there are no imbalance, then f_b_g() will return NULL and no
4401 * action will be taken in load_balance_newidle().
4403 * Under normal task pull operation due to imbalance, there
4404 * will be more than one task in the source run queue and
4405 * move_tasks() will succeed. ld_moved will be true and this
4406 * active balance code will not be triggered.
4409 /* Lock busiest in correct order while this_rq is held */
4410 double_lock_balance(this_rq, busiest);
4413 * don't kick the migration_thread, if the curr
4414 * task on busiest cpu can't be moved to this_cpu
4416 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4417 double_unlock_balance(this_rq, busiest);
4418 all_pinned = 1;
4419 return ld_moved;
4422 if (!busiest->active_balance) {
4423 busiest->active_balance = 1;
4424 busiest->push_cpu = this_cpu;
4425 active_balance = 1;
4428 double_unlock_balance(this_rq, busiest);
4430 * Should not call ttwu while holding a rq->lock
4432 spin_unlock(&this_rq->lock);
4433 if (active_balance)
4434 wake_up_process(busiest->migration_thread);
4435 spin_lock(&this_rq->lock);
4437 } else
4438 sd->nr_balance_failed = 0;
4440 update_shares_locked(this_rq, sd);
4441 return ld_moved;
4443 out_balanced:
4444 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4445 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4446 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4447 return -1;
4448 sd->nr_balance_failed = 0;
4450 return 0;
4454 * idle_balance is called by schedule() if this_cpu is about to become
4455 * idle. Attempts to pull tasks from other CPUs.
4457 static void idle_balance(int this_cpu, struct rq *this_rq)
4459 struct sched_domain *sd;
4460 int pulled_task = 0;
4461 unsigned long next_balance = jiffies + HZ;
4463 this_rq->idle_stamp = this_rq->clock;
4465 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4466 return;
4468 for_each_domain(this_cpu, sd) {
4469 unsigned long interval;
4471 if (!(sd->flags & SD_LOAD_BALANCE))
4472 continue;
4474 if (sd->flags & SD_BALANCE_NEWIDLE)
4475 /* If we've pulled tasks over stop searching: */
4476 pulled_task = load_balance_newidle(this_cpu, this_rq,
4477 sd);
4479 interval = msecs_to_jiffies(sd->balance_interval);
4480 if (time_after(next_balance, sd->last_balance + interval))
4481 next_balance = sd->last_balance + interval;
4482 if (pulled_task) {
4483 this_rq->idle_stamp = 0;
4484 break;
4487 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4489 * We are going idle. next_balance may be set based on
4490 * a busy processor. So reset next_balance.
4492 this_rq->next_balance = next_balance;
4497 * active_load_balance is run by migration threads. It pushes running tasks
4498 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4499 * running on each physical CPU where possible, and avoids physical /
4500 * logical imbalances.
4502 * Called with busiest_rq locked.
4504 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4506 int target_cpu = busiest_rq->push_cpu;
4507 struct sched_domain *sd;
4508 struct rq *target_rq;
4510 /* Is there any task to move? */
4511 if (busiest_rq->nr_running <= 1)
4512 return;
4514 target_rq = cpu_rq(target_cpu);
4517 * This condition is "impossible", if it occurs
4518 * we need to fix it. Originally reported by
4519 * Bjorn Helgaas on a 128-cpu setup.
4521 BUG_ON(busiest_rq == target_rq);
4523 /* move a task from busiest_rq to target_rq */
4524 double_lock_balance(busiest_rq, target_rq);
4525 update_rq_clock(busiest_rq);
4526 update_rq_clock(target_rq);
4528 /* Search for an sd spanning us and the target CPU. */
4529 for_each_domain(target_cpu, sd) {
4530 if ((sd->flags & SD_LOAD_BALANCE) &&
4531 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4532 break;
4535 if (likely(sd)) {
4536 schedstat_inc(sd, alb_count);
4538 if (move_one_task(target_rq, target_cpu, busiest_rq,
4539 sd, CPU_IDLE))
4540 schedstat_inc(sd, alb_pushed);
4541 else
4542 schedstat_inc(sd, alb_failed);
4544 double_unlock_balance(busiest_rq, target_rq);
4547 #ifdef CONFIG_NO_HZ
4548 static struct {
4549 atomic_t load_balancer;
4550 cpumask_var_t cpu_mask;
4551 cpumask_var_t ilb_grp_nohz_mask;
4552 } nohz ____cacheline_aligned = {
4553 .load_balancer = ATOMIC_INIT(-1),
4556 int get_nohz_load_balancer(void)
4558 return atomic_read(&nohz.load_balancer);
4561 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4563 * lowest_flag_domain - Return lowest sched_domain containing flag.
4564 * @cpu: The cpu whose lowest level of sched domain is to
4565 * be returned.
4566 * @flag: The flag to check for the lowest sched_domain
4567 * for the given cpu.
4569 * Returns the lowest sched_domain of a cpu which contains the given flag.
4571 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4573 struct sched_domain *sd;
4575 for_each_domain(cpu, sd)
4576 if (sd && (sd->flags & flag))
4577 break;
4579 return sd;
4583 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4584 * @cpu: The cpu whose domains we're iterating over.
4585 * @sd: variable holding the value of the power_savings_sd
4586 * for cpu.
4587 * @flag: The flag to filter the sched_domains to be iterated.
4589 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4590 * set, starting from the lowest sched_domain to the highest.
4592 #define for_each_flag_domain(cpu, sd, flag) \
4593 for (sd = lowest_flag_domain(cpu, flag); \
4594 (sd && (sd->flags & flag)); sd = sd->parent)
4597 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4598 * @ilb_group: group to be checked for semi-idleness
4600 * Returns: 1 if the group is semi-idle. 0 otherwise.
4602 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4603 * and atleast one non-idle CPU. This helper function checks if the given
4604 * sched_group is semi-idle or not.
4606 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4608 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4609 sched_group_cpus(ilb_group));
4612 * A sched_group is semi-idle when it has atleast one busy cpu
4613 * and atleast one idle cpu.
4615 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4616 return 0;
4618 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4619 return 0;
4621 return 1;
4624 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4625 * @cpu: The cpu which is nominating a new idle_load_balancer.
4627 * Returns: Returns the id of the idle load balancer if it exists,
4628 * Else, returns >= nr_cpu_ids.
4630 * This algorithm picks the idle load balancer such that it belongs to a
4631 * semi-idle powersavings sched_domain. The idea is to try and avoid
4632 * completely idle packages/cores just for the purpose of idle load balancing
4633 * when there are other idle cpu's which are better suited for that job.
4635 static int find_new_ilb(int cpu)
4637 struct sched_domain *sd;
4638 struct sched_group *ilb_group;
4641 * Have idle load balancer selection from semi-idle packages only
4642 * when power-aware load balancing is enabled
4644 if (!(sched_smt_power_savings || sched_mc_power_savings))
4645 goto out_done;
4648 * Optimize for the case when we have no idle CPUs or only one
4649 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4651 if (cpumask_weight(nohz.cpu_mask) < 2)
4652 goto out_done;
4654 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4655 ilb_group = sd->groups;
4657 do {
4658 if (is_semi_idle_group(ilb_group))
4659 return cpumask_first(nohz.ilb_grp_nohz_mask);
4661 ilb_group = ilb_group->next;
4663 } while (ilb_group != sd->groups);
4666 out_done:
4667 return cpumask_first(nohz.cpu_mask);
4669 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4670 static inline int find_new_ilb(int call_cpu)
4672 return cpumask_first(nohz.cpu_mask);
4674 #endif
4677 * This routine will try to nominate the ilb (idle load balancing)
4678 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4679 * load balancing on behalf of all those cpus. If all the cpus in the system
4680 * go into this tickless mode, then there will be no ilb owner (as there is
4681 * no need for one) and all the cpus will sleep till the next wakeup event
4682 * arrives...
4684 * For the ilb owner, tick is not stopped. And this tick will be used
4685 * for idle load balancing. ilb owner will still be part of
4686 * nohz.cpu_mask..
4688 * While stopping the tick, this cpu will become the ilb owner if there
4689 * is no other owner. And will be the owner till that cpu becomes busy
4690 * or if all cpus in the system stop their ticks at which point
4691 * there is no need for ilb owner.
4693 * When the ilb owner becomes busy, it nominates another owner, during the
4694 * next busy scheduler_tick()
4696 int select_nohz_load_balancer(int stop_tick)
4698 int cpu = smp_processor_id();
4700 if (stop_tick) {
4701 cpu_rq(cpu)->in_nohz_recently = 1;
4703 if (!cpu_active(cpu)) {
4704 if (atomic_read(&nohz.load_balancer) != cpu)
4705 return 0;
4708 * If we are going offline and still the leader,
4709 * give up!
4711 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4712 BUG();
4714 return 0;
4717 cpumask_set_cpu(cpu, nohz.cpu_mask);
4719 /* time for ilb owner also to sleep */
4720 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4721 if (atomic_read(&nohz.load_balancer) == cpu)
4722 atomic_set(&nohz.load_balancer, -1);
4723 return 0;
4726 if (atomic_read(&nohz.load_balancer) == -1) {
4727 /* make me the ilb owner */
4728 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4729 return 1;
4730 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4731 int new_ilb;
4733 if (!(sched_smt_power_savings ||
4734 sched_mc_power_savings))
4735 return 1;
4737 * Check to see if there is a more power-efficient
4738 * ilb.
4740 new_ilb = find_new_ilb(cpu);
4741 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4742 atomic_set(&nohz.load_balancer, -1);
4743 resched_cpu(new_ilb);
4744 return 0;
4746 return 1;
4748 } else {
4749 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4750 return 0;
4752 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4754 if (atomic_read(&nohz.load_balancer) == cpu)
4755 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4756 BUG();
4758 return 0;
4760 #endif
4762 static DEFINE_SPINLOCK(balancing);
4765 * It checks each scheduling domain to see if it is due to be balanced,
4766 * and initiates a balancing operation if so.
4768 * Balancing parameters are set up in arch_init_sched_domains.
4770 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4772 int balance = 1;
4773 struct rq *rq = cpu_rq(cpu);
4774 unsigned long interval;
4775 struct sched_domain *sd;
4776 /* Earliest time when we have to do rebalance again */
4777 unsigned long next_balance = jiffies + 60*HZ;
4778 int update_next_balance = 0;
4779 int need_serialize;
4781 for_each_domain(cpu, sd) {
4782 if (!(sd->flags & SD_LOAD_BALANCE))
4783 continue;
4785 interval = sd->balance_interval;
4786 if (idle != CPU_IDLE)
4787 interval *= sd->busy_factor;
4789 /* scale ms to jiffies */
4790 interval = msecs_to_jiffies(interval);
4791 if (unlikely(!interval))
4792 interval = 1;
4793 if (interval > HZ*NR_CPUS/10)
4794 interval = HZ*NR_CPUS/10;
4796 need_serialize = sd->flags & SD_SERIALIZE;
4798 if (need_serialize) {
4799 if (!spin_trylock(&balancing))
4800 goto out;
4803 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4804 if (load_balance(cpu, rq, sd, idle, &balance)) {
4806 * We've pulled tasks over so either we're no
4807 * longer idle, or one of our SMT siblings is
4808 * not idle.
4810 idle = CPU_NOT_IDLE;
4812 sd->last_balance = jiffies;
4814 if (need_serialize)
4815 spin_unlock(&balancing);
4816 out:
4817 if (time_after(next_balance, sd->last_balance + interval)) {
4818 next_balance = sd->last_balance + interval;
4819 update_next_balance = 1;
4823 * Stop the load balance at this level. There is another
4824 * CPU in our sched group which is doing load balancing more
4825 * actively.
4827 if (!balance)
4828 break;
4832 * next_balance will be updated only when there is a need.
4833 * When the cpu is attached to null domain for ex, it will not be
4834 * updated.
4836 if (likely(update_next_balance))
4837 rq->next_balance = next_balance;
4841 * run_rebalance_domains is triggered when needed from the scheduler tick.
4842 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4843 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4845 static void run_rebalance_domains(struct softirq_action *h)
4847 int this_cpu = smp_processor_id();
4848 struct rq *this_rq = cpu_rq(this_cpu);
4849 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4850 CPU_IDLE : CPU_NOT_IDLE;
4852 rebalance_domains(this_cpu, idle);
4854 #ifdef CONFIG_NO_HZ
4856 * If this cpu is the owner for idle load balancing, then do the
4857 * balancing on behalf of the other idle cpus whose ticks are
4858 * stopped.
4860 if (this_rq->idle_at_tick &&
4861 atomic_read(&nohz.load_balancer) == this_cpu) {
4862 struct rq *rq;
4863 int balance_cpu;
4865 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4866 if (balance_cpu == this_cpu)
4867 continue;
4870 * If this cpu gets work to do, stop the load balancing
4871 * work being done for other cpus. Next load
4872 * balancing owner will pick it up.
4874 if (need_resched())
4875 break;
4877 rebalance_domains(balance_cpu, CPU_IDLE);
4879 rq = cpu_rq(balance_cpu);
4880 if (time_after(this_rq->next_balance, rq->next_balance))
4881 this_rq->next_balance = rq->next_balance;
4884 #endif
4887 static inline int on_null_domain(int cpu)
4889 return !rcu_dereference(cpu_rq(cpu)->sd);
4893 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4895 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4896 * idle load balancing owner or decide to stop the periodic load balancing,
4897 * if the whole system is idle.
4899 static inline void trigger_load_balance(struct rq *rq, int cpu)
4901 #ifdef CONFIG_NO_HZ
4903 * If we were in the nohz mode recently and busy at the current
4904 * scheduler tick, then check if we need to nominate new idle
4905 * load balancer.
4907 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4908 rq->in_nohz_recently = 0;
4910 if (atomic_read(&nohz.load_balancer) == cpu) {
4911 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4912 atomic_set(&nohz.load_balancer, -1);
4915 if (atomic_read(&nohz.load_balancer) == -1) {
4916 int ilb = find_new_ilb(cpu);
4918 if (ilb < nr_cpu_ids)
4919 resched_cpu(ilb);
4924 * If this cpu is idle and doing idle load balancing for all the
4925 * cpus with ticks stopped, is it time for that to stop?
4927 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4928 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4929 resched_cpu(cpu);
4930 return;
4934 * If this cpu is idle and the idle load balancing is done by
4935 * someone else, then no need raise the SCHED_SOFTIRQ
4937 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4938 cpumask_test_cpu(cpu, nohz.cpu_mask))
4939 return;
4940 #endif
4941 /* Don't need to rebalance while attached to NULL domain */
4942 if (time_after_eq(jiffies, rq->next_balance) &&
4943 likely(!on_null_domain(cpu)))
4944 raise_softirq(SCHED_SOFTIRQ);
4947 #else /* CONFIG_SMP */
4950 * on UP we do not need to balance between CPUs:
4952 static inline void idle_balance(int cpu, struct rq *rq)
4956 #endif
4958 DEFINE_PER_CPU(struct kernel_stat, kstat);
4960 EXPORT_PER_CPU_SYMBOL(kstat);
4963 * Return any ns on the sched_clock that have not yet been accounted in
4964 * @p in case that task is currently running.
4966 * Called with task_rq_lock() held on @rq.
4968 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4970 u64 ns = 0;
4972 if (task_current(rq, p)) {
4973 update_rq_clock(rq);
4974 ns = rq->clock - p->se.exec_start;
4975 if ((s64)ns < 0)
4976 ns = 0;
4979 return ns;
4982 unsigned long long task_delta_exec(struct task_struct *p)
4984 unsigned long flags;
4985 struct rq *rq;
4986 u64 ns = 0;
4988 rq = task_rq_lock(p, &flags);
4989 ns = do_task_delta_exec(p, rq);
4990 task_rq_unlock(rq, &flags);
4992 return ns;
4996 * Return accounted runtime for the task.
4997 * In case the task is currently running, return the runtime plus current's
4998 * pending runtime that have not been accounted yet.
5000 unsigned long long task_sched_runtime(struct task_struct *p)
5002 unsigned long flags;
5003 struct rq *rq;
5004 u64 ns = 0;
5006 rq = task_rq_lock(p, &flags);
5007 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5008 task_rq_unlock(rq, &flags);
5010 return ns;
5014 * Return sum_exec_runtime for the thread group.
5015 * In case the task is currently running, return the sum plus current's
5016 * pending runtime that have not been accounted yet.
5018 * Note that the thread group might have other running tasks as well,
5019 * so the return value not includes other pending runtime that other
5020 * running tasks might have.
5022 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5024 struct task_cputime totals;
5025 unsigned long flags;
5026 struct rq *rq;
5027 u64 ns;
5029 rq = task_rq_lock(p, &flags);
5030 thread_group_cputime(p, &totals);
5031 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5032 task_rq_unlock(rq, &flags);
5034 return ns;
5038 * Account user cpu time to a process.
5039 * @p: the process that the cpu time gets accounted to
5040 * @cputime: the cpu time spent in user space since the last update
5041 * @cputime_scaled: cputime scaled by cpu frequency
5043 void account_user_time(struct task_struct *p, cputime_t cputime,
5044 cputime_t cputime_scaled)
5046 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5047 cputime64_t tmp;
5049 /* Add user time to process. */
5050 p->utime = cputime_add(p->utime, cputime);
5051 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5052 account_group_user_time(p, cputime);
5054 /* Add user time to cpustat. */
5055 tmp = cputime_to_cputime64(cputime);
5056 if (TASK_NICE(p) > 0)
5057 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5058 else
5059 cpustat->user = cputime64_add(cpustat->user, tmp);
5061 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5062 /* Account for user time used */
5063 acct_update_integrals(p);
5067 * Account guest cpu time to a process.
5068 * @p: the process that the cpu time gets accounted to
5069 * @cputime: the cpu time spent in virtual machine since the last update
5070 * @cputime_scaled: cputime scaled by cpu frequency
5072 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5073 cputime_t cputime_scaled)
5075 cputime64_t tmp;
5076 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5078 tmp = cputime_to_cputime64(cputime);
5080 /* Add guest time to process. */
5081 p->utime = cputime_add(p->utime, cputime);
5082 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5083 account_group_user_time(p, cputime);
5084 p->gtime = cputime_add(p->gtime, cputime);
5086 /* Add guest time to cpustat. */
5087 cpustat->user = cputime64_add(cpustat->user, tmp);
5088 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5092 * Account system cpu time to a process.
5093 * @p: the process that the cpu time gets accounted to
5094 * @hardirq_offset: the offset to subtract from hardirq_count()
5095 * @cputime: the cpu time spent in kernel space since the last update
5096 * @cputime_scaled: cputime scaled by cpu frequency
5098 void account_system_time(struct task_struct *p, int hardirq_offset,
5099 cputime_t cputime, cputime_t cputime_scaled)
5101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5102 cputime64_t tmp;
5104 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5105 account_guest_time(p, cputime, cputime_scaled);
5106 return;
5109 /* Add system time to process. */
5110 p->stime = cputime_add(p->stime, cputime);
5111 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5112 account_group_system_time(p, cputime);
5114 /* Add system time to cpustat. */
5115 tmp = cputime_to_cputime64(cputime);
5116 if (hardirq_count() - hardirq_offset)
5117 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5118 else if (softirq_count())
5119 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5120 else
5121 cpustat->system = cputime64_add(cpustat->system, tmp);
5123 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5125 /* Account for system time used */
5126 acct_update_integrals(p);
5130 * Account for involuntary wait time.
5131 * @steal: the cpu time spent in involuntary wait
5133 void account_steal_time(cputime_t cputime)
5135 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5136 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5138 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5142 * Account for idle time.
5143 * @cputime: the cpu time spent in idle wait
5145 void account_idle_time(cputime_t cputime)
5147 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5148 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5149 struct rq *rq = this_rq();
5150 struct task_struct *task;
5152 if (atomic_read(&rq->nr_iowait) > 0) {
5153 for (task = current; task != &init_task; task = task->parent)
5155 /* task now points to init */
5156 for_each_process(task) {
5157 /* this pointlessly prints the name and PID of each task */
5158 if (task->in_iowait) {
5159 task->iowait = cputime64_add(task->iowait, cputime64);
5160 //printk("%s[%d]\n", task->comm, task->pid);
5163 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5165 else
5166 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5169 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5172 * Account a single tick of cpu time.
5173 * @p: the process that the cpu time gets accounted to
5174 * @user_tick: indicates if the tick is a user or a system tick
5176 void account_process_tick(struct task_struct *p, int user_tick)
5178 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5179 struct rq *rq = this_rq();
5181 if (user_tick)
5182 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5183 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5184 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5185 one_jiffy_scaled);
5186 else
5187 account_idle_time(cputime_one_jiffy);
5191 * Account multiple ticks of steal time.
5192 * @p: the process from which the cpu time has been stolen
5193 * @ticks: number of stolen ticks
5195 void account_steal_ticks(unsigned long ticks)
5197 account_steal_time(jiffies_to_cputime(ticks));
5201 * Account multiple ticks of idle time.
5202 * @ticks: number of stolen ticks
5204 void account_idle_ticks(unsigned long ticks)
5206 account_idle_time(jiffies_to_cputime(ticks));
5209 #endif
5212 * Use precise platform statistics if available:
5214 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5215 cputime_t task_utime(struct task_struct *p)
5217 return p->utime;
5220 cputime_t task_stime(struct task_struct *p)
5222 return p->stime;
5224 #else
5225 cputime_t task_utime(struct task_struct *p)
5227 clock_t utime = cputime_to_clock_t(p->utime),
5228 total = utime + cputime_to_clock_t(p->stime);
5229 u64 temp;
5232 * Use CFS's precise accounting:
5234 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5236 if (total) {
5237 temp *= utime;
5238 do_div(temp, total);
5240 utime = (clock_t)temp;
5242 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5243 return p->prev_utime;
5246 cputime_t task_stime(struct task_struct *p)
5248 clock_t stime;
5251 * Use CFS's precise accounting. (we subtract utime from
5252 * the total, to make sure the total observed by userspace
5253 * grows monotonically - apps rely on that):
5255 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5256 cputime_to_clock_t(task_utime(p));
5258 if (stime >= 0)
5259 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5261 return p->prev_stime;
5263 #endif
5265 inline cputime_t task_gtime(struct task_struct *p)
5267 return p->gtime;
5271 * This function gets called by the timer code, with HZ frequency.
5272 * We call it with interrupts disabled.
5274 * It also gets called by the fork code, when changing the parent's
5275 * timeslices.
5277 void scheduler_tick(void)
5279 int cpu = smp_processor_id();
5280 struct rq *rq = cpu_rq(cpu);
5281 struct task_struct *curr = rq->curr;
5283 sched_clock_tick();
5285 spin_lock(&rq->lock);
5286 update_rq_clock(rq);
5287 update_cpu_load(rq);
5288 curr->sched_class->task_tick(rq, curr, 0);
5289 spin_unlock(&rq->lock);
5291 perf_event_task_tick(curr, cpu);
5293 #ifdef CONFIG_SMP
5294 rq->idle_at_tick = idle_cpu(cpu);
5295 trigger_load_balance(rq, cpu);
5296 #endif
5299 notrace unsigned long get_parent_ip(unsigned long addr)
5301 if (in_lock_functions(addr)) {
5302 addr = CALLER_ADDR2;
5303 if (in_lock_functions(addr))
5304 addr = CALLER_ADDR3;
5306 return addr;
5309 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5310 defined(CONFIG_PREEMPT_TRACER))
5312 void __kprobes add_preempt_count(int val)
5314 #ifdef CONFIG_DEBUG_PREEMPT
5316 * Underflow?
5318 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5319 return;
5320 #endif
5321 preempt_count() += val;
5322 #ifdef CONFIG_DEBUG_PREEMPT
5324 * Spinlock count overflowing soon?
5326 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5327 PREEMPT_MASK - 10);
5328 #endif
5329 if (preempt_count() == val)
5330 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5332 EXPORT_SYMBOL(add_preempt_count);
5334 void __kprobes sub_preempt_count(int val)
5336 #ifdef CONFIG_DEBUG_PREEMPT
5338 * Underflow?
5340 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5341 return;
5343 * Is the spinlock portion underflowing?
5345 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5346 !(preempt_count() & PREEMPT_MASK)))
5347 return;
5348 #endif
5350 if (preempt_count() == val)
5351 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5352 preempt_count() -= val;
5354 EXPORT_SYMBOL(sub_preempt_count);
5356 #endif
5359 * Print scheduling while atomic bug:
5361 static noinline void __schedule_bug(struct task_struct *prev)
5363 struct pt_regs *regs = get_irq_regs();
5365 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5366 prev->comm, prev->pid, preempt_count());
5368 debug_show_held_locks(prev);
5369 print_modules();
5370 if (irqs_disabled())
5371 print_irqtrace_events(prev);
5373 if (regs)
5374 show_regs(regs);
5375 else
5376 dump_stack();
5380 * Various schedule()-time debugging checks and statistics:
5382 static inline void schedule_debug(struct task_struct *prev)
5385 * Test if we are atomic. Since do_exit() needs to call into
5386 * schedule() atomically, we ignore that path for now.
5387 * Otherwise, whine if we are scheduling when we should not be.
5389 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5390 __schedule_bug(prev);
5392 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5394 schedstat_inc(this_rq(), sched_count);
5395 #ifdef CONFIG_SCHEDSTATS
5396 if (unlikely(prev->lock_depth >= 0)) {
5397 schedstat_inc(this_rq(), bkl_count);
5398 schedstat_inc(prev, sched_info.bkl_count);
5400 #endif
5403 static void put_prev_task(struct rq *rq, struct task_struct *p)
5405 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5407 update_avg(&p->se.avg_running, runtime);
5409 if (p->state == TASK_RUNNING) {
5411 * In order to avoid avg_overlap growing stale when we are
5412 * indeed overlapping and hence not getting put to sleep, grow
5413 * the avg_overlap on preemption.
5415 * We use the average preemption runtime because that
5416 * correlates to the amount of cache footprint a task can
5417 * build up.
5419 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5420 update_avg(&p->se.avg_overlap, runtime);
5421 } else {
5422 update_avg(&p->se.avg_running, 0);
5424 p->sched_class->put_prev_task(rq, p);
5428 * Pick up the highest-prio task:
5430 static inline struct task_struct *
5431 pick_next_task(struct rq *rq)
5433 const struct sched_class *class;
5434 struct task_struct *p;
5437 * Optimization: we know that if all tasks are in
5438 * the fair class we can call that function directly:
5440 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5441 p = fair_sched_class.pick_next_task(rq);
5442 if (likely(p))
5443 return p;
5446 class = sched_class_highest;
5447 for ( ; ; ) {
5448 p = class->pick_next_task(rq);
5449 if (p)
5450 return p;
5452 * Will never be NULL as the idle class always
5453 * returns a non-NULL p:
5455 class = class->next;
5460 * schedule() is the main scheduler function.
5462 asmlinkage void __sched schedule(void)
5464 struct task_struct *prev, *next;
5465 unsigned long *switch_count;
5466 struct rq *rq;
5467 int cpu;
5469 need_resched:
5470 preempt_disable();
5471 cpu = smp_processor_id();
5472 rq = cpu_rq(cpu);
5473 rcu_sched_qs(cpu);
5474 prev = rq->curr;
5475 switch_count = &prev->nivcsw;
5477 release_kernel_lock(prev);
5478 need_resched_nonpreemptible:
5480 schedule_debug(prev);
5482 if (sched_feat(HRTICK))
5483 hrtick_clear(rq);
5485 spin_lock_irq(&rq->lock);
5486 update_rq_clock(rq);
5487 clear_tsk_need_resched(prev);
5489 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5490 if (unlikely(signal_pending_state(prev->state, prev)))
5491 prev->state = TASK_RUNNING;
5492 else
5493 deactivate_task(rq, prev, 1);
5494 switch_count = &prev->nvcsw;
5497 pre_schedule(rq, prev);
5499 if (unlikely(!rq->nr_running))
5500 idle_balance(cpu, rq);
5502 put_prev_task(rq, prev);
5503 next = pick_next_task(rq);
5505 if (likely(prev != next)) {
5506 sched_info_switch(prev, next);
5507 perf_event_task_sched_out(prev, next, cpu);
5509 rq->nr_switches++;
5510 rq->curr = next;
5511 ++*switch_count;
5513 context_switch(rq, prev, next); /* unlocks the rq */
5515 * the context switch might have flipped the stack from under
5516 * us, hence refresh the local variables.
5518 cpu = smp_processor_id();
5519 rq = cpu_rq(cpu);
5520 } else
5521 spin_unlock_irq(&rq->lock);
5523 post_schedule(rq);
5525 if (unlikely(reacquire_kernel_lock(current) < 0))
5526 goto need_resched_nonpreemptible;
5528 preempt_enable_no_resched();
5529 if (need_resched())
5530 goto need_resched;
5532 EXPORT_SYMBOL(schedule);
5534 #ifdef CONFIG_SMP
5536 * Look out! "owner" is an entirely speculative pointer
5537 * access and not reliable.
5539 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5541 unsigned int cpu;
5542 struct rq *rq;
5544 if (!sched_feat(OWNER_SPIN))
5545 return 0;
5547 #ifdef CONFIG_DEBUG_PAGEALLOC
5549 * Need to access the cpu field knowing that
5550 * DEBUG_PAGEALLOC could have unmapped it if
5551 * the mutex owner just released it and exited.
5553 if (probe_kernel_address(&owner->cpu, cpu))
5554 goto out;
5555 #else
5556 cpu = owner->cpu;
5557 #endif
5560 * Even if the access succeeded (likely case),
5561 * the cpu field may no longer be valid.
5563 if (cpu >= nr_cpumask_bits)
5564 goto out;
5567 * We need to validate that we can do a
5568 * get_cpu() and that we have the percpu area.
5570 if (!cpu_online(cpu))
5571 goto out;
5573 rq = cpu_rq(cpu);
5575 for (;;) {
5577 * Owner changed, break to re-assess state.
5579 if (lock->owner != owner)
5580 break;
5583 * Is that owner really running on that cpu?
5585 if (task_thread_info(rq->curr) != owner || need_resched())
5586 return 0;
5588 cpu_relax();
5590 out:
5591 return 1;
5593 #endif
5595 #ifdef CONFIG_PREEMPT
5597 * this is the entry point to schedule() from in-kernel preemption
5598 * off of preempt_enable. Kernel preemptions off return from interrupt
5599 * occur there and call schedule directly.
5601 asmlinkage void __sched preempt_schedule(void)
5603 struct thread_info *ti = current_thread_info();
5606 * If there is a non-zero preempt_count or interrupts are disabled,
5607 * we do not want to preempt the current task. Just return..
5609 if (likely(ti->preempt_count || irqs_disabled()))
5610 return;
5612 do {
5613 add_preempt_count(PREEMPT_ACTIVE);
5614 schedule();
5615 sub_preempt_count(PREEMPT_ACTIVE);
5618 * Check again in case we missed a preemption opportunity
5619 * between schedule and now.
5621 barrier();
5622 } while (need_resched());
5624 EXPORT_SYMBOL(preempt_schedule);
5627 * this is the entry point to schedule() from kernel preemption
5628 * off of irq context.
5629 * Note, that this is called and return with irqs disabled. This will
5630 * protect us against recursive calling from irq.
5632 asmlinkage void __sched preempt_schedule_irq(void)
5634 struct thread_info *ti = current_thread_info();
5636 /* Catch callers which need to be fixed */
5637 BUG_ON(ti->preempt_count || !irqs_disabled());
5639 do {
5640 add_preempt_count(PREEMPT_ACTIVE);
5641 local_irq_enable();
5642 schedule();
5643 local_irq_disable();
5644 sub_preempt_count(PREEMPT_ACTIVE);
5647 * Check again in case we missed a preemption opportunity
5648 * between schedule and now.
5650 barrier();
5651 } while (need_resched());
5654 #endif /* CONFIG_PREEMPT */
5656 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5657 void *key)
5659 return try_to_wake_up(curr->private, mode, wake_flags);
5661 EXPORT_SYMBOL(default_wake_function);
5664 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5665 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5666 * number) then we wake all the non-exclusive tasks and one exclusive task.
5668 * There are circumstances in which we can try to wake a task which has already
5669 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5670 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5672 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5673 int nr_exclusive, int wake_flags, void *key)
5675 wait_queue_t *curr, *next;
5677 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5678 unsigned flags = curr->flags;
5680 if (curr->func(curr, mode, wake_flags, key) &&
5681 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5682 break;
5687 * __wake_up - wake up threads blocked on a waitqueue.
5688 * @q: the waitqueue
5689 * @mode: which threads
5690 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5691 * @key: is directly passed to the wakeup function
5693 * It may be assumed that this function implies a write memory barrier before
5694 * changing the task state if and only if any tasks are woken up.
5696 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5697 int nr_exclusive, void *key)
5699 unsigned long flags;
5701 spin_lock_irqsave(&q->lock, flags);
5702 __wake_up_common(q, mode, nr_exclusive, 0, key);
5703 spin_unlock_irqrestore(&q->lock, flags);
5705 EXPORT_SYMBOL(__wake_up);
5708 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5710 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5712 __wake_up_common(q, mode, 1, 0, NULL);
5715 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5717 __wake_up_common(q, mode, 1, 0, key);
5721 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5722 * @q: the waitqueue
5723 * @mode: which threads
5724 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5725 * @key: opaque value to be passed to wakeup targets
5727 * The sync wakeup differs that the waker knows that it will schedule
5728 * away soon, so while the target thread will be woken up, it will not
5729 * be migrated to another CPU - ie. the two threads are 'synchronized'
5730 * with each other. This can prevent needless bouncing between CPUs.
5732 * On UP it can prevent extra preemption.
5734 * It may be assumed that this function implies a write memory barrier before
5735 * changing the task state if and only if any tasks are woken up.
5737 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5738 int nr_exclusive, void *key)
5740 unsigned long flags;
5741 int wake_flags = WF_SYNC;
5743 if (unlikely(!q))
5744 return;
5746 if (unlikely(!nr_exclusive))
5747 wake_flags = 0;
5749 spin_lock_irqsave(&q->lock, flags);
5750 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5751 spin_unlock_irqrestore(&q->lock, flags);
5753 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5756 * __wake_up_sync - see __wake_up_sync_key()
5758 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5760 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5762 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5765 * complete: - signals a single thread waiting on this completion
5766 * @x: holds the state of this particular completion
5768 * This will wake up a single thread waiting on this completion. Threads will be
5769 * awakened in the same order in which they were queued.
5771 * See also complete_all(), wait_for_completion() and related routines.
5773 * It may be assumed that this function implies a write memory barrier before
5774 * changing the task state if and only if any tasks are woken up.
5776 void complete(struct completion *x)
5778 unsigned long flags;
5780 spin_lock_irqsave(&x->wait.lock, flags);
5781 x->done++;
5782 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5783 spin_unlock_irqrestore(&x->wait.lock, flags);
5785 EXPORT_SYMBOL(complete);
5788 * complete_all: - signals all threads waiting on this completion
5789 * @x: holds the state of this particular completion
5791 * This will wake up all threads waiting on this particular completion event.
5793 * It may be assumed that this function implies a write memory barrier before
5794 * changing the task state if and only if any tasks are woken up.
5796 void complete_all(struct completion *x)
5798 unsigned long flags;
5800 spin_lock_irqsave(&x->wait.lock, flags);
5801 x->done += UINT_MAX/2;
5802 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5803 spin_unlock_irqrestore(&x->wait.lock, flags);
5805 EXPORT_SYMBOL(complete_all);
5807 static inline long __sched
5808 do_wait_for_common(struct completion *x, long timeout, int state)
5810 if (!x->done) {
5811 DECLARE_WAITQUEUE(wait, current);
5813 wait.flags |= WQ_FLAG_EXCLUSIVE;
5814 __add_wait_queue_tail(&x->wait, &wait);
5815 do {
5816 if (signal_pending_state(state, current)) {
5817 timeout = -ERESTARTSYS;
5818 break;
5820 __set_current_state(state);
5821 spin_unlock_irq(&x->wait.lock);
5822 timeout = schedule_timeout(timeout);
5823 spin_lock_irq(&x->wait.lock);
5824 } while (!x->done && timeout);
5825 __remove_wait_queue(&x->wait, &wait);
5826 if (!x->done)
5827 return timeout;
5829 x->done--;
5830 return timeout ?: 1;
5833 static long __sched
5834 wait_for_common(struct completion *x, long timeout, int state)
5836 might_sleep();
5838 spin_lock_irq(&x->wait.lock);
5839 timeout = do_wait_for_common(x, timeout, state);
5840 spin_unlock_irq(&x->wait.lock);
5841 return timeout;
5845 * wait_for_completion: - waits for completion of a task
5846 * @x: holds the state of this particular completion
5848 * This waits to be signaled for completion of a specific task. It is NOT
5849 * interruptible and there is no timeout.
5851 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5852 * and interrupt capability. Also see complete().
5854 void __sched wait_for_completion(struct completion *x)
5856 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5858 EXPORT_SYMBOL(wait_for_completion);
5861 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5862 * @x: holds the state of this particular completion
5863 * @timeout: timeout value in jiffies
5865 * This waits for either a completion of a specific task to be signaled or for a
5866 * specified timeout to expire. The timeout is in jiffies. It is not
5867 * interruptible.
5869 unsigned long __sched
5870 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5872 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5874 EXPORT_SYMBOL(wait_for_completion_timeout);
5877 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5878 * @x: holds the state of this particular completion
5880 * This waits for completion of a specific task to be signaled. It is
5881 * interruptible.
5883 int __sched wait_for_completion_interruptible(struct completion *x)
5885 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5886 if (t == -ERESTARTSYS)
5887 return t;
5888 return 0;
5890 EXPORT_SYMBOL(wait_for_completion_interruptible);
5893 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5894 * @x: holds the state of this particular completion
5895 * @timeout: timeout value in jiffies
5897 * This waits for either a completion of a specific task to be signaled or for a
5898 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5900 unsigned long __sched
5901 wait_for_completion_interruptible_timeout(struct completion *x,
5902 unsigned long timeout)
5904 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5906 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5909 * wait_for_completion_killable: - waits for completion of a task (killable)
5910 * @x: holds the state of this particular completion
5912 * This waits to be signaled for completion of a specific task. It can be
5913 * interrupted by a kill signal.
5915 int __sched wait_for_completion_killable(struct completion *x)
5917 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5918 if (t == -ERESTARTSYS)
5919 return t;
5920 return 0;
5922 EXPORT_SYMBOL(wait_for_completion_killable);
5925 * try_wait_for_completion - try to decrement a completion without blocking
5926 * @x: completion structure
5928 * Returns: 0 if a decrement cannot be done without blocking
5929 * 1 if a decrement succeeded.
5931 * If a completion is being used as a counting completion,
5932 * attempt to decrement the counter without blocking. This
5933 * enables us to avoid waiting if the resource the completion
5934 * is protecting is not available.
5936 bool try_wait_for_completion(struct completion *x)
5938 int ret = 1;
5940 spin_lock_irq(&x->wait.lock);
5941 if (!x->done)
5942 ret = 0;
5943 else
5944 x->done--;
5945 spin_unlock_irq(&x->wait.lock);
5946 return ret;
5948 EXPORT_SYMBOL(try_wait_for_completion);
5951 * completion_done - Test to see if a completion has any waiters
5952 * @x: completion structure
5954 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5955 * 1 if there are no waiters.
5958 bool completion_done(struct completion *x)
5960 int ret = 1;
5962 spin_lock_irq(&x->wait.lock);
5963 if (!x->done)
5964 ret = 0;
5965 spin_unlock_irq(&x->wait.lock);
5966 return ret;
5968 EXPORT_SYMBOL(completion_done);
5970 static long __sched
5971 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5973 unsigned long flags;
5974 wait_queue_t wait;
5976 init_waitqueue_entry(&wait, current);
5978 __set_current_state(state);
5980 spin_lock_irqsave(&q->lock, flags);
5981 __add_wait_queue(q, &wait);
5982 spin_unlock(&q->lock);
5983 timeout = schedule_timeout(timeout);
5984 spin_lock_irq(&q->lock);
5985 __remove_wait_queue(q, &wait);
5986 spin_unlock_irqrestore(&q->lock, flags);
5988 return timeout;
5991 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5993 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5995 EXPORT_SYMBOL(interruptible_sleep_on);
5997 long __sched
5998 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6000 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6002 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6004 void __sched sleep_on(wait_queue_head_t *q)
6006 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6008 EXPORT_SYMBOL(sleep_on);
6010 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6012 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6014 EXPORT_SYMBOL(sleep_on_timeout);
6016 #ifdef CONFIG_RT_MUTEXES
6019 * rt_mutex_setprio - set the current priority of a task
6020 * @p: task
6021 * @prio: prio value (kernel-internal form)
6023 * This function changes the 'effective' priority of a task. It does
6024 * not touch ->normal_prio like __setscheduler().
6026 * Used by the rt_mutex code to implement priority inheritance logic.
6028 void rt_mutex_setprio(struct task_struct *p, int prio)
6030 unsigned long flags;
6031 int oldprio, on_rq, running;
6032 struct rq *rq;
6033 const struct sched_class *prev_class;
6035 BUG_ON(prio < 0 || prio > MAX_PRIO);
6037 rq = task_rq_lock(p, &flags);
6038 update_rq_clock(rq);
6040 oldprio = p->prio;
6041 prev_class = p->sched_class;
6042 on_rq = p->se.on_rq;
6043 running = task_current(rq, p);
6044 if (on_rq)
6045 dequeue_task(rq, p, 0);
6046 if (running)
6047 p->sched_class->put_prev_task(rq, p);
6049 if (rt_prio(prio))
6050 p->sched_class = &rt_sched_class;
6051 else
6052 p->sched_class = &fair_sched_class;
6054 p->prio = prio;
6056 if (running)
6057 p->sched_class->set_curr_task(rq);
6058 if (on_rq) {
6059 enqueue_task(rq, p, 0);
6061 check_class_changed(rq, p, prev_class, oldprio, running);
6063 task_rq_unlock(rq, &flags);
6066 #endif
6068 void set_user_nice(struct task_struct *p, long nice)
6070 int old_prio, delta, on_rq;
6071 unsigned long flags;
6072 struct rq *rq;
6074 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6075 return;
6077 * We have to be careful, if called from sys_setpriority(),
6078 * the task might be in the middle of scheduling on another CPU.
6080 rq = task_rq_lock(p, &flags);
6081 update_rq_clock(rq);
6083 * The RT priorities are set via sched_setscheduler(), but we still
6084 * allow the 'normal' nice value to be set - but as expected
6085 * it wont have any effect on scheduling until the task is
6086 * SCHED_FIFO/SCHED_RR:
6088 if (task_has_rt_policy(p)) {
6089 p->static_prio = NICE_TO_PRIO(nice);
6090 goto out_unlock;
6092 on_rq = p->se.on_rq;
6093 if (on_rq)
6094 dequeue_task(rq, p, 0);
6096 p->static_prio = NICE_TO_PRIO(nice);
6097 set_load_weight(p);
6098 old_prio = p->prio;
6099 p->prio = effective_prio(p);
6100 delta = p->prio - old_prio;
6102 if (on_rq) {
6103 enqueue_task(rq, p, 0);
6105 * If the task increased its priority or is running and
6106 * lowered its priority, then reschedule its CPU:
6108 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6109 resched_task(rq->curr);
6111 out_unlock:
6112 task_rq_unlock(rq, &flags);
6114 EXPORT_SYMBOL(set_user_nice);
6117 * can_nice - check if a task can reduce its nice value
6118 * @p: task
6119 * @nice: nice value
6121 int can_nice(const struct task_struct *p, const int nice)
6123 /* convert nice value [19,-20] to rlimit style value [1,40] */
6124 int nice_rlim = 20 - nice;
6126 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6127 capable(CAP_SYS_NICE));
6130 #ifdef __ARCH_WANT_SYS_NICE
6133 * sys_nice - change the priority of the current process.
6134 * @increment: priority increment
6136 * sys_setpriority is a more generic, but much slower function that
6137 * does similar things.
6139 SYSCALL_DEFINE1(nice, int, increment)
6141 long nice, retval;
6144 * Setpriority might change our priority at the same moment.
6145 * We don't have to worry. Conceptually one call occurs first
6146 * and we have a single winner.
6148 if (increment < -40)
6149 increment = -40;
6150 if (increment > 40)
6151 increment = 40;
6153 nice = TASK_NICE(current) + increment;
6154 if (nice < -20)
6155 nice = -20;
6156 if (nice > 19)
6157 nice = 19;
6159 if (increment < 0 && !can_nice(current, nice))
6160 return -EPERM;
6162 retval = security_task_setnice(current, nice);
6163 if (retval)
6164 return retval;
6166 set_user_nice(current, nice);
6167 return 0;
6170 #endif
6173 * task_prio - return the priority value of a given task.
6174 * @p: the task in question.
6176 * This is the priority value as seen by users in /proc.
6177 * RT tasks are offset by -200. Normal tasks are centered
6178 * around 0, value goes from -16 to +15.
6180 int task_prio(const struct task_struct *p)
6182 return p->prio - MAX_RT_PRIO;
6186 * task_nice - return the nice value of a given task.
6187 * @p: the task in question.
6189 int task_nice(const struct task_struct *p)
6191 return TASK_NICE(p);
6193 EXPORT_SYMBOL(task_nice);
6196 * idle_cpu - is a given cpu idle currently?
6197 * @cpu: the processor in question.
6199 int idle_cpu(int cpu)
6201 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6205 * idle_task - return the idle task for a given cpu.
6206 * @cpu: the processor in question.
6208 struct task_struct *idle_task(int cpu)
6210 return cpu_rq(cpu)->idle;
6214 * find_process_by_pid - find a process with a matching PID value.
6215 * @pid: the pid in question.
6217 static struct task_struct *find_process_by_pid(pid_t pid)
6219 return pid ? find_task_by_vpid(pid) : current;
6222 /* Actually do priority change: must hold rq lock. */
6223 static void
6224 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6226 BUG_ON(p->se.on_rq);
6228 p->policy = policy;
6229 switch (p->policy) {
6230 case SCHED_NORMAL:
6231 case SCHED_BATCH:
6232 case SCHED_IDLE:
6233 p->sched_class = &fair_sched_class;
6234 break;
6235 case SCHED_FIFO:
6236 case SCHED_RR:
6237 p->sched_class = &rt_sched_class;
6238 break;
6241 p->rt_priority = prio;
6242 p->normal_prio = normal_prio(p);
6243 /* we are holding p->pi_lock already */
6244 p->prio = rt_mutex_getprio(p);
6245 set_load_weight(p);
6249 * check the target process has a UID that matches the current process's
6251 static bool check_same_owner(struct task_struct *p)
6253 const struct cred *cred = current_cred(), *pcred;
6254 bool match;
6256 rcu_read_lock();
6257 pcred = __task_cred(p);
6258 match = (cred->euid == pcred->euid ||
6259 cred->euid == pcred->uid);
6260 rcu_read_unlock();
6261 return match;
6264 static int __sched_setscheduler(struct task_struct *p, int policy,
6265 struct sched_param *param, bool user)
6267 int retval, oldprio, oldpolicy = -1, on_rq, running;
6268 unsigned long flags;
6269 const struct sched_class *prev_class;
6270 struct rq *rq;
6271 int reset_on_fork;
6273 /* may grab non-irq protected spin_locks */
6274 BUG_ON(in_interrupt());
6275 recheck:
6276 /* double check policy once rq lock held */
6277 if (policy < 0) {
6278 reset_on_fork = p->sched_reset_on_fork;
6279 policy = oldpolicy = p->policy;
6280 } else {
6281 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6282 policy &= ~SCHED_RESET_ON_FORK;
6284 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6285 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6286 policy != SCHED_IDLE)
6287 return -EINVAL;
6291 * Valid priorities for SCHED_FIFO and SCHED_RR are
6292 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6293 * SCHED_BATCH and SCHED_IDLE is 0.
6295 if (param->sched_priority < 0 ||
6296 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6297 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6298 return -EINVAL;
6299 if (rt_policy(policy) != (param->sched_priority != 0))
6300 return -EINVAL;
6303 * Allow unprivileged RT tasks to decrease priority:
6305 if (user && !capable(CAP_SYS_NICE)) {
6306 if (rt_policy(policy)) {
6307 unsigned long rlim_rtprio;
6309 if (!lock_task_sighand(p, &flags))
6310 return -ESRCH;
6311 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6312 unlock_task_sighand(p, &flags);
6314 /* can't set/change the rt policy */
6315 if (policy != p->policy && !rlim_rtprio)
6316 return -EPERM;
6318 /* can't increase priority */
6319 if (param->sched_priority > p->rt_priority &&
6320 param->sched_priority > rlim_rtprio)
6321 return -EPERM;
6324 * Like positive nice levels, dont allow tasks to
6325 * move out of SCHED_IDLE either:
6327 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6328 return -EPERM;
6330 /* can't change other user's priorities */
6331 if (!check_same_owner(p))
6332 return -EPERM;
6334 /* Normal users shall not reset the sched_reset_on_fork flag */
6335 if (p->sched_reset_on_fork && !reset_on_fork)
6336 return -EPERM;
6339 if (user) {
6340 #ifdef CONFIG_RT_GROUP_SCHED
6342 * Do not allow realtime tasks into groups that have no runtime
6343 * assigned.
6345 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6346 task_group(p)->rt_bandwidth.rt_runtime == 0)
6347 return -EPERM;
6348 #endif
6350 retval = security_task_setscheduler(p, policy, param);
6351 if (retval)
6352 return retval;
6356 * make sure no PI-waiters arrive (or leave) while we are
6357 * changing the priority of the task:
6359 spin_lock_irqsave(&p->pi_lock, flags);
6361 * To be able to change p->policy safely, the apropriate
6362 * runqueue lock must be held.
6364 rq = __task_rq_lock(p);
6365 /* recheck policy now with rq lock held */
6366 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6367 policy = oldpolicy = -1;
6368 __task_rq_unlock(rq);
6369 spin_unlock_irqrestore(&p->pi_lock, flags);
6370 goto recheck;
6372 update_rq_clock(rq);
6373 on_rq = p->se.on_rq;
6374 running = task_current(rq, p);
6375 if (on_rq)
6376 deactivate_task(rq, p, 0);
6377 if (running)
6378 p->sched_class->put_prev_task(rq, p);
6380 p->sched_reset_on_fork = reset_on_fork;
6382 oldprio = p->prio;
6383 prev_class = p->sched_class;
6384 __setscheduler(rq, p, policy, param->sched_priority);
6386 if (running)
6387 p->sched_class->set_curr_task(rq);
6388 if (on_rq) {
6389 activate_task(rq, p, 0);
6391 check_class_changed(rq, p, prev_class, oldprio, running);
6393 __task_rq_unlock(rq);
6394 spin_unlock_irqrestore(&p->pi_lock, flags);
6396 rt_mutex_adjust_pi(p);
6398 return 0;
6402 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6403 * @p: the task in question.
6404 * @policy: new policy.
6405 * @param: structure containing the new RT priority.
6407 * NOTE that the task may be already dead.
6409 int sched_setscheduler(struct task_struct *p, int policy,
6410 struct sched_param *param)
6412 return __sched_setscheduler(p, policy, param, true);
6414 EXPORT_SYMBOL_GPL(sched_setscheduler);
6417 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6418 * @p: the task in question.
6419 * @policy: new policy.
6420 * @param: structure containing the new RT priority.
6422 * Just like sched_setscheduler, only don't bother checking if the
6423 * current context has permission. For example, this is needed in
6424 * stop_machine(): we create temporary high priority worker threads,
6425 * but our caller might not have that capability.
6427 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6428 struct sched_param *param)
6430 return __sched_setscheduler(p, policy, param, false);
6433 static int
6434 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6436 struct sched_param lparam;
6437 struct task_struct *p;
6438 int retval;
6440 if (!param || pid < 0)
6441 return -EINVAL;
6442 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6443 return -EFAULT;
6445 rcu_read_lock();
6446 retval = -ESRCH;
6447 p = find_process_by_pid(pid);
6448 if (p != NULL)
6449 retval = sched_setscheduler(p, policy, &lparam);
6450 rcu_read_unlock();
6452 return retval;
6456 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6457 * @pid: the pid in question.
6458 * @policy: new policy.
6459 * @param: structure containing the new RT priority.
6461 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6462 struct sched_param __user *, param)
6464 /* negative values for policy are not valid */
6465 if (policy < 0)
6466 return -EINVAL;
6468 return do_sched_setscheduler(pid, policy, param);
6472 * sys_sched_setparam - set/change the RT priority of a thread
6473 * @pid: the pid in question.
6474 * @param: structure containing the new RT priority.
6476 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6478 return do_sched_setscheduler(pid, -1, param);
6482 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6483 * @pid: the pid in question.
6485 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6487 struct task_struct *p;
6488 int retval;
6490 if (pid < 0)
6491 return -EINVAL;
6493 retval = -ESRCH;
6494 read_lock(&tasklist_lock);
6495 p = find_process_by_pid(pid);
6496 if (p) {
6497 retval = security_task_getscheduler(p);
6498 if (!retval)
6499 retval = p->policy
6500 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6502 read_unlock(&tasklist_lock);
6503 return retval;
6507 * sys_sched_getparam - get the RT priority of a thread
6508 * @pid: the pid in question.
6509 * @param: structure containing the RT priority.
6511 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6513 struct sched_param lp;
6514 struct task_struct *p;
6515 int retval;
6517 if (!param || pid < 0)
6518 return -EINVAL;
6520 read_lock(&tasklist_lock);
6521 p = find_process_by_pid(pid);
6522 retval = -ESRCH;
6523 if (!p)
6524 goto out_unlock;
6526 retval = security_task_getscheduler(p);
6527 if (retval)
6528 goto out_unlock;
6530 lp.sched_priority = p->rt_priority;
6531 read_unlock(&tasklist_lock);
6534 * This one might sleep, we cannot do it with a spinlock held ...
6536 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6538 return retval;
6540 out_unlock:
6541 read_unlock(&tasklist_lock);
6542 return retval;
6545 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6547 cpumask_var_t cpus_allowed, new_mask;
6548 struct task_struct *p;
6549 int retval;
6551 get_online_cpus();
6552 read_lock(&tasklist_lock);
6554 p = find_process_by_pid(pid);
6555 if (!p) {
6556 read_unlock(&tasklist_lock);
6557 put_online_cpus();
6558 return -ESRCH;
6562 * It is not safe to call set_cpus_allowed with the
6563 * tasklist_lock held. We will bump the task_struct's
6564 * usage count and then drop tasklist_lock.
6566 get_task_struct(p);
6567 read_unlock(&tasklist_lock);
6569 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6570 retval = -ENOMEM;
6571 goto out_put_task;
6573 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6574 retval = -ENOMEM;
6575 goto out_free_cpus_allowed;
6577 retval = -EPERM;
6578 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6579 goto out_unlock;
6581 retval = security_task_setscheduler(p, 0, NULL);
6582 if (retval)
6583 goto out_unlock;
6585 cpuset_cpus_allowed(p, cpus_allowed);
6586 cpumask_and(new_mask, in_mask, cpus_allowed);
6587 again:
6588 retval = set_cpus_allowed_ptr(p, new_mask);
6590 if (!retval) {
6591 cpuset_cpus_allowed(p, cpus_allowed);
6592 if (!cpumask_subset(new_mask, cpus_allowed)) {
6594 * We must have raced with a concurrent cpuset
6595 * update. Just reset the cpus_allowed to the
6596 * cpuset's cpus_allowed
6598 cpumask_copy(new_mask, cpus_allowed);
6599 goto again;
6602 out_unlock:
6603 free_cpumask_var(new_mask);
6604 out_free_cpus_allowed:
6605 free_cpumask_var(cpus_allowed);
6606 out_put_task:
6607 put_task_struct(p);
6608 put_online_cpus();
6609 return retval;
6612 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6613 struct cpumask *new_mask)
6615 if (len < cpumask_size())
6616 cpumask_clear(new_mask);
6617 else if (len > cpumask_size())
6618 len = cpumask_size();
6620 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6624 * sys_sched_setaffinity - set the cpu affinity of a process
6625 * @pid: pid of the process
6626 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6627 * @user_mask_ptr: user-space pointer to the new cpu mask
6629 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6630 unsigned long __user *, user_mask_ptr)
6632 cpumask_var_t new_mask;
6633 int retval;
6635 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6636 return -ENOMEM;
6638 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6639 if (retval == 0)
6640 retval = sched_setaffinity(pid, new_mask);
6641 free_cpumask_var(new_mask);
6642 return retval;
6645 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6647 struct task_struct *p;
6648 int retval;
6650 get_online_cpus();
6651 read_lock(&tasklist_lock);
6653 retval = -ESRCH;
6654 p = find_process_by_pid(pid);
6655 if (!p)
6656 goto out_unlock;
6658 retval = security_task_getscheduler(p);
6659 if (retval)
6660 goto out_unlock;
6662 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6664 out_unlock:
6665 read_unlock(&tasklist_lock);
6666 put_online_cpus();
6668 return retval;
6672 * sys_sched_getaffinity - get the cpu affinity of a process
6673 * @pid: pid of the process
6674 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6675 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6677 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6678 unsigned long __user *, user_mask_ptr)
6680 int ret;
6681 cpumask_var_t mask;
6683 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6684 return -EINVAL;
6685 if (len & (sizeof(unsigned long)-1))
6686 return -EINVAL;
6688 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6689 return -ENOMEM;
6691 ret = sched_getaffinity(pid, mask);
6692 if (ret == 0) {
6693 size_t retlen = min_t(size_t, len, cpumask_size());
6695 if (copy_to_user(user_mask_ptr, mask, retlen))
6696 ret = -EFAULT;
6697 else
6698 ret = retlen;
6700 free_cpumask_var(mask);
6702 return ret;
6706 * sys_sched_yield - yield the current processor to other threads.
6708 * This function yields the current CPU to other tasks. If there are no
6709 * other threads running on this CPU then this function will return.
6711 SYSCALL_DEFINE0(sched_yield)
6713 struct rq *rq = this_rq_lock();
6715 schedstat_inc(rq, yld_count);
6716 current->sched_class->yield_task(rq);
6719 * Since we are going to call schedule() anyway, there's
6720 * no need to preempt or enable interrupts:
6722 __release(rq->lock);
6723 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6724 _raw_spin_unlock(&rq->lock);
6725 preempt_enable_no_resched();
6727 schedule();
6729 return 0;
6732 static inline int should_resched(void)
6734 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6737 static void __cond_resched(void)
6739 add_preempt_count(PREEMPT_ACTIVE);
6740 schedule();
6741 sub_preempt_count(PREEMPT_ACTIVE);
6744 int __sched _cond_resched(void)
6746 if (should_resched()) {
6747 __cond_resched();
6748 return 1;
6750 return 0;
6752 EXPORT_SYMBOL(_cond_resched);
6755 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6756 * call schedule, and on return reacquire the lock.
6758 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6759 * operations here to prevent schedule() from being called twice (once via
6760 * spin_unlock(), once by hand).
6762 int __cond_resched_lock(spinlock_t *lock)
6764 int resched = should_resched();
6765 int ret = 0;
6767 lockdep_assert_held(lock);
6769 if (spin_needbreak(lock) || resched) {
6770 spin_unlock(lock);
6771 if (resched)
6772 __cond_resched();
6773 else
6774 cpu_relax();
6775 ret = 1;
6776 spin_lock(lock);
6778 return ret;
6780 EXPORT_SYMBOL(__cond_resched_lock);
6782 int __sched __cond_resched_softirq(void)
6784 BUG_ON(!in_softirq());
6786 if (should_resched()) {
6787 local_bh_enable();
6788 __cond_resched();
6789 local_bh_disable();
6790 return 1;
6792 return 0;
6794 EXPORT_SYMBOL(__cond_resched_softirq);
6797 * yield - yield the current processor to other threads.
6799 * This is a shortcut for kernel-space yielding - it marks the
6800 * thread runnable and calls sys_sched_yield().
6802 void __sched yield(void)
6804 set_current_state(TASK_RUNNING);
6805 sys_sched_yield();
6807 EXPORT_SYMBOL(yield);
6810 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6811 * that process accounting knows that this is a task in IO wait state.
6813 void __sched io_schedule(void)
6815 struct rq *rq = raw_rq();
6817 delayacct_blkio_start();
6818 atomic_inc(&rq->nr_iowait);
6819 current->in_iowait = 1;
6820 schedule();
6821 current->in_iowait = 0;
6822 atomic_dec(&rq->nr_iowait);
6823 delayacct_blkio_end();
6825 EXPORT_SYMBOL(io_schedule);
6827 long __sched io_schedule_timeout(long timeout)
6829 struct rq *rq = raw_rq();
6830 long ret;
6832 delayacct_blkio_start();
6833 atomic_inc(&rq->nr_iowait);
6834 current->in_iowait = 1;
6835 ret = schedule_timeout(timeout);
6836 current->in_iowait = 0;
6837 atomic_dec(&rq->nr_iowait);
6838 delayacct_blkio_end();
6839 return ret;
6843 * sys_sched_get_priority_max - return maximum RT priority.
6844 * @policy: scheduling class.
6846 * this syscall returns the maximum rt_priority that can be used
6847 * by a given scheduling class.
6849 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6851 int ret = -EINVAL;
6853 switch (policy) {
6854 case SCHED_FIFO:
6855 case SCHED_RR:
6856 ret = MAX_USER_RT_PRIO-1;
6857 break;
6858 case SCHED_NORMAL:
6859 case SCHED_BATCH:
6860 case SCHED_IDLE:
6861 ret = 0;
6862 break;
6864 return ret;
6868 * sys_sched_get_priority_min - return minimum RT priority.
6869 * @policy: scheduling class.
6871 * this syscall returns the minimum rt_priority that can be used
6872 * by a given scheduling class.
6874 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6876 int ret = -EINVAL;
6878 switch (policy) {
6879 case SCHED_FIFO:
6880 case SCHED_RR:
6881 ret = 1;
6882 break;
6883 case SCHED_NORMAL:
6884 case SCHED_BATCH:
6885 case SCHED_IDLE:
6886 ret = 0;
6888 return ret;
6892 * sys_sched_rr_get_interval - return the default timeslice of a process.
6893 * @pid: pid of the process.
6894 * @interval: userspace pointer to the timeslice value.
6896 * this syscall writes the default timeslice value of a given process
6897 * into the user-space timespec buffer. A value of '0' means infinity.
6899 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6900 struct timespec __user *, interval)
6902 struct task_struct *p;
6903 unsigned int time_slice;
6904 int retval;
6905 struct timespec t;
6907 if (pid < 0)
6908 return -EINVAL;
6910 retval = -ESRCH;
6911 read_lock(&tasklist_lock);
6912 p = find_process_by_pid(pid);
6913 if (!p)
6914 goto out_unlock;
6916 retval = security_task_getscheduler(p);
6917 if (retval)
6918 goto out_unlock;
6920 time_slice = p->sched_class->get_rr_interval(p);
6922 read_unlock(&tasklist_lock);
6923 jiffies_to_timespec(time_slice, &t);
6924 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6925 return retval;
6927 out_unlock:
6928 read_unlock(&tasklist_lock);
6929 return retval;
6932 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6934 void sched_show_task(struct task_struct *p)
6936 unsigned long free = 0;
6937 unsigned state;
6939 state = p->state ? __ffs(p->state) + 1 : 0;
6940 printk(KERN_INFO "%-15.15s %c", p->comm,
6941 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6942 #if BITS_PER_LONG == 32
6943 if (state == TASK_RUNNING)
6944 printk(KERN_CONT " running ");
6945 else
6946 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6947 #else
6948 if (state == TASK_RUNNING)
6949 printk(KERN_CONT " running task ");
6950 else
6951 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6952 #endif
6953 #ifdef CONFIG_DEBUG_STACK_USAGE
6954 free = stack_not_used(p);
6955 #endif
6956 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6957 task_pid_nr(p), task_pid_nr(p->real_parent),
6958 (unsigned long)task_thread_info(p)->flags);
6960 show_stack(p, NULL);
6963 void show_state_filter(unsigned long state_filter)
6965 struct task_struct *g, *p;
6967 #if BITS_PER_LONG == 32
6968 printk(KERN_INFO
6969 " task PC stack pid father\n");
6970 #else
6971 printk(KERN_INFO
6972 " task PC stack pid father\n");
6973 #endif
6974 read_lock(&tasklist_lock);
6975 do_each_thread(g, p) {
6977 * reset the NMI-timeout, listing all files on a slow
6978 * console might take alot of time:
6980 touch_nmi_watchdog();
6981 if (!state_filter || (p->state & state_filter))
6982 sched_show_task(p);
6983 } while_each_thread(g, p);
6985 touch_all_softlockup_watchdogs();
6987 #ifdef CONFIG_SCHED_DEBUG
6988 sysrq_sched_debug_show();
6989 #endif
6990 read_unlock(&tasklist_lock);
6992 * Only show locks if all tasks are dumped:
6994 if (state_filter == -1)
6995 debug_show_all_locks();
6998 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7000 idle->sched_class = &idle_sched_class;
7004 * init_idle - set up an idle thread for a given CPU
7005 * @idle: task in question
7006 * @cpu: cpu the idle task belongs to
7008 * NOTE: this function does not set the idle thread's NEED_RESCHED
7009 * flag, to make booting more robust.
7011 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7013 struct rq *rq = cpu_rq(cpu);
7014 unsigned long flags;
7016 spin_lock_irqsave(&rq->lock, flags);
7018 __sched_fork(idle);
7019 idle->se.exec_start = sched_clock();
7021 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7022 __set_task_cpu(idle, cpu);
7024 rq->curr = rq->idle = idle;
7025 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7026 idle->oncpu = 1;
7027 #endif
7028 spin_unlock_irqrestore(&rq->lock, flags);
7030 /* Set the preempt count _outside_ the spinlocks! */
7031 #if defined(CONFIG_PREEMPT)
7032 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7033 #else
7034 task_thread_info(idle)->preempt_count = 0;
7035 #endif
7037 * The idle tasks have their own, simple scheduling class:
7039 idle->sched_class = &idle_sched_class;
7040 ftrace_graph_init_task(idle);
7044 * In a system that switches off the HZ timer nohz_cpu_mask
7045 * indicates which cpus entered this state. This is used
7046 * in the rcu update to wait only for active cpus. For system
7047 * which do not switch off the HZ timer nohz_cpu_mask should
7048 * always be CPU_BITS_NONE.
7050 cpumask_var_t nohz_cpu_mask;
7053 * Increase the granularity value when there are more CPUs,
7054 * because with more CPUs the 'effective latency' as visible
7055 * to users decreases. But the relationship is not linear,
7056 * so pick a second-best guess by going with the log2 of the
7057 * number of CPUs.
7059 * This idea comes from the SD scheduler of Con Kolivas:
7061 static void update_sysctl(void)
7063 unsigned int cpus = min(num_online_cpus(), 8U);
7064 unsigned int factor = 1 + ilog2(cpus);
7066 #define SET_SYSCTL(name) \
7067 (sysctl_##name = (factor) * normalized_sysctl_##name)
7068 SET_SYSCTL(sched_min_granularity);
7069 SET_SYSCTL(sched_latency);
7070 SET_SYSCTL(sched_wakeup_granularity);
7071 SET_SYSCTL(sched_shares_ratelimit);
7072 #undef SET_SYSCTL
7075 static inline void sched_init_granularity(void)
7077 update_sysctl();
7080 #ifdef CONFIG_SMP
7082 * This is how migration works:
7084 * 1) we queue a struct migration_req structure in the source CPU's
7085 * runqueue and wake up that CPU's migration thread.
7086 * 2) we down() the locked semaphore => thread blocks.
7087 * 3) migration thread wakes up (implicitly it forces the migrated
7088 * thread off the CPU)
7089 * 4) it gets the migration request and checks whether the migrated
7090 * task is still in the wrong runqueue.
7091 * 5) if it's in the wrong runqueue then the migration thread removes
7092 * it and puts it into the right queue.
7093 * 6) migration thread up()s the semaphore.
7094 * 7) we wake up and the migration is done.
7098 * Change a given task's CPU affinity. Migrate the thread to a
7099 * proper CPU and schedule it away if the CPU it's executing on
7100 * is removed from the allowed bitmask.
7102 * NOTE: the caller must have a valid reference to the task, the
7103 * task must not exit() & deallocate itself prematurely. The
7104 * call is not atomic; no spinlocks may be held.
7106 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7108 struct migration_req req;
7109 unsigned long flags;
7110 struct rq *rq;
7111 int ret = 0;
7113 rq = task_rq_lock(p, &flags);
7114 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7115 ret = -EINVAL;
7116 goto out;
7119 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7120 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7121 ret = -EINVAL;
7122 goto out;
7125 if (p->sched_class->set_cpus_allowed)
7126 p->sched_class->set_cpus_allowed(p, new_mask);
7127 else {
7128 cpumask_copy(&p->cpus_allowed, new_mask);
7129 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7132 /* Can the task run on the task's current CPU? If so, we're done */
7133 if (cpumask_test_cpu(task_cpu(p), new_mask))
7134 goto out;
7136 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7137 /* Need help from migration thread: drop lock and wait. */
7138 struct task_struct *mt = rq->migration_thread;
7140 get_task_struct(mt);
7141 task_rq_unlock(rq, &flags);
7142 wake_up_process(rq->migration_thread);
7143 put_task_struct(mt);
7144 wait_for_completion(&req.done);
7145 tlb_migrate_finish(p->mm);
7146 return 0;
7148 out:
7149 task_rq_unlock(rq, &flags);
7151 return ret;
7153 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7156 * Move (not current) task off this cpu, onto dest cpu. We're doing
7157 * this because either it can't run here any more (set_cpus_allowed()
7158 * away from this CPU, or CPU going down), or because we're
7159 * attempting to rebalance this task on exec (sched_exec).
7161 * So we race with normal scheduler movements, but that's OK, as long
7162 * as the task is no longer on this CPU.
7164 * Returns non-zero if task was successfully migrated.
7166 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7168 struct rq *rq_dest, *rq_src;
7169 int ret = 0, on_rq;
7171 if (unlikely(!cpu_active(dest_cpu)))
7172 return ret;
7174 rq_src = cpu_rq(src_cpu);
7175 rq_dest = cpu_rq(dest_cpu);
7177 double_rq_lock(rq_src, rq_dest);
7178 /* Already moved. */
7179 if (task_cpu(p) != src_cpu)
7180 goto done;
7181 /* Waking up, don't get in the way of try_to_wake_up(). */
7182 if (p->state == TASK_WAKING)
7183 goto fail;
7184 /* Affinity changed (again). */
7185 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7186 goto fail;
7188 on_rq = p->se.on_rq;
7189 if (on_rq)
7190 deactivate_task(rq_src, p, 0);
7192 set_task_cpu(p, dest_cpu);
7193 if (on_rq) {
7194 activate_task(rq_dest, p, 0);
7195 check_preempt_curr(rq_dest, p, 0);
7197 done:
7198 ret = 1;
7199 fail:
7200 double_rq_unlock(rq_src, rq_dest);
7201 return ret;
7204 #define RCU_MIGRATION_IDLE 0
7205 #define RCU_MIGRATION_NEED_QS 1
7206 #define RCU_MIGRATION_GOT_QS 2
7207 #define RCU_MIGRATION_MUST_SYNC 3
7210 * migration_thread - this is a highprio system thread that performs
7211 * thread migration by bumping thread off CPU then 'pushing' onto
7212 * another runqueue.
7214 static int migration_thread(void *data)
7216 int badcpu;
7217 int cpu = (long)data;
7218 struct rq *rq;
7220 rq = cpu_rq(cpu);
7221 BUG_ON(rq->migration_thread != current);
7223 set_current_state(TASK_INTERRUPTIBLE);
7224 while (!kthread_should_stop()) {
7225 struct migration_req *req;
7226 struct list_head *head;
7228 spin_lock_irq(&rq->lock);
7230 if (cpu_is_offline(cpu)) {
7231 spin_unlock_irq(&rq->lock);
7232 break;
7235 if (rq->active_balance) {
7236 active_load_balance(rq, cpu);
7237 rq->active_balance = 0;
7240 head = &rq->migration_queue;
7242 if (list_empty(head)) {
7243 spin_unlock_irq(&rq->lock);
7244 schedule();
7245 set_current_state(TASK_INTERRUPTIBLE);
7246 continue;
7248 req = list_entry(head->next, struct migration_req, list);
7249 list_del_init(head->next);
7251 if (req->task != NULL) {
7252 spin_unlock(&rq->lock);
7253 __migrate_task(req->task, cpu, req->dest_cpu);
7254 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7255 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7256 spin_unlock(&rq->lock);
7257 } else {
7258 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7259 spin_unlock(&rq->lock);
7260 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7262 local_irq_enable();
7264 complete(&req->done);
7266 __set_current_state(TASK_RUNNING);
7268 return 0;
7271 #ifdef CONFIG_HOTPLUG_CPU
7273 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7275 int ret;
7277 local_irq_disable();
7278 ret = __migrate_task(p, src_cpu, dest_cpu);
7279 local_irq_enable();
7280 return ret;
7284 * Figure out where task on dead CPU should go, use force if necessary.
7286 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7288 int dest_cpu;
7289 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7291 again:
7292 /* Look for allowed, online CPU in same node. */
7293 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7294 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7295 goto move;
7297 /* Any allowed, online CPU? */
7298 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7299 if (dest_cpu < nr_cpu_ids)
7300 goto move;
7302 /* No more Mr. Nice Guy. */
7303 if (dest_cpu >= nr_cpu_ids) {
7304 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7308 * Don't tell them about moving exiting tasks or
7309 * kernel threads (both mm NULL), since they never
7310 * leave kernel.
7312 if (p->mm && printk_ratelimit()) {
7313 printk(KERN_INFO "process %d (%s) no "
7314 "longer affine to cpu%d\n",
7315 task_pid_nr(p), p->comm, dead_cpu);
7319 move:
7320 /* It can have affinity changed while we were choosing. */
7321 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7322 goto again;
7326 * While a dead CPU has no uninterruptible tasks queued at this point,
7327 * it might still have a nonzero ->nr_uninterruptible counter, because
7328 * for performance reasons the counter is not stricly tracking tasks to
7329 * their home CPUs. So we just add the counter to another CPU's counter,
7330 * to keep the global sum constant after CPU-down:
7332 static void migrate_nr_uninterruptible(struct rq *rq_src)
7334 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7335 unsigned long flags;
7337 local_irq_save(flags);
7338 double_rq_lock(rq_src, rq_dest);
7339 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7340 rq_src->nr_uninterruptible = 0;
7341 double_rq_unlock(rq_src, rq_dest);
7342 local_irq_restore(flags);
7345 /* Run through task list and migrate tasks from the dead cpu. */
7346 static void migrate_live_tasks(int src_cpu)
7348 struct task_struct *p, *t;
7350 read_lock(&tasklist_lock);
7352 do_each_thread(t, p) {
7353 if (p == current)
7354 continue;
7356 if (task_cpu(p) == src_cpu)
7357 move_task_off_dead_cpu(src_cpu, p);
7358 } while_each_thread(t, p);
7360 read_unlock(&tasklist_lock);
7364 * Schedules idle task to be the next runnable task on current CPU.
7365 * It does so by boosting its priority to highest possible.
7366 * Used by CPU offline code.
7368 void sched_idle_next(void)
7370 int this_cpu = smp_processor_id();
7371 struct rq *rq = cpu_rq(this_cpu);
7372 struct task_struct *p = rq->idle;
7373 unsigned long flags;
7375 /* cpu has to be offline */
7376 BUG_ON(cpu_online(this_cpu));
7379 * Strictly not necessary since rest of the CPUs are stopped by now
7380 * and interrupts disabled on the current cpu.
7382 spin_lock_irqsave(&rq->lock, flags);
7384 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7386 update_rq_clock(rq);
7387 activate_task(rq, p, 0);
7389 spin_unlock_irqrestore(&rq->lock, flags);
7393 * Ensures that the idle task is using init_mm right before its cpu goes
7394 * offline.
7396 void idle_task_exit(void)
7398 struct mm_struct *mm = current->active_mm;
7400 BUG_ON(cpu_online(smp_processor_id()));
7402 if (mm != &init_mm)
7403 switch_mm(mm, &init_mm, current);
7404 mmdrop(mm);
7407 /* called under rq->lock with disabled interrupts */
7408 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7410 struct rq *rq = cpu_rq(dead_cpu);
7412 /* Must be exiting, otherwise would be on tasklist. */
7413 BUG_ON(!p->exit_state);
7415 /* Cannot have done final schedule yet: would have vanished. */
7416 BUG_ON(p->state == TASK_DEAD);
7418 get_task_struct(p);
7421 * Drop lock around migration; if someone else moves it,
7422 * that's OK. No task can be added to this CPU, so iteration is
7423 * fine.
7425 spin_unlock_irq(&rq->lock);
7426 move_task_off_dead_cpu(dead_cpu, p);
7427 spin_lock_irq(&rq->lock);
7429 put_task_struct(p);
7432 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7433 static void migrate_dead_tasks(unsigned int dead_cpu)
7435 struct rq *rq = cpu_rq(dead_cpu);
7436 struct task_struct *next;
7438 for ( ; ; ) {
7439 if (!rq->nr_running)
7440 break;
7441 update_rq_clock(rq);
7442 next = pick_next_task(rq);
7443 if (!next)
7444 break;
7445 next->sched_class->put_prev_task(rq, next);
7446 migrate_dead(dead_cpu, next);
7452 * remove the tasks which were accounted by rq from calc_load_tasks.
7454 static void calc_global_load_remove(struct rq *rq)
7456 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7457 rq->calc_load_active = 0;
7459 #endif /* CONFIG_HOTPLUG_CPU */
7461 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7463 static struct ctl_table sd_ctl_dir[] = {
7465 .procname = "sched_domain",
7466 .mode = 0555,
7468 {0, },
7471 static struct ctl_table sd_ctl_root[] = {
7473 .ctl_name = CTL_KERN,
7474 .procname = "kernel",
7475 .mode = 0555,
7476 .child = sd_ctl_dir,
7478 {0, },
7481 static struct ctl_table *sd_alloc_ctl_entry(int n)
7483 struct ctl_table *entry =
7484 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7486 return entry;
7489 static void sd_free_ctl_entry(struct ctl_table **tablep)
7491 struct ctl_table *entry;
7494 * In the intermediate directories, both the child directory and
7495 * procname are dynamically allocated and could fail but the mode
7496 * will always be set. In the lowest directory the names are
7497 * static strings and all have proc handlers.
7499 for (entry = *tablep; entry->mode; entry++) {
7500 if (entry->child)
7501 sd_free_ctl_entry(&entry->child);
7502 if (entry->proc_handler == NULL)
7503 kfree(entry->procname);
7506 kfree(*tablep);
7507 *tablep = NULL;
7510 static void
7511 set_table_entry(struct ctl_table *entry,
7512 const char *procname, void *data, int maxlen,
7513 mode_t mode, proc_handler *proc_handler)
7515 entry->procname = procname;
7516 entry->data = data;
7517 entry->maxlen = maxlen;
7518 entry->mode = mode;
7519 entry->proc_handler = proc_handler;
7522 static struct ctl_table *
7523 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7525 struct ctl_table *table = sd_alloc_ctl_entry(13);
7527 if (table == NULL)
7528 return NULL;
7530 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7531 sizeof(long), 0644, proc_doulongvec_minmax);
7532 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7533 sizeof(long), 0644, proc_doulongvec_minmax);
7534 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7535 sizeof(int), 0644, proc_dointvec_minmax);
7536 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7537 sizeof(int), 0644, proc_dointvec_minmax);
7538 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7539 sizeof(int), 0644, proc_dointvec_minmax);
7540 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7541 sizeof(int), 0644, proc_dointvec_minmax);
7542 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7543 sizeof(int), 0644, proc_dointvec_minmax);
7544 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7545 sizeof(int), 0644, proc_dointvec_minmax);
7546 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7547 sizeof(int), 0644, proc_dointvec_minmax);
7548 set_table_entry(&table[9], "cache_nice_tries",
7549 &sd->cache_nice_tries,
7550 sizeof(int), 0644, proc_dointvec_minmax);
7551 set_table_entry(&table[10], "flags", &sd->flags,
7552 sizeof(int), 0644, proc_dointvec_minmax);
7553 set_table_entry(&table[11], "name", sd->name,
7554 CORENAME_MAX_SIZE, 0444, proc_dostring);
7555 /* &table[12] is terminator */
7557 return table;
7560 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7562 struct ctl_table *entry, *table;
7563 struct sched_domain *sd;
7564 int domain_num = 0, i;
7565 char buf[32];
7567 for_each_domain(cpu, sd)
7568 domain_num++;
7569 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7570 if (table == NULL)
7571 return NULL;
7573 i = 0;
7574 for_each_domain(cpu, sd) {
7575 snprintf(buf, 32, "domain%d", i);
7576 entry->procname = kstrdup(buf, GFP_KERNEL);
7577 entry->mode = 0555;
7578 entry->child = sd_alloc_ctl_domain_table(sd);
7579 entry++;
7580 i++;
7582 return table;
7585 static struct ctl_table_header *sd_sysctl_header;
7586 static void register_sched_domain_sysctl(void)
7588 int i, cpu_num = num_possible_cpus();
7589 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7590 char buf[32];
7592 WARN_ON(sd_ctl_dir[0].child);
7593 sd_ctl_dir[0].child = entry;
7595 if (entry == NULL)
7596 return;
7598 for_each_possible_cpu(i) {
7599 snprintf(buf, 32, "cpu%d", i);
7600 entry->procname = kstrdup(buf, GFP_KERNEL);
7601 entry->mode = 0555;
7602 entry->child = sd_alloc_ctl_cpu_table(i);
7603 entry++;
7606 WARN_ON(sd_sysctl_header);
7607 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7610 /* may be called multiple times per register */
7611 static void unregister_sched_domain_sysctl(void)
7613 if (sd_sysctl_header)
7614 unregister_sysctl_table(sd_sysctl_header);
7615 sd_sysctl_header = NULL;
7616 if (sd_ctl_dir[0].child)
7617 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7619 #else
7620 static void register_sched_domain_sysctl(void)
7623 static void unregister_sched_domain_sysctl(void)
7626 #endif
7628 static void set_rq_online(struct rq *rq)
7630 if (!rq->online) {
7631 const struct sched_class *class;
7633 cpumask_set_cpu(rq->cpu, rq->rd->online);
7634 rq->online = 1;
7636 for_each_class(class) {
7637 if (class->rq_online)
7638 class->rq_online(rq);
7643 static void set_rq_offline(struct rq *rq)
7645 if (rq->online) {
7646 const struct sched_class *class;
7648 for_each_class(class) {
7649 if (class->rq_offline)
7650 class->rq_offline(rq);
7653 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7654 rq->online = 0;
7659 * migration_call - callback that gets triggered when a CPU is added.
7660 * Here we can start up the necessary migration thread for the new CPU.
7662 static int __cpuinit
7663 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7665 struct task_struct *p;
7666 int cpu = (long)hcpu;
7667 unsigned long flags;
7668 struct rq *rq;
7670 switch (action) {
7672 case CPU_UP_PREPARE:
7673 case CPU_UP_PREPARE_FROZEN:
7674 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7675 if (IS_ERR(p))
7676 return NOTIFY_BAD;
7677 kthread_bind(p, cpu);
7678 /* Must be high prio: stop_machine expects to yield to it. */
7679 rq = task_rq_lock(p, &flags);
7680 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7681 task_rq_unlock(rq, &flags);
7682 get_task_struct(p);
7683 cpu_rq(cpu)->migration_thread = p;
7684 rq->calc_load_update = calc_load_update;
7685 break;
7687 case CPU_ONLINE:
7688 case CPU_ONLINE_FROZEN:
7689 /* Strictly unnecessary, as first user will wake it. */
7690 wake_up_process(cpu_rq(cpu)->migration_thread);
7692 /* Update our root-domain */
7693 rq = cpu_rq(cpu);
7694 spin_lock_irqsave(&rq->lock, flags);
7695 if (rq->rd) {
7696 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7698 set_rq_online(rq);
7700 spin_unlock_irqrestore(&rq->lock, flags);
7701 break;
7703 #ifdef CONFIG_HOTPLUG_CPU
7704 case CPU_UP_CANCELED:
7705 case CPU_UP_CANCELED_FROZEN:
7706 if (!cpu_rq(cpu)->migration_thread)
7707 break;
7708 /* Unbind it from offline cpu so it can run. Fall thru. */
7709 kthread_bind(cpu_rq(cpu)->migration_thread,
7710 cpumask_any(cpu_online_mask));
7711 kthread_stop(cpu_rq(cpu)->migration_thread);
7712 put_task_struct(cpu_rq(cpu)->migration_thread);
7713 cpu_rq(cpu)->migration_thread = NULL;
7714 break;
7716 case CPU_DEAD:
7717 case CPU_DEAD_FROZEN:
7718 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7719 migrate_live_tasks(cpu);
7720 rq = cpu_rq(cpu);
7721 kthread_stop(rq->migration_thread);
7722 put_task_struct(rq->migration_thread);
7723 rq->migration_thread = NULL;
7724 /* Idle task back to normal (off runqueue, low prio) */
7725 spin_lock_irq(&rq->lock);
7726 update_rq_clock(rq);
7727 deactivate_task(rq, rq->idle, 0);
7728 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7729 rq->idle->sched_class = &idle_sched_class;
7730 migrate_dead_tasks(cpu);
7731 spin_unlock_irq(&rq->lock);
7732 cpuset_unlock();
7733 migrate_nr_uninterruptible(rq);
7734 BUG_ON(rq->nr_running != 0);
7735 calc_global_load_remove(rq);
7737 * No need to migrate the tasks: it was best-effort if
7738 * they didn't take sched_hotcpu_mutex. Just wake up
7739 * the requestors.
7741 spin_lock_irq(&rq->lock);
7742 while (!list_empty(&rq->migration_queue)) {
7743 struct migration_req *req;
7745 req = list_entry(rq->migration_queue.next,
7746 struct migration_req, list);
7747 list_del_init(&req->list);
7748 spin_unlock_irq(&rq->lock);
7749 complete(&req->done);
7750 spin_lock_irq(&rq->lock);
7752 spin_unlock_irq(&rq->lock);
7753 break;
7755 case CPU_DYING:
7756 case CPU_DYING_FROZEN:
7757 /* Update our root-domain */
7758 rq = cpu_rq(cpu);
7759 spin_lock_irqsave(&rq->lock, flags);
7760 if (rq->rd) {
7761 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7762 set_rq_offline(rq);
7764 spin_unlock_irqrestore(&rq->lock, flags);
7765 break;
7766 #endif
7768 return NOTIFY_OK;
7772 * Register at high priority so that task migration (migrate_all_tasks)
7773 * happens before everything else. This has to be lower priority than
7774 * the notifier in the perf_event subsystem, though.
7776 static struct notifier_block __cpuinitdata migration_notifier = {
7777 .notifier_call = migration_call,
7778 .priority = 10
7781 static int __init migration_init(void)
7783 void *cpu = (void *)(long)smp_processor_id();
7784 int err;
7786 /* Start one for the boot CPU: */
7787 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7788 BUG_ON(err == NOTIFY_BAD);
7789 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7790 register_cpu_notifier(&migration_notifier);
7792 return 0;
7794 early_initcall(migration_init);
7795 #endif
7797 #ifdef CONFIG_SMP
7799 #ifdef CONFIG_SCHED_DEBUG
7801 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7802 struct cpumask *groupmask)
7804 struct sched_group *group = sd->groups;
7805 char str[256];
7807 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7808 cpumask_clear(groupmask);
7810 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7812 if (!(sd->flags & SD_LOAD_BALANCE)) {
7813 printk("does not load-balance\n");
7814 if (sd->parent)
7815 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7816 " has parent");
7817 return -1;
7820 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7822 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7823 printk(KERN_ERR "ERROR: domain->span does not contain "
7824 "CPU%d\n", cpu);
7826 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7827 printk(KERN_ERR "ERROR: domain->groups does not contain"
7828 " CPU%d\n", cpu);
7831 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7832 do {
7833 if (!group) {
7834 printk("\n");
7835 printk(KERN_ERR "ERROR: group is NULL\n");
7836 break;
7839 if (!group->cpu_power) {
7840 printk(KERN_CONT "\n");
7841 printk(KERN_ERR "ERROR: domain->cpu_power not "
7842 "set\n");
7843 break;
7846 if (!cpumask_weight(sched_group_cpus(group))) {
7847 printk(KERN_CONT "\n");
7848 printk(KERN_ERR "ERROR: empty group\n");
7849 break;
7852 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7853 printk(KERN_CONT "\n");
7854 printk(KERN_ERR "ERROR: repeated CPUs\n");
7855 break;
7858 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7860 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7862 printk(KERN_CONT " %s", str);
7863 if (group->cpu_power != SCHED_LOAD_SCALE) {
7864 printk(KERN_CONT " (cpu_power = %d)",
7865 group->cpu_power);
7868 group = group->next;
7869 } while (group != sd->groups);
7870 printk(KERN_CONT "\n");
7872 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7873 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7875 if (sd->parent &&
7876 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7877 printk(KERN_ERR "ERROR: parent span is not a superset "
7878 "of domain->span\n");
7879 return 0;
7882 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7884 cpumask_var_t groupmask;
7885 int level = 0;
7887 if (!sd) {
7888 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7889 return;
7892 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7894 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7895 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7896 return;
7899 for (;;) {
7900 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7901 break;
7902 level++;
7903 sd = sd->parent;
7904 if (!sd)
7905 break;
7907 free_cpumask_var(groupmask);
7909 #else /* !CONFIG_SCHED_DEBUG */
7910 # define sched_domain_debug(sd, cpu) do { } while (0)
7911 #endif /* CONFIG_SCHED_DEBUG */
7913 static int sd_degenerate(struct sched_domain *sd)
7915 if (cpumask_weight(sched_domain_span(sd)) == 1)
7916 return 1;
7918 /* Following flags need at least 2 groups */
7919 if (sd->flags & (SD_LOAD_BALANCE |
7920 SD_BALANCE_NEWIDLE |
7921 SD_BALANCE_FORK |
7922 SD_BALANCE_EXEC |
7923 SD_SHARE_CPUPOWER |
7924 SD_SHARE_PKG_RESOURCES)) {
7925 if (sd->groups != sd->groups->next)
7926 return 0;
7929 /* Following flags don't use groups */
7930 if (sd->flags & (SD_WAKE_AFFINE))
7931 return 0;
7933 return 1;
7936 static int
7937 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7939 unsigned long cflags = sd->flags, pflags = parent->flags;
7941 if (sd_degenerate(parent))
7942 return 1;
7944 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7945 return 0;
7947 /* Flags needing groups don't count if only 1 group in parent */
7948 if (parent->groups == parent->groups->next) {
7949 pflags &= ~(SD_LOAD_BALANCE |
7950 SD_BALANCE_NEWIDLE |
7951 SD_BALANCE_FORK |
7952 SD_BALANCE_EXEC |
7953 SD_SHARE_CPUPOWER |
7954 SD_SHARE_PKG_RESOURCES);
7955 if (nr_node_ids == 1)
7956 pflags &= ~SD_SERIALIZE;
7958 if (~cflags & pflags)
7959 return 0;
7961 return 1;
7964 static void free_rootdomain(struct root_domain *rd)
7966 synchronize_sched();
7968 cpupri_cleanup(&rd->cpupri);
7970 free_cpumask_var(rd->rto_mask);
7971 free_cpumask_var(rd->online);
7972 free_cpumask_var(rd->span);
7973 kfree(rd);
7976 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7978 struct root_domain *old_rd = NULL;
7979 unsigned long flags;
7981 spin_lock_irqsave(&rq->lock, flags);
7983 if (rq->rd) {
7984 old_rd = rq->rd;
7986 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7987 set_rq_offline(rq);
7989 cpumask_clear_cpu(rq->cpu, old_rd->span);
7992 * If we dont want to free the old_rt yet then
7993 * set old_rd to NULL to skip the freeing later
7994 * in this function:
7996 if (!atomic_dec_and_test(&old_rd->refcount))
7997 old_rd = NULL;
8000 atomic_inc(&rd->refcount);
8001 rq->rd = rd;
8003 cpumask_set_cpu(rq->cpu, rd->span);
8004 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8005 set_rq_online(rq);
8007 spin_unlock_irqrestore(&rq->lock, flags);
8009 if (old_rd)
8010 free_rootdomain(old_rd);
8013 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8015 gfp_t gfp = GFP_KERNEL;
8017 memset(rd, 0, sizeof(*rd));
8019 if (bootmem)
8020 gfp = GFP_NOWAIT;
8022 if (!alloc_cpumask_var(&rd->span, gfp))
8023 goto out;
8024 if (!alloc_cpumask_var(&rd->online, gfp))
8025 goto free_span;
8026 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8027 goto free_online;
8029 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8030 goto free_rto_mask;
8031 return 0;
8033 free_rto_mask:
8034 free_cpumask_var(rd->rto_mask);
8035 free_online:
8036 free_cpumask_var(rd->online);
8037 free_span:
8038 free_cpumask_var(rd->span);
8039 out:
8040 return -ENOMEM;
8043 static void init_defrootdomain(void)
8045 init_rootdomain(&def_root_domain, true);
8047 atomic_set(&def_root_domain.refcount, 1);
8050 static struct root_domain *alloc_rootdomain(void)
8052 struct root_domain *rd;
8054 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8055 if (!rd)
8056 return NULL;
8058 if (init_rootdomain(rd, false) != 0) {
8059 kfree(rd);
8060 return NULL;
8063 return rd;
8067 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8068 * hold the hotplug lock.
8070 static void
8071 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8073 struct rq *rq = cpu_rq(cpu);
8074 struct sched_domain *tmp;
8076 /* Remove the sched domains which do not contribute to scheduling. */
8077 for (tmp = sd; tmp; ) {
8078 struct sched_domain *parent = tmp->parent;
8079 if (!parent)
8080 break;
8082 if (sd_parent_degenerate(tmp, parent)) {
8083 tmp->parent = parent->parent;
8084 if (parent->parent)
8085 parent->parent->child = tmp;
8086 } else
8087 tmp = tmp->parent;
8090 if (sd && sd_degenerate(sd)) {
8091 sd = sd->parent;
8092 if (sd)
8093 sd->child = NULL;
8096 sched_domain_debug(sd, cpu);
8098 rq_attach_root(rq, rd);
8099 rcu_assign_pointer(rq->sd, sd);
8102 /* cpus with isolated domains */
8103 static cpumask_var_t cpu_isolated_map;
8105 /* Setup the mask of cpus configured for isolated domains */
8106 static int __init isolated_cpu_setup(char *str)
8108 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8109 cpulist_parse(str, cpu_isolated_map);
8110 return 1;
8113 __setup("isolcpus=", isolated_cpu_setup);
8116 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8117 * to a function which identifies what group(along with sched group) a CPU
8118 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8119 * (due to the fact that we keep track of groups covered with a struct cpumask).
8121 * init_sched_build_groups will build a circular linked list of the groups
8122 * covered by the given span, and will set each group's ->cpumask correctly,
8123 * and ->cpu_power to 0.
8125 static void
8126 init_sched_build_groups(const struct cpumask *span,
8127 const struct cpumask *cpu_map,
8128 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8129 struct sched_group **sg,
8130 struct cpumask *tmpmask),
8131 struct cpumask *covered, struct cpumask *tmpmask)
8133 struct sched_group *first = NULL, *last = NULL;
8134 int i;
8136 cpumask_clear(covered);
8138 for_each_cpu(i, span) {
8139 struct sched_group *sg;
8140 int group = group_fn(i, cpu_map, &sg, tmpmask);
8141 int j;
8143 if (cpumask_test_cpu(i, covered))
8144 continue;
8146 cpumask_clear(sched_group_cpus(sg));
8147 sg->cpu_power = 0;
8149 for_each_cpu(j, span) {
8150 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8151 continue;
8153 cpumask_set_cpu(j, covered);
8154 cpumask_set_cpu(j, sched_group_cpus(sg));
8156 if (!first)
8157 first = sg;
8158 if (last)
8159 last->next = sg;
8160 last = sg;
8162 last->next = first;
8165 #define SD_NODES_PER_DOMAIN 16
8167 #ifdef CONFIG_NUMA
8170 * find_next_best_node - find the next node to include in a sched_domain
8171 * @node: node whose sched_domain we're building
8172 * @used_nodes: nodes already in the sched_domain
8174 * Find the next node to include in a given scheduling domain. Simply
8175 * finds the closest node not already in the @used_nodes map.
8177 * Should use nodemask_t.
8179 static int find_next_best_node(int node, nodemask_t *used_nodes)
8181 int i, n, val, min_val, best_node = 0;
8183 min_val = INT_MAX;
8185 for (i = 0; i < nr_node_ids; i++) {
8186 /* Start at @node */
8187 n = (node + i) % nr_node_ids;
8189 if (!nr_cpus_node(n))
8190 continue;
8192 /* Skip already used nodes */
8193 if (node_isset(n, *used_nodes))
8194 continue;
8196 /* Simple min distance search */
8197 val = node_distance(node, n);
8199 if (val < min_val) {
8200 min_val = val;
8201 best_node = n;
8205 node_set(best_node, *used_nodes);
8206 return best_node;
8210 * sched_domain_node_span - get a cpumask for a node's sched_domain
8211 * @node: node whose cpumask we're constructing
8212 * @span: resulting cpumask
8214 * Given a node, construct a good cpumask for its sched_domain to span. It
8215 * should be one that prevents unnecessary balancing, but also spreads tasks
8216 * out optimally.
8218 static void sched_domain_node_span(int node, struct cpumask *span)
8220 nodemask_t used_nodes;
8221 int i;
8223 cpumask_clear(span);
8224 nodes_clear(used_nodes);
8226 cpumask_or(span, span, cpumask_of_node(node));
8227 node_set(node, used_nodes);
8229 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8230 int next_node = find_next_best_node(node, &used_nodes);
8232 cpumask_or(span, span, cpumask_of_node(next_node));
8235 #endif /* CONFIG_NUMA */
8237 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8240 * The cpus mask in sched_group and sched_domain hangs off the end.
8242 * ( See the the comments in include/linux/sched.h:struct sched_group
8243 * and struct sched_domain. )
8245 struct static_sched_group {
8246 struct sched_group sg;
8247 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8250 struct static_sched_domain {
8251 struct sched_domain sd;
8252 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8255 struct s_data {
8256 #ifdef CONFIG_NUMA
8257 int sd_allnodes;
8258 cpumask_var_t domainspan;
8259 cpumask_var_t covered;
8260 cpumask_var_t notcovered;
8261 #endif
8262 cpumask_var_t nodemask;
8263 cpumask_var_t this_sibling_map;
8264 cpumask_var_t this_core_map;
8265 cpumask_var_t send_covered;
8266 cpumask_var_t tmpmask;
8267 struct sched_group **sched_group_nodes;
8268 struct root_domain *rd;
8271 enum s_alloc {
8272 sa_sched_groups = 0,
8273 sa_rootdomain,
8274 sa_tmpmask,
8275 sa_send_covered,
8276 sa_this_core_map,
8277 sa_this_sibling_map,
8278 sa_nodemask,
8279 sa_sched_group_nodes,
8280 #ifdef CONFIG_NUMA
8281 sa_notcovered,
8282 sa_covered,
8283 sa_domainspan,
8284 #endif
8285 sa_none,
8289 * SMT sched-domains:
8291 #ifdef CONFIG_SCHED_SMT
8292 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8293 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8295 static int
8296 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8297 struct sched_group **sg, struct cpumask *unused)
8299 if (sg)
8300 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8301 return cpu;
8303 #endif /* CONFIG_SCHED_SMT */
8306 * multi-core sched-domains:
8308 #ifdef CONFIG_SCHED_MC
8309 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8310 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8311 #endif /* CONFIG_SCHED_MC */
8313 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8314 static int
8315 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8316 struct sched_group **sg, struct cpumask *mask)
8318 int group;
8320 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8321 group = cpumask_first(mask);
8322 if (sg)
8323 *sg = &per_cpu(sched_group_core, group).sg;
8324 return group;
8326 #elif defined(CONFIG_SCHED_MC)
8327 static int
8328 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8329 struct sched_group **sg, struct cpumask *unused)
8331 if (sg)
8332 *sg = &per_cpu(sched_group_core, cpu).sg;
8333 return cpu;
8335 #endif
8337 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8338 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8340 static int
8341 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8342 struct sched_group **sg, struct cpumask *mask)
8344 int group;
8345 #ifdef CONFIG_SCHED_MC
8346 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8347 group = cpumask_first(mask);
8348 #elif defined(CONFIG_SCHED_SMT)
8349 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8350 group = cpumask_first(mask);
8351 #else
8352 group = cpu;
8353 #endif
8354 if (sg)
8355 *sg = &per_cpu(sched_group_phys, group).sg;
8356 return group;
8359 #ifdef CONFIG_NUMA
8361 * The init_sched_build_groups can't handle what we want to do with node
8362 * groups, so roll our own. Now each node has its own list of groups which
8363 * gets dynamically allocated.
8365 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8366 static struct sched_group ***sched_group_nodes_bycpu;
8368 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8369 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8371 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8372 struct sched_group **sg,
8373 struct cpumask *nodemask)
8375 int group;
8377 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8378 group = cpumask_first(nodemask);
8380 if (sg)
8381 *sg = &per_cpu(sched_group_allnodes, group).sg;
8382 return group;
8385 static void init_numa_sched_groups_power(struct sched_group *group_head)
8387 struct sched_group *sg = group_head;
8388 int j;
8390 if (!sg)
8391 return;
8392 do {
8393 for_each_cpu(j, sched_group_cpus(sg)) {
8394 struct sched_domain *sd;
8396 sd = &per_cpu(phys_domains, j).sd;
8397 if (j != group_first_cpu(sd->groups)) {
8399 * Only add "power" once for each
8400 * physical package.
8402 continue;
8405 sg->cpu_power += sd->groups->cpu_power;
8407 sg = sg->next;
8408 } while (sg != group_head);
8411 static int build_numa_sched_groups(struct s_data *d,
8412 const struct cpumask *cpu_map, int num)
8414 struct sched_domain *sd;
8415 struct sched_group *sg, *prev;
8416 int n, j;
8418 cpumask_clear(d->covered);
8419 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8420 if (cpumask_empty(d->nodemask)) {
8421 d->sched_group_nodes[num] = NULL;
8422 goto out;
8425 sched_domain_node_span(num, d->domainspan);
8426 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8428 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8429 GFP_KERNEL, num);
8430 if (!sg) {
8431 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8432 num);
8433 return -ENOMEM;
8435 d->sched_group_nodes[num] = sg;
8437 for_each_cpu(j, d->nodemask) {
8438 sd = &per_cpu(node_domains, j).sd;
8439 sd->groups = sg;
8442 sg->cpu_power = 0;
8443 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8444 sg->next = sg;
8445 cpumask_or(d->covered, d->covered, d->nodemask);
8447 prev = sg;
8448 for (j = 0; j < nr_node_ids; j++) {
8449 n = (num + j) % nr_node_ids;
8450 cpumask_complement(d->notcovered, d->covered);
8451 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8452 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8453 if (cpumask_empty(d->tmpmask))
8454 break;
8455 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8456 if (cpumask_empty(d->tmpmask))
8457 continue;
8458 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8459 GFP_KERNEL, num);
8460 if (!sg) {
8461 printk(KERN_WARNING
8462 "Can not alloc domain group for node %d\n", j);
8463 return -ENOMEM;
8465 sg->cpu_power = 0;
8466 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8467 sg->next = prev->next;
8468 cpumask_or(d->covered, d->covered, d->tmpmask);
8469 prev->next = sg;
8470 prev = sg;
8472 out:
8473 return 0;
8475 #endif /* CONFIG_NUMA */
8477 #ifdef CONFIG_NUMA
8478 /* Free memory allocated for various sched_group structures */
8479 static void free_sched_groups(const struct cpumask *cpu_map,
8480 struct cpumask *nodemask)
8482 int cpu, i;
8484 for_each_cpu(cpu, cpu_map) {
8485 struct sched_group **sched_group_nodes
8486 = sched_group_nodes_bycpu[cpu];
8488 if (!sched_group_nodes)
8489 continue;
8491 for (i = 0; i < nr_node_ids; i++) {
8492 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8494 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8495 if (cpumask_empty(nodemask))
8496 continue;
8498 if (sg == NULL)
8499 continue;
8500 sg = sg->next;
8501 next_sg:
8502 oldsg = sg;
8503 sg = sg->next;
8504 kfree(oldsg);
8505 if (oldsg != sched_group_nodes[i])
8506 goto next_sg;
8508 kfree(sched_group_nodes);
8509 sched_group_nodes_bycpu[cpu] = NULL;
8512 #else /* !CONFIG_NUMA */
8513 static void free_sched_groups(const struct cpumask *cpu_map,
8514 struct cpumask *nodemask)
8517 #endif /* CONFIG_NUMA */
8520 * Initialize sched groups cpu_power.
8522 * cpu_power indicates the capacity of sched group, which is used while
8523 * distributing the load between different sched groups in a sched domain.
8524 * Typically cpu_power for all the groups in a sched domain will be same unless
8525 * there are asymmetries in the topology. If there are asymmetries, group
8526 * having more cpu_power will pickup more load compared to the group having
8527 * less cpu_power.
8529 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8531 struct sched_domain *child;
8532 struct sched_group *group;
8533 long power;
8534 int weight;
8536 WARN_ON(!sd || !sd->groups);
8538 if (cpu != group_first_cpu(sd->groups))
8539 return;
8541 child = sd->child;
8543 sd->groups->cpu_power = 0;
8545 if (!child) {
8546 power = SCHED_LOAD_SCALE;
8547 weight = cpumask_weight(sched_domain_span(sd));
8549 * SMT siblings share the power of a single core.
8550 * Usually multiple threads get a better yield out of
8551 * that one core than a single thread would have,
8552 * reflect that in sd->smt_gain.
8554 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8555 power *= sd->smt_gain;
8556 power /= weight;
8557 power >>= SCHED_LOAD_SHIFT;
8559 sd->groups->cpu_power += power;
8560 return;
8564 * Add cpu_power of each child group to this groups cpu_power.
8566 group = child->groups;
8567 do {
8568 sd->groups->cpu_power += group->cpu_power;
8569 group = group->next;
8570 } while (group != child->groups);
8574 * Initializers for schedule domains
8575 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8578 #ifdef CONFIG_SCHED_DEBUG
8579 # define SD_INIT_NAME(sd, type) sd->name = #type
8580 #else
8581 # define SD_INIT_NAME(sd, type) do { } while (0)
8582 #endif
8584 #define SD_INIT(sd, type) sd_init_##type(sd)
8586 #define SD_INIT_FUNC(type) \
8587 static noinline void sd_init_##type(struct sched_domain *sd) \
8589 memset(sd, 0, sizeof(*sd)); \
8590 *sd = SD_##type##_INIT; \
8591 sd->level = SD_LV_##type; \
8592 SD_INIT_NAME(sd, type); \
8595 SD_INIT_FUNC(CPU)
8596 #ifdef CONFIG_NUMA
8597 SD_INIT_FUNC(ALLNODES)
8598 SD_INIT_FUNC(NODE)
8599 #endif
8600 #ifdef CONFIG_SCHED_SMT
8601 SD_INIT_FUNC(SIBLING)
8602 #endif
8603 #ifdef CONFIG_SCHED_MC
8604 SD_INIT_FUNC(MC)
8605 #endif
8607 static int default_relax_domain_level = -1;
8609 static int __init setup_relax_domain_level(char *str)
8611 unsigned long val;
8613 val = simple_strtoul(str, NULL, 0);
8614 if (val < SD_LV_MAX)
8615 default_relax_domain_level = val;
8617 return 1;
8619 __setup("relax_domain_level=", setup_relax_domain_level);
8621 static void set_domain_attribute(struct sched_domain *sd,
8622 struct sched_domain_attr *attr)
8624 int request;
8626 if (!attr || attr->relax_domain_level < 0) {
8627 if (default_relax_domain_level < 0)
8628 return;
8629 else
8630 request = default_relax_domain_level;
8631 } else
8632 request = attr->relax_domain_level;
8633 if (request < sd->level) {
8634 /* turn off idle balance on this domain */
8635 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8636 } else {
8637 /* turn on idle balance on this domain */
8638 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8642 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8643 const struct cpumask *cpu_map)
8645 switch (what) {
8646 case sa_sched_groups:
8647 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8648 d->sched_group_nodes = NULL;
8649 case sa_rootdomain:
8650 free_rootdomain(d->rd); /* fall through */
8651 case sa_tmpmask:
8652 free_cpumask_var(d->tmpmask); /* fall through */
8653 case sa_send_covered:
8654 free_cpumask_var(d->send_covered); /* fall through */
8655 case sa_this_core_map:
8656 free_cpumask_var(d->this_core_map); /* fall through */
8657 case sa_this_sibling_map:
8658 free_cpumask_var(d->this_sibling_map); /* fall through */
8659 case sa_nodemask:
8660 free_cpumask_var(d->nodemask); /* fall through */
8661 case sa_sched_group_nodes:
8662 #ifdef CONFIG_NUMA
8663 kfree(d->sched_group_nodes); /* fall through */
8664 case sa_notcovered:
8665 free_cpumask_var(d->notcovered); /* fall through */
8666 case sa_covered:
8667 free_cpumask_var(d->covered); /* fall through */
8668 case sa_domainspan:
8669 free_cpumask_var(d->domainspan); /* fall through */
8670 #endif
8671 case sa_none:
8672 break;
8676 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8677 const struct cpumask *cpu_map)
8679 #ifdef CONFIG_NUMA
8680 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8681 return sa_none;
8682 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8683 return sa_domainspan;
8684 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8685 return sa_covered;
8686 /* Allocate the per-node list of sched groups */
8687 d->sched_group_nodes = kcalloc(nr_node_ids,
8688 sizeof(struct sched_group *), GFP_KERNEL);
8689 if (!d->sched_group_nodes) {
8690 printk(KERN_WARNING "Can not alloc sched group node list\n");
8691 return sa_notcovered;
8693 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8694 #endif
8695 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8696 return sa_sched_group_nodes;
8697 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8698 return sa_nodemask;
8699 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8700 return sa_this_sibling_map;
8701 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8702 return sa_this_core_map;
8703 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8704 return sa_send_covered;
8705 d->rd = alloc_rootdomain();
8706 if (!d->rd) {
8707 printk(KERN_WARNING "Cannot alloc root domain\n");
8708 return sa_tmpmask;
8710 return sa_rootdomain;
8713 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8714 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8716 struct sched_domain *sd = NULL;
8717 #ifdef CONFIG_NUMA
8718 struct sched_domain *parent;
8720 d->sd_allnodes = 0;
8721 if (cpumask_weight(cpu_map) >
8722 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8723 sd = &per_cpu(allnodes_domains, i).sd;
8724 SD_INIT(sd, ALLNODES);
8725 set_domain_attribute(sd, attr);
8726 cpumask_copy(sched_domain_span(sd), cpu_map);
8727 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8728 d->sd_allnodes = 1;
8730 parent = sd;
8732 sd = &per_cpu(node_domains, i).sd;
8733 SD_INIT(sd, NODE);
8734 set_domain_attribute(sd, attr);
8735 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8736 sd->parent = parent;
8737 if (parent)
8738 parent->child = sd;
8739 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8740 #endif
8741 return sd;
8744 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8745 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8746 struct sched_domain *parent, int i)
8748 struct sched_domain *sd;
8749 sd = &per_cpu(phys_domains, i).sd;
8750 SD_INIT(sd, CPU);
8751 set_domain_attribute(sd, attr);
8752 cpumask_copy(sched_domain_span(sd), d->nodemask);
8753 sd->parent = parent;
8754 if (parent)
8755 parent->child = sd;
8756 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8757 return sd;
8760 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8761 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8762 struct sched_domain *parent, int i)
8764 struct sched_domain *sd = parent;
8765 #ifdef CONFIG_SCHED_MC
8766 sd = &per_cpu(core_domains, i).sd;
8767 SD_INIT(sd, MC);
8768 set_domain_attribute(sd, attr);
8769 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8770 sd->parent = parent;
8771 parent->child = sd;
8772 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8773 #endif
8774 return sd;
8777 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8778 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8779 struct sched_domain *parent, int i)
8781 struct sched_domain *sd = parent;
8782 #ifdef CONFIG_SCHED_SMT
8783 sd = &per_cpu(cpu_domains, i).sd;
8784 SD_INIT(sd, SIBLING);
8785 set_domain_attribute(sd, attr);
8786 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8787 sd->parent = parent;
8788 parent->child = sd;
8789 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8790 #endif
8791 return sd;
8794 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8795 const struct cpumask *cpu_map, int cpu)
8797 switch (l) {
8798 #ifdef CONFIG_SCHED_SMT
8799 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8800 cpumask_and(d->this_sibling_map, cpu_map,
8801 topology_thread_cpumask(cpu));
8802 if (cpu == cpumask_first(d->this_sibling_map))
8803 init_sched_build_groups(d->this_sibling_map, cpu_map,
8804 &cpu_to_cpu_group,
8805 d->send_covered, d->tmpmask);
8806 break;
8807 #endif
8808 #ifdef CONFIG_SCHED_MC
8809 case SD_LV_MC: /* set up multi-core groups */
8810 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8811 if (cpu == cpumask_first(d->this_core_map))
8812 init_sched_build_groups(d->this_core_map, cpu_map,
8813 &cpu_to_core_group,
8814 d->send_covered, d->tmpmask);
8815 break;
8816 #endif
8817 case SD_LV_CPU: /* set up physical groups */
8818 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8819 if (!cpumask_empty(d->nodemask))
8820 init_sched_build_groups(d->nodemask, cpu_map,
8821 &cpu_to_phys_group,
8822 d->send_covered, d->tmpmask);
8823 break;
8824 #ifdef CONFIG_NUMA
8825 case SD_LV_ALLNODES:
8826 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8827 d->send_covered, d->tmpmask);
8828 break;
8829 #endif
8830 default:
8831 break;
8836 * Build sched domains for a given set of cpus and attach the sched domains
8837 * to the individual cpus
8839 static int __build_sched_domains(const struct cpumask *cpu_map,
8840 struct sched_domain_attr *attr)
8842 enum s_alloc alloc_state = sa_none;
8843 struct s_data d;
8844 struct sched_domain *sd;
8845 int i;
8846 #ifdef CONFIG_NUMA
8847 d.sd_allnodes = 0;
8848 #endif
8850 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8851 if (alloc_state != sa_rootdomain)
8852 goto error;
8853 alloc_state = sa_sched_groups;
8856 * Set up domains for cpus specified by the cpu_map.
8858 for_each_cpu(i, cpu_map) {
8859 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8860 cpu_map);
8862 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8863 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8864 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8865 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8868 for_each_cpu(i, cpu_map) {
8869 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8870 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8873 /* Set up physical groups */
8874 for (i = 0; i < nr_node_ids; i++)
8875 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8877 #ifdef CONFIG_NUMA
8878 /* Set up node groups */
8879 if (d.sd_allnodes)
8880 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8882 for (i = 0; i < nr_node_ids; i++)
8883 if (build_numa_sched_groups(&d, cpu_map, i))
8884 goto error;
8885 #endif
8887 /* Calculate CPU power for physical packages and nodes */
8888 #ifdef CONFIG_SCHED_SMT
8889 for_each_cpu(i, cpu_map) {
8890 sd = &per_cpu(cpu_domains, i).sd;
8891 init_sched_groups_power(i, sd);
8893 #endif
8894 #ifdef CONFIG_SCHED_MC
8895 for_each_cpu(i, cpu_map) {
8896 sd = &per_cpu(core_domains, i).sd;
8897 init_sched_groups_power(i, sd);
8899 #endif
8901 for_each_cpu(i, cpu_map) {
8902 sd = &per_cpu(phys_domains, i).sd;
8903 init_sched_groups_power(i, sd);
8906 #ifdef CONFIG_NUMA
8907 for (i = 0; i < nr_node_ids; i++)
8908 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8910 if (d.sd_allnodes) {
8911 struct sched_group *sg;
8913 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8914 d.tmpmask);
8915 init_numa_sched_groups_power(sg);
8917 #endif
8919 /* Attach the domains */
8920 for_each_cpu(i, cpu_map) {
8921 #ifdef CONFIG_SCHED_SMT
8922 sd = &per_cpu(cpu_domains, i).sd;
8923 #elif defined(CONFIG_SCHED_MC)
8924 sd = &per_cpu(core_domains, i).sd;
8925 #else
8926 sd = &per_cpu(phys_domains, i).sd;
8927 #endif
8928 cpu_attach_domain(sd, d.rd, i);
8931 d.sched_group_nodes = NULL; /* don't free this we still need it */
8932 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8933 return 0;
8935 error:
8936 __free_domain_allocs(&d, alloc_state, cpu_map);
8937 return -ENOMEM;
8940 static int build_sched_domains(const struct cpumask *cpu_map)
8942 return __build_sched_domains(cpu_map, NULL);
8945 static struct cpumask *doms_cur; /* current sched domains */
8946 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8947 static struct sched_domain_attr *dattr_cur;
8948 /* attribues of custom domains in 'doms_cur' */
8951 * Special case: If a kmalloc of a doms_cur partition (array of
8952 * cpumask) fails, then fallback to a single sched domain,
8953 * as determined by the single cpumask fallback_doms.
8955 static cpumask_var_t fallback_doms;
8958 * arch_update_cpu_topology lets virtualized architectures update the
8959 * cpu core maps. It is supposed to return 1 if the topology changed
8960 * or 0 if it stayed the same.
8962 int __attribute__((weak)) arch_update_cpu_topology(void)
8964 return 0;
8968 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8969 * For now this just excludes isolated cpus, but could be used to
8970 * exclude other special cases in the future.
8972 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8974 int err;
8976 arch_update_cpu_topology();
8977 ndoms_cur = 1;
8978 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8979 if (!doms_cur)
8980 doms_cur = fallback_doms;
8981 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8982 dattr_cur = NULL;
8983 err = build_sched_domains(doms_cur);
8984 register_sched_domain_sysctl();
8986 return err;
8989 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8990 struct cpumask *tmpmask)
8992 free_sched_groups(cpu_map, tmpmask);
8996 * Detach sched domains from a group of cpus specified in cpu_map
8997 * These cpus will now be attached to the NULL domain
8999 static void detach_destroy_domains(const struct cpumask *cpu_map)
9001 /* Save because hotplug lock held. */
9002 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9003 int i;
9005 for_each_cpu(i, cpu_map)
9006 cpu_attach_domain(NULL, &def_root_domain, i);
9007 synchronize_sched();
9008 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9011 /* handle null as "default" */
9012 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9013 struct sched_domain_attr *new, int idx_new)
9015 struct sched_domain_attr tmp;
9017 /* fast path */
9018 if (!new && !cur)
9019 return 1;
9021 tmp = SD_ATTR_INIT;
9022 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9023 new ? (new + idx_new) : &tmp,
9024 sizeof(struct sched_domain_attr));
9028 * Partition sched domains as specified by the 'ndoms_new'
9029 * cpumasks in the array doms_new[] of cpumasks. This compares
9030 * doms_new[] to the current sched domain partitioning, doms_cur[].
9031 * It destroys each deleted domain and builds each new domain.
9033 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9034 * The masks don't intersect (don't overlap.) We should setup one
9035 * sched domain for each mask. CPUs not in any of the cpumasks will
9036 * not be load balanced. If the same cpumask appears both in the
9037 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9038 * it as it is.
9040 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9041 * ownership of it and will kfree it when done with it. If the caller
9042 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9043 * ndoms_new == 1, and partition_sched_domains() will fallback to
9044 * the single partition 'fallback_doms', it also forces the domains
9045 * to be rebuilt.
9047 * If doms_new == NULL it will be replaced with cpu_online_mask.
9048 * ndoms_new == 0 is a special case for destroying existing domains,
9049 * and it will not create the default domain.
9051 * Call with hotplug lock held
9053 /* FIXME: Change to struct cpumask *doms_new[] */
9054 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9055 struct sched_domain_attr *dattr_new)
9057 int i, j, n;
9058 int new_topology;
9060 mutex_lock(&sched_domains_mutex);
9062 /* always unregister in case we don't destroy any domains */
9063 unregister_sched_domain_sysctl();
9065 /* Let architecture update cpu core mappings. */
9066 new_topology = arch_update_cpu_topology();
9068 n = doms_new ? ndoms_new : 0;
9070 /* Destroy deleted domains */
9071 for (i = 0; i < ndoms_cur; i++) {
9072 for (j = 0; j < n && !new_topology; j++) {
9073 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9074 && dattrs_equal(dattr_cur, i, dattr_new, j))
9075 goto match1;
9077 /* no match - a current sched domain not in new doms_new[] */
9078 detach_destroy_domains(doms_cur + i);
9079 match1:
9083 if (doms_new == NULL) {
9084 ndoms_cur = 0;
9085 doms_new = fallback_doms;
9086 cpumask_andnot(&doms_new[0], cpu_active_mask, cpu_isolated_map);
9087 WARN_ON_ONCE(dattr_new);
9090 /* Build new domains */
9091 for (i = 0; i < ndoms_new; i++) {
9092 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9093 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9094 && dattrs_equal(dattr_new, i, dattr_cur, j))
9095 goto match2;
9097 /* no match - add a new doms_new */
9098 __build_sched_domains(doms_new + i,
9099 dattr_new ? dattr_new + i : NULL);
9100 match2:
9104 /* Remember the new sched domains */
9105 if (doms_cur != fallback_doms)
9106 kfree(doms_cur);
9107 kfree(dattr_cur); /* kfree(NULL) is safe */
9108 doms_cur = doms_new;
9109 dattr_cur = dattr_new;
9110 ndoms_cur = ndoms_new;
9112 register_sched_domain_sysctl();
9114 mutex_unlock(&sched_domains_mutex);
9117 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9118 static void arch_reinit_sched_domains(void)
9120 get_online_cpus();
9122 /* Destroy domains first to force the rebuild */
9123 partition_sched_domains(0, NULL, NULL);
9125 rebuild_sched_domains();
9126 put_online_cpus();
9129 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9131 unsigned int level = 0;
9133 if (sscanf(buf, "%u", &level) != 1)
9134 return -EINVAL;
9137 * level is always be positive so don't check for
9138 * level < POWERSAVINGS_BALANCE_NONE which is 0
9139 * What happens on 0 or 1 byte write,
9140 * need to check for count as well?
9143 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9144 return -EINVAL;
9146 if (smt)
9147 sched_smt_power_savings = level;
9148 else
9149 sched_mc_power_savings = level;
9151 arch_reinit_sched_domains();
9153 return count;
9156 #ifdef CONFIG_SCHED_MC
9157 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9158 char *page)
9160 return sprintf(page, "%u\n", sched_mc_power_savings);
9162 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9163 const char *buf, size_t count)
9165 return sched_power_savings_store(buf, count, 0);
9167 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9168 sched_mc_power_savings_show,
9169 sched_mc_power_savings_store);
9170 #endif
9172 #ifdef CONFIG_SCHED_SMT
9173 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9174 char *page)
9176 return sprintf(page, "%u\n", sched_smt_power_savings);
9178 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9179 const char *buf, size_t count)
9181 return sched_power_savings_store(buf, count, 1);
9183 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9184 sched_smt_power_savings_show,
9185 sched_smt_power_savings_store);
9186 #endif
9188 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9190 int err = 0;
9192 #ifdef CONFIG_SCHED_SMT
9193 if (smt_capable())
9194 err = sysfs_create_file(&cls->kset.kobj,
9195 &attr_sched_smt_power_savings.attr);
9196 #endif
9197 #ifdef CONFIG_SCHED_MC
9198 if (!err && mc_capable())
9199 err = sysfs_create_file(&cls->kset.kobj,
9200 &attr_sched_mc_power_savings.attr);
9201 #endif
9202 return err;
9204 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9206 #ifndef CONFIG_CPUSETS
9208 * Add online and remove offline CPUs from the scheduler domains.
9209 * When cpusets are enabled they take over this function.
9211 static int update_sched_domains(struct notifier_block *nfb,
9212 unsigned long action, void *hcpu)
9214 switch (action) {
9215 case CPU_ONLINE:
9216 case CPU_ONLINE_FROZEN:
9217 case CPU_DOWN_PREPARE:
9218 case CPU_DOWN_PREPARE_FROZEN:
9219 case CPU_DOWN_FAILED:
9220 case CPU_DOWN_FAILED_FROZEN:
9221 partition_sched_domains(1, NULL, NULL);
9222 return NOTIFY_OK;
9224 default:
9225 return NOTIFY_DONE;
9228 #endif
9230 static int update_runtime(struct notifier_block *nfb,
9231 unsigned long action, void *hcpu)
9233 int cpu = (int)(long)hcpu;
9235 switch (action) {
9236 case CPU_DOWN_PREPARE:
9237 case CPU_DOWN_PREPARE_FROZEN:
9238 disable_runtime(cpu_rq(cpu));
9239 return NOTIFY_OK;
9241 case CPU_DOWN_FAILED:
9242 case CPU_DOWN_FAILED_FROZEN:
9243 case CPU_ONLINE:
9244 case CPU_ONLINE_FROZEN:
9245 enable_runtime(cpu_rq(cpu));
9246 return NOTIFY_OK;
9248 default:
9249 return NOTIFY_DONE;
9253 void __init sched_init_smp(void)
9255 cpumask_var_t non_isolated_cpus;
9257 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9258 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9260 #if defined(CONFIG_NUMA)
9261 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9262 GFP_KERNEL);
9263 BUG_ON(sched_group_nodes_bycpu == NULL);
9264 #endif
9265 get_online_cpus();
9266 mutex_lock(&sched_domains_mutex);
9267 arch_init_sched_domains(cpu_active_mask);
9268 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9269 if (cpumask_empty(non_isolated_cpus))
9270 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9271 mutex_unlock(&sched_domains_mutex);
9272 put_online_cpus();
9274 #ifndef CONFIG_CPUSETS
9275 /* XXX: Theoretical race here - CPU may be hotplugged now */
9276 hotcpu_notifier(update_sched_domains, 0);
9277 #endif
9279 /* RT runtime code needs to handle some hotplug events */
9280 hotcpu_notifier(update_runtime, 0);
9282 init_hrtick();
9284 /* Move init over to a non-isolated CPU */
9285 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9286 BUG();
9287 sched_init_granularity();
9288 free_cpumask_var(non_isolated_cpus);
9290 init_sched_rt_class();
9292 #else
9293 void __init sched_init_smp(void)
9295 sched_init_granularity();
9297 #endif /* CONFIG_SMP */
9299 const_debug unsigned int sysctl_timer_migration = 1;
9301 int in_sched_functions(unsigned long addr)
9303 return in_lock_functions(addr) ||
9304 (addr >= (unsigned long)__sched_text_start
9305 && addr < (unsigned long)__sched_text_end);
9308 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9310 cfs_rq->tasks_timeline = RB_ROOT;
9311 INIT_LIST_HEAD(&cfs_rq->tasks);
9312 #ifdef CONFIG_FAIR_GROUP_SCHED
9313 cfs_rq->rq = rq;
9314 #endif
9315 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9318 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9320 struct rt_prio_array *array;
9321 int i;
9323 array = &rt_rq->active;
9324 for (i = 0; i < MAX_RT_PRIO; i++) {
9325 INIT_LIST_HEAD(array->queue + i);
9326 __clear_bit(i, array->bitmap);
9328 /* delimiter for bitsearch: */
9329 __set_bit(MAX_RT_PRIO, array->bitmap);
9331 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9332 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9333 #ifdef CONFIG_SMP
9334 rt_rq->highest_prio.next = MAX_RT_PRIO;
9335 #endif
9336 #endif
9337 #ifdef CONFIG_SMP
9338 rt_rq->rt_nr_migratory = 0;
9339 rt_rq->overloaded = 0;
9340 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9341 #endif
9343 rt_rq->rt_time = 0;
9344 rt_rq->rt_throttled = 0;
9345 rt_rq->rt_runtime = 0;
9346 spin_lock_init(&rt_rq->rt_runtime_lock);
9348 #ifdef CONFIG_RT_GROUP_SCHED
9349 rt_rq->rt_nr_boosted = 0;
9350 rt_rq->rq = rq;
9351 #endif
9354 #ifdef CONFIG_FAIR_GROUP_SCHED
9355 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9356 struct sched_entity *se, int cpu, int add,
9357 struct sched_entity *parent)
9359 struct rq *rq = cpu_rq(cpu);
9360 tg->cfs_rq[cpu] = cfs_rq;
9361 init_cfs_rq(cfs_rq, rq);
9362 cfs_rq->tg = tg;
9363 if (add)
9364 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9366 tg->se[cpu] = se;
9367 /* se could be NULL for init_task_group */
9368 if (!se)
9369 return;
9371 if (!parent)
9372 se->cfs_rq = &rq->cfs;
9373 else
9374 se->cfs_rq = parent->my_q;
9376 se->my_q = cfs_rq;
9377 se->load.weight = tg->shares;
9378 se->load.inv_weight = 0;
9379 se->parent = parent;
9381 #endif
9383 #ifdef CONFIG_RT_GROUP_SCHED
9384 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9385 struct sched_rt_entity *rt_se, int cpu, int add,
9386 struct sched_rt_entity *parent)
9388 struct rq *rq = cpu_rq(cpu);
9390 tg->rt_rq[cpu] = rt_rq;
9391 init_rt_rq(rt_rq, rq);
9392 rt_rq->tg = tg;
9393 rt_rq->rt_se = rt_se;
9394 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9395 if (add)
9396 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9398 tg->rt_se[cpu] = rt_se;
9399 if (!rt_se)
9400 return;
9402 if (!parent)
9403 rt_se->rt_rq = &rq->rt;
9404 else
9405 rt_se->rt_rq = parent->my_q;
9407 rt_se->my_q = rt_rq;
9408 rt_se->parent = parent;
9409 INIT_LIST_HEAD(&rt_se->run_list);
9411 #endif
9413 void __init sched_init(void)
9415 int i, j;
9416 unsigned long alloc_size = 0, ptr;
9418 #ifdef CONFIG_FAIR_GROUP_SCHED
9419 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9420 #endif
9421 #ifdef CONFIG_RT_GROUP_SCHED
9422 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9423 #endif
9424 #ifdef CONFIG_USER_SCHED
9425 alloc_size *= 2;
9426 #endif
9427 #ifdef CONFIG_CPUMASK_OFFSTACK
9428 alloc_size += num_possible_cpus() * cpumask_size();
9429 #endif
9431 * As sched_init() is called before page_alloc is setup,
9432 * we use alloc_bootmem().
9434 if (alloc_size) {
9435 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9437 #ifdef CONFIG_FAIR_GROUP_SCHED
9438 init_task_group.se = (struct sched_entity **)ptr;
9439 ptr += nr_cpu_ids * sizeof(void **);
9441 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9442 ptr += nr_cpu_ids * sizeof(void **);
9444 #ifdef CONFIG_USER_SCHED
9445 root_task_group.se = (struct sched_entity **)ptr;
9446 ptr += nr_cpu_ids * sizeof(void **);
9448 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9449 ptr += nr_cpu_ids * sizeof(void **);
9450 #endif /* CONFIG_USER_SCHED */
9451 #endif /* CONFIG_FAIR_GROUP_SCHED */
9452 #ifdef CONFIG_RT_GROUP_SCHED
9453 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9454 ptr += nr_cpu_ids * sizeof(void **);
9456 init_task_group.rt_rq = (struct rt_rq **)ptr;
9457 ptr += nr_cpu_ids * sizeof(void **);
9459 #ifdef CONFIG_USER_SCHED
9460 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9461 ptr += nr_cpu_ids * sizeof(void **);
9463 root_task_group.rt_rq = (struct rt_rq **)ptr;
9464 ptr += nr_cpu_ids * sizeof(void **);
9465 #endif /* CONFIG_USER_SCHED */
9466 #endif /* CONFIG_RT_GROUP_SCHED */
9467 #ifdef CONFIG_CPUMASK_OFFSTACK
9468 for_each_possible_cpu(i) {
9469 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9470 ptr += cpumask_size();
9472 #endif /* CONFIG_CPUMASK_OFFSTACK */
9475 #ifdef CONFIG_SMP
9476 init_defrootdomain();
9477 #endif
9479 init_rt_bandwidth(&def_rt_bandwidth,
9480 global_rt_period(), global_rt_runtime());
9482 #ifdef CONFIG_RT_GROUP_SCHED
9483 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9484 global_rt_period(), global_rt_runtime());
9485 #ifdef CONFIG_USER_SCHED
9486 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9487 global_rt_period(), RUNTIME_INF);
9488 #endif /* CONFIG_USER_SCHED */
9489 #endif /* CONFIG_RT_GROUP_SCHED */
9491 #ifdef CONFIG_GROUP_SCHED
9492 list_add(&init_task_group.list, &task_groups);
9493 INIT_LIST_HEAD(&init_task_group.children);
9495 #ifdef CONFIG_USER_SCHED
9496 INIT_LIST_HEAD(&root_task_group.children);
9497 init_task_group.parent = &root_task_group;
9498 list_add(&init_task_group.siblings, &root_task_group.children);
9499 #endif /* CONFIG_USER_SCHED */
9500 #endif /* CONFIG_GROUP_SCHED */
9502 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9503 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9504 __alignof__(unsigned long));
9505 #endif
9506 for_each_possible_cpu(i) {
9507 struct rq *rq;
9509 rq = cpu_rq(i);
9510 spin_lock_init(&rq->lock);
9511 rq->nr_running = 0;
9512 rq->calc_load_active = 0;
9513 rq->calc_load_update = jiffies + LOAD_FREQ;
9514 init_cfs_rq(&rq->cfs, rq);
9515 init_rt_rq(&rq->rt, rq);
9516 #ifdef CONFIG_FAIR_GROUP_SCHED
9517 init_task_group.shares = init_task_group_load;
9518 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9519 #ifdef CONFIG_CGROUP_SCHED
9521 * How much cpu bandwidth does init_task_group get?
9523 * In case of task-groups formed thr' the cgroup filesystem, it
9524 * gets 100% of the cpu resources in the system. This overall
9525 * system cpu resource is divided among the tasks of
9526 * init_task_group and its child task-groups in a fair manner,
9527 * based on each entity's (task or task-group's) weight
9528 * (se->load.weight).
9530 * In other words, if init_task_group has 10 tasks of weight
9531 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9532 * then A0's share of the cpu resource is:
9534 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9536 * We achieve this by letting init_task_group's tasks sit
9537 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9539 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9540 #elif defined CONFIG_USER_SCHED
9541 root_task_group.shares = NICE_0_LOAD;
9542 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9544 * In case of task-groups formed thr' the user id of tasks,
9545 * init_task_group represents tasks belonging to root user.
9546 * Hence it forms a sibling of all subsequent groups formed.
9547 * In this case, init_task_group gets only a fraction of overall
9548 * system cpu resource, based on the weight assigned to root
9549 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9550 * by letting tasks of init_task_group sit in a separate cfs_rq
9551 * (init_tg_cfs_rq) and having one entity represent this group of
9552 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9554 init_tg_cfs_entry(&init_task_group,
9555 &per_cpu(init_tg_cfs_rq, i),
9556 &per_cpu(init_sched_entity, i), i, 1,
9557 root_task_group.se[i]);
9559 #endif
9560 #endif /* CONFIG_FAIR_GROUP_SCHED */
9562 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9563 #ifdef CONFIG_RT_GROUP_SCHED
9564 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9565 #ifdef CONFIG_CGROUP_SCHED
9566 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9567 #elif defined CONFIG_USER_SCHED
9568 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9569 init_tg_rt_entry(&init_task_group,
9570 &per_cpu(init_rt_rq, i),
9571 &per_cpu(init_sched_rt_entity, i), i, 1,
9572 root_task_group.rt_se[i]);
9573 #endif
9574 #endif
9576 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9577 rq->cpu_load[j] = 0;
9578 #ifdef CONFIG_SMP
9579 rq->sd = NULL;
9580 rq->rd = NULL;
9581 rq->post_schedule = 0;
9582 rq->active_balance = 0;
9583 rq->next_balance = jiffies;
9584 rq->push_cpu = 0;
9585 rq->cpu = i;
9586 rq->online = 0;
9587 rq->migration_thread = NULL;
9588 rq->idle_stamp = 0;
9589 rq->avg_idle = 2*sysctl_sched_migration_cost;
9590 INIT_LIST_HEAD(&rq->migration_queue);
9591 rq_attach_root(rq, &def_root_domain);
9592 #endif
9593 init_rq_hrtick(rq);
9594 atomic_set(&rq->nr_iowait, 0);
9597 set_load_weight(&init_task);
9599 #ifdef CONFIG_PREEMPT_NOTIFIERS
9600 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9601 #endif
9603 #ifdef CONFIG_SMP
9604 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9605 #endif
9607 #ifdef CONFIG_RT_MUTEXES
9608 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9609 #endif
9612 * The boot idle thread does lazy MMU switching as well:
9614 atomic_inc(&init_mm.mm_count);
9615 enter_lazy_tlb(&init_mm, current);
9618 * Make us the idle thread. Technically, schedule() should not be
9619 * called from this thread, however somewhere below it might be,
9620 * but because we are the idle thread, we just pick up running again
9621 * when this runqueue becomes "idle".
9623 init_idle(current, smp_processor_id());
9625 calc_load_update = jiffies + LOAD_FREQ;
9628 * During early bootup we pretend to be a normal task:
9630 current->sched_class = &fair_sched_class;
9632 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9633 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9634 #ifdef CONFIG_SMP
9635 #ifdef CONFIG_NO_HZ
9636 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9637 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9638 #endif
9639 /* May be allocated at isolcpus cmdline parse time */
9640 if (cpu_isolated_map == NULL)
9641 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9642 #endif /* SMP */
9644 perf_event_init();
9646 scheduler_running = 1;
9649 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9650 static inline int preempt_count_equals(int preempt_offset)
9652 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9654 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9657 static int __might_sleep_init_called;
9658 int __init __might_sleep_init(void)
9660 __might_sleep_init_called = 1;
9661 return 0;
9663 early_initcall(__might_sleep_init);
9665 void __might_sleep(char *file, int line, int preempt_offset)
9667 #ifdef in_atomic
9668 static unsigned long prev_jiffy; /* ratelimiting */
9670 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9671 oops_in_progress)
9672 return;
9673 if (system_state != SYSTEM_RUNNING &&
9674 (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
9675 return;
9676 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9677 return;
9678 prev_jiffy = jiffies;
9680 printk(KERN_ERR
9681 "BUG: sleeping function called from invalid context at %s:%d\n",
9682 file, line);
9683 printk(KERN_ERR
9684 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9685 in_atomic(), irqs_disabled(),
9686 current->pid, current->comm);
9688 debug_show_held_locks(current);
9689 if (irqs_disabled())
9690 print_irqtrace_events(current);
9691 dump_stack();
9692 #endif
9694 EXPORT_SYMBOL(__might_sleep);
9695 #endif
9697 #ifdef CONFIG_MAGIC_SYSRQ
9698 static void normalize_task(struct rq *rq, struct task_struct *p)
9700 int on_rq;
9702 update_rq_clock(rq);
9703 on_rq = p->se.on_rq;
9704 if (on_rq)
9705 deactivate_task(rq, p, 0);
9706 __setscheduler(rq, p, SCHED_NORMAL, 0);
9707 if (on_rq) {
9708 activate_task(rq, p, 0);
9709 resched_task(rq->curr);
9713 void normalize_rt_tasks(void)
9715 struct task_struct *g, *p;
9716 unsigned long flags;
9717 struct rq *rq;
9719 read_lock_irqsave(&tasklist_lock, flags);
9720 do_each_thread(g, p) {
9722 * Only normalize user tasks:
9724 if (!p->mm)
9725 continue;
9727 p->se.exec_start = 0;
9728 #ifdef CONFIG_SCHEDSTATS
9729 p->se.wait_start = 0;
9730 p->se.sleep_start = 0;
9731 p->se.block_start = 0;
9732 #endif
9734 if (!rt_task(p)) {
9736 * Renice negative nice level userspace
9737 * tasks back to 0:
9739 if (TASK_NICE(p) < 0 && p->mm)
9740 set_user_nice(p, 0);
9741 continue;
9744 spin_lock(&p->pi_lock);
9745 rq = __task_rq_lock(p);
9747 normalize_task(rq, p);
9749 __task_rq_unlock(rq);
9750 spin_unlock(&p->pi_lock);
9751 } while_each_thread(g, p);
9753 read_unlock_irqrestore(&tasklist_lock, flags);
9756 #endif /* CONFIG_MAGIC_SYSRQ */
9758 #ifdef CONFIG_IA64
9760 * These functions are only useful for the IA64 MCA handling.
9762 * They can only be called when the whole system has been
9763 * stopped - every CPU needs to be quiescent, and no scheduling
9764 * activity can take place. Using them for anything else would
9765 * be a serious bug, and as a result, they aren't even visible
9766 * under any other configuration.
9770 * curr_task - return the current task for a given cpu.
9771 * @cpu: the processor in question.
9773 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9775 struct task_struct *curr_task(int cpu)
9777 return cpu_curr(cpu);
9781 * set_curr_task - set the current task for a given cpu.
9782 * @cpu: the processor in question.
9783 * @p: the task pointer to set.
9785 * Description: This function must only be used when non-maskable interrupts
9786 * are serviced on a separate stack. It allows the architecture to switch the
9787 * notion of the current task on a cpu in a non-blocking manner. This function
9788 * must be called with all CPU's synchronized, and interrupts disabled, the
9789 * and caller must save the original value of the current task (see
9790 * curr_task() above) and restore that value before reenabling interrupts and
9791 * re-starting the system.
9793 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9795 void set_curr_task(int cpu, struct task_struct *p)
9797 cpu_curr(cpu) = p;
9800 #endif
9802 #ifdef CONFIG_FAIR_GROUP_SCHED
9803 static void free_fair_sched_group(struct task_group *tg)
9805 int i;
9807 for_each_possible_cpu(i) {
9808 if (tg->cfs_rq)
9809 kfree(tg->cfs_rq[i]);
9810 if (tg->se)
9811 kfree(tg->se[i]);
9814 kfree(tg->cfs_rq);
9815 kfree(tg->se);
9818 static
9819 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9821 struct cfs_rq *cfs_rq;
9822 struct sched_entity *se;
9823 struct rq *rq;
9824 int i;
9826 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9827 if (!tg->cfs_rq)
9828 goto err;
9829 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9830 if (!tg->se)
9831 goto err;
9833 tg->shares = NICE_0_LOAD;
9835 for_each_possible_cpu(i) {
9836 rq = cpu_rq(i);
9838 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9839 GFP_KERNEL, cpu_to_node(i));
9840 if (!cfs_rq)
9841 goto err;
9843 se = kzalloc_node(sizeof(struct sched_entity),
9844 GFP_KERNEL, cpu_to_node(i));
9845 if (!se)
9846 goto err;
9848 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9851 return 1;
9853 err:
9854 return 0;
9857 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9859 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9860 &cpu_rq(cpu)->leaf_cfs_rq_list);
9863 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9865 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9867 #else /* !CONFG_FAIR_GROUP_SCHED */
9868 static inline void free_fair_sched_group(struct task_group *tg)
9872 static inline
9873 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9875 return 1;
9878 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9882 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9885 #endif /* CONFIG_FAIR_GROUP_SCHED */
9887 #ifdef CONFIG_RT_GROUP_SCHED
9888 static void free_rt_sched_group(struct task_group *tg)
9890 int i;
9892 destroy_rt_bandwidth(&tg->rt_bandwidth);
9894 for_each_possible_cpu(i) {
9895 if (tg->rt_rq)
9896 kfree(tg->rt_rq[i]);
9897 if (tg->rt_se)
9898 kfree(tg->rt_se[i]);
9901 kfree(tg->rt_rq);
9902 kfree(tg->rt_se);
9905 static
9906 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9908 struct rt_rq *rt_rq;
9909 struct sched_rt_entity *rt_se;
9910 struct rq *rq;
9911 int i;
9913 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9914 if (!tg->rt_rq)
9915 goto err;
9916 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9917 if (!tg->rt_se)
9918 goto err;
9920 init_rt_bandwidth(&tg->rt_bandwidth,
9921 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9923 for_each_possible_cpu(i) {
9924 rq = cpu_rq(i);
9926 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9927 GFP_KERNEL, cpu_to_node(i));
9928 if (!rt_rq)
9929 goto err;
9931 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9932 GFP_KERNEL, cpu_to_node(i));
9933 if (!rt_se)
9934 goto err;
9936 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9939 return 1;
9941 err:
9942 return 0;
9945 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9947 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9948 &cpu_rq(cpu)->leaf_rt_rq_list);
9951 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9953 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9955 #else /* !CONFIG_RT_GROUP_SCHED */
9956 static inline void free_rt_sched_group(struct task_group *tg)
9960 static inline
9961 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9963 return 1;
9966 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9970 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9973 #endif /* CONFIG_RT_GROUP_SCHED */
9975 #ifdef CONFIG_GROUP_SCHED
9976 static void free_sched_group(struct task_group *tg)
9978 free_fair_sched_group(tg);
9979 free_rt_sched_group(tg);
9980 kfree(tg);
9983 /* allocate runqueue etc for a new task group */
9984 struct task_group *sched_create_group(struct task_group *parent)
9986 struct task_group *tg;
9987 unsigned long flags;
9988 int i;
9990 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9991 if (!tg)
9992 return ERR_PTR(-ENOMEM);
9994 if (!alloc_fair_sched_group(tg, parent))
9995 goto err;
9997 if (!alloc_rt_sched_group(tg, parent))
9998 goto err;
10000 spin_lock_irqsave(&task_group_lock, flags);
10001 for_each_possible_cpu(i) {
10002 register_fair_sched_group(tg, i);
10003 register_rt_sched_group(tg, i);
10005 list_add_rcu(&tg->list, &task_groups);
10007 WARN_ON(!parent); /* root should already exist */
10009 tg->parent = parent;
10010 INIT_LIST_HEAD(&tg->children);
10011 list_add_rcu(&tg->siblings, &parent->children);
10012 spin_unlock_irqrestore(&task_group_lock, flags);
10014 return tg;
10016 err:
10017 free_sched_group(tg);
10018 return ERR_PTR(-ENOMEM);
10021 /* rcu callback to free various structures associated with a task group */
10022 static void free_sched_group_rcu(struct rcu_head *rhp)
10024 /* now it should be safe to free those cfs_rqs */
10025 free_sched_group(container_of(rhp, struct task_group, rcu));
10028 /* Destroy runqueue etc associated with a task group */
10029 void sched_destroy_group(struct task_group *tg)
10031 unsigned long flags;
10032 int i;
10034 spin_lock_irqsave(&task_group_lock, flags);
10035 for_each_possible_cpu(i) {
10036 unregister_fair_sched_group(tg, i);
10037 unregister_rt_sched_group(tg, i);
10039 list_del_rcu(&tg->list);
10040 list_del_rcu(&tg->siblings);
10041 spin_unlock_irqrestore(&task_group_lock, flags);
10043 /* wait for possible concurrent references to cfs_rqs complete */
10044 call_rcu(&tg->rcu, free_sched_group_rcu);
10047 /* change task's runqueue when it moves between groups.
10048 * The caller of this function should have put the task in its new group
10049 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10050 * reflect its new group.
10052 void sched_move_task(struct task_struct *tsk)
10054 int on_rq, running;
10055 unsigned long flags;
10056 struct rq *rq;
10058 rq = task_rq_lock(tsk, &flags);
10060 update_rq_clock(rq);
10062 running = task_current(rq, tsk);
10063 on_rq = tsk->se.on_rq;
10065 if (on_rq)
10066 dequeue_task(rq, tsk, 0);
10067 if (unlikely(running))
10068 tsk->sched_class->put_prev_task(rq, tsk);
10070 set_task_rq(tsk, task_cpu(tsk));
10072 #ifdef CONFIG_FAIR_GROUP_SCHED
10073 if (tsk->sched_class->moved_group)
10074 tsk->sched_class->moved_group(tsk);
10075 #endif
10077 if (unlikely(running))
10078 tsk->sched_class->set_curr_task(rq);
10079 if (on_rq)
10080 enqueue_task(rq, tsk, 0);
10082 task_rq_unlock(rq, &flags);
10084 #endif /* CONFIG_GROUP_SCHED */
10086 #ifdef CONFIG_FAIR_GROUP_SCHED
10087 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10089 struct cfs_rq *cfs_rq = se->cfs_rq;
10090 int on_rq;
10092 on_rq = se->on_rq;
10093 if (on_rq)
10094 dequeue_entity(cfs_rq, se, 0);
10096 se->load.weight = shares;
10097 se->load.inv_weight = 0;
10099 if (on_rq)
10100 enqueue_entity(cfs_rq, se, 0);
10103 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10105 struct cfs_rq *cfs_rq = se->cfs_rq;
10106 struct rq *rq = cfs_rq->rq;
10107 unsigned long flags;
10109 spin_lock_irqsave(&rq->lock, flags);
10110 __set_se_shares(se, shares);
10111 spin_unlock_irqrestore(&rq->lock, flags);
10114 static DEFINE_MUTEX(shares_mutex);
10116 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10118 int i;
10119 unsigned long flags;
10122 * We can't change the weight of the root cgroup.
10124 if (!tg->se[0])
10125 return -EINVAL;
10127 if (shares < MIN_SHARES)
10128 shares = MIN_SHARES;
10129 else if (shares > MAX_SHARES)
10130 shares = MAX_SHARES;
10132 mutex_lock(&shares_mutex);
10133 if (tg->shares == shares)
10134 goto done;
10136 spin_lock_irqsave(&task_group_lock, flags);
10137 for_each_possible_cpu(i)
10138 unregister_fair_sched_group(tg, i);
10139 list_del_rcu(&tg->siblings);
10140 spin_unlock_irqrestore(&task_group_lock, flags);
10142 /* wait for any ongoing reference to this group to finish */
10143 synchronize_sched();
10146 * Now we are free to modify the group's share on each cpu
10147 * w/o tripping rebalance_share or load_balance_fair.
10149 tg->shares = shares;
10150 for_each_possible_cpu(i) {
10152 * force a rebalance
10154 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10155 set_se_shares(tg->se[i], shares);
10159 * Enable load balance activity on this group, by inserting it back on
10160 * each cpu's rq->leaf_cfs_rq_list.
10162 spin_lock_irqsave(&task_group_lock, flags);
10163 for_each_possible_cpu(i)
10164 register_fair_sched_group(tg, i);
10165 list_add_rcu(&tg->siblings, &tg->parent->children);
10166 spin_unlock_irqrestore(&task_group_lock, flags);
10167 done:
10168 mutex_unlock(&shares_mutex);
10169 return 0;
10172 unsigned long sched_group_shares(struct task_group *tg)
10174 return tg->shares;
10176 #endif
10178 #ifdef CONFIG_RT_GROUP_SCHED
10180 * Ensure that the real time constraints are schedulable.
10182 static DEFINE_MUTEX(rt_constraints_mutex);
10184 static unsigned long to_ratio(u64 period, u64 runtime)
10186 if (runtime == RUNTIME_INF)
10187 return 1ULL << 20;
10189 return div64_u64(runtime << 20, period);
10192 /* Must be called with tasklist_lock held */
10193 static inline int tg_has_rt_tasks(struct task_group *tg)
10195 struct task_struct *g, *p;
10197 do_each_thread(g, p) {
10198 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10199 return 1;
10200 } while_each_thread(g, p);
10202 return 0;
10205 struct rt_schedulable_data {
10206 struct task_group *tg;
10207 u64 rt_period;
10208 u64 rt_runtime;
10211 static int tg_schedulable(struct task_group *tg, void *data)
10213 struct rt_schedulable_data *d = data;
10214 struct task_group *child;
10215 unsigned long total, sum = 0;
10216 u64 period, runtime;
10218 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10219 runtime = tg->rt_bandwidth.rt_runtime;
10221 if (tg == d->tg) {
10222 period = d->rt_period;
10223 runtime = d->rt_runtime;
10226 #ifdef CONFIG_USER_SCHED
10227 if (tg == &root_task_group) {
10228 period = global_rt_period();
10229 runtime = global_rt_runtime();
10231 #endif
10234 * Cannot have more runtime than the period.
10236 if (runtime > period && runtime != RUNTIME_INF)
10237 return -EINVAL;
10240 * Ensure we don't starve existing RT tasks.
10242 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10243 return -EBUSY;
10245 total = to_ratio(period, runtime);
10248 * Nobody can have more than the global setting allows.
10250 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10251 return -EINVAL;
10254 * The sum of our children's runtime should not exceed our own.
10256 list_for_each_entry_rcu(child, &tg->children, siblings) {
10257 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10258 runtime = child->rt_bandwidth.rt_runtime;
10260 if (child == d->tg) {
10261 period = d->rt_period;
10262 runtime = d->rt_runtime;
10265 sum += to_ratio(period, runtime);
10268 if (sum > total)
10269 return -EINVAL;
10271 return 0;
10274 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10276 struct rt_schedulable_data data = {
10277 .tg = tg,
10278 .rt_period = period,
10279 .rt_runtime = runtime,
10282 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10285 static int tg_set_bandwidth(struct task_group *tg,
10286 u64 rt_period, u64 rt_runtime)
10288 int i, err = 0;
10290 mutex_lock(&rt_constraints_mutex);
10291 read_lock(&tasklist_lock);
10292 err = __rt_schedulable(tg, rt_period, rt_runtime);
10293 if (err)
10294 goto unlock;
10296 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10297 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10298 tg->rt_bandwidth.rt_runtime = rt_runtime;
10300 for_each_possible_cpu(i) {
10301 struct rt_rq *rt_rq = tg->rt_rq[i];
10303 spin_lock(&rt_rq->rt_runtime_lock);
10304 rt_rq->rt_runtime = rt_runtime;
10305 spin_unlock(&rt_rq->rt_runtime_lock);
10307 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10308 unlock:
10309 read_unlock(&tasklist_lock);
10310 mutex_unlock(&rt_constraints_mutex);
10312 return err;
10315 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10317 u64 rt_runtime, rt_period;
10319 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10320 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10321 if (rt_runtime_us < 0)
10322 rt_runtime = RUNTIME_INF;
10324 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10327 long sched_group_rt_runtime(struct task_group *tg)
10329 u64 rt_runtime_us;
10331 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10332 return -1;
10334 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10335 do_div(rt_runtime_us, NSEC_PER_USEC);
10336 return rt_runtime_us;
10339 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10341 u64 rt_runtime, rt_period;
10343 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10344 rt_runtime = tg->rt_bandwidth.rt_runtime;
10346 if (rt_period == 0)
10347 return -EINVAL;
10349 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10352 long sched_group_rt_period(struct task_group *tg)
10354 u64 rt_period_us;
10356 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10357 do_div(rt_period_us, NSEC_PER_USEC);
10358 return rt_period_us;
10361 static int sched_rt_global_constraints(void)
10363 u64 runtime, period;
10364 int ret = 0;
10366 if (sysctl_sched_rt_period <= 0)
10367 return -EINVAL;
10369 runtime = global_rt_runtime();
10370 period = global_rt_period();
10373 * Sanity check on the sysctl variables.
10375 if (runtime > period && runtime != RUNTIME_INF)
10376 return -EINVAL;
10378 mutex_lock(&rt_constraints_mutex);
10379 read_lock(&tasklist_lock);
10380 ret = __rt_schedulable(NULL, 0, 0);
10381 read_unlock(&tasklist_lock);
10382 mutex_unlock(&rt_constraints_mutex);
10384 return ret;
10387 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10389 /* Don't accept realtime tasks when there is no way for them to run */
10390 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10391 return 0;
10393 return 1;
10396 #else /* !CONFIG_RT_GROUP_SCHED */
10397 static int sched_rt_global_constraints(void)
10399 unsigned long flags;
10400 int i;
10402 if (sysctl_sched_rt_period <= 0)
10403 return -EINVAL;
10406 * There's always some RT tasks in the root group
10407 * -- migration, kstopmachine etc..
10409 if (sysctl_sched_rt_runtime == 0)
10410 return -EBUSY;
10412 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10413 for_each_possible_cpu(i) {
10414 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10416 spin_lock(&rt_rq->rt_runtime_lock);
10417 rt_rq->rt_runtime = global_rt_runtime();
10418 spin_unlock(&rt_rq->rt_runtime_lock);
10420 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10422 return 0;
10424 #endif /* CONFIG_RT_GROUP_SCHED */
10426 int sched_rt_handler(struct ctl_table *table, int write,
10427 void __user *buffer, size_t *lenp,
10428 loff_t *ppos)
10430 int ret;
10431 int old_period, old_runtime;
10432 static DEFINE_MUTEX(mutex);
10434 mutex_lock(&mutex);
10435 old_period = sysctl_sched_rt_period;
10436 old_runtime = sysctl_sched_rt_runtime;
10438 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10440 if (!ret && write) {
10441 ret = sched_rt_global_constraints();
10442 if (ret) {
10443 sysctl_sched_rt_period = old_period;
10444 sysctl_sched_rt_runtime = old_runtime;
10445 } else {
10446 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10447 def_rt_bandwidth.rt_period =
10448 ns_to_ktime(global_rt_period());
10451 mutex_unlock(&mutex);
10453 return ret;
10456 #ifdef CONFIG_CGROUP_SCHED
10458 /* return corresponding task_group object of a cgroup */
10459 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10461 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10462 struct task_group, css);
10465 static struct cgroup_subsys_state *
10466 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10468 struct task_group *tg, *parent;
10470 if (!cgrp->parent) {
10471 /* This is early initialization for the top cgroup */
10472 return &init_task_group.css;
10475 parent = cgroup_tg(cgrp->parent);
10476 tg = sched_create_group(parent);
10477 if (IS_ERR(tg))
10478 return ERR_PTR(-ENOMEM);
10480 return &tg->css;
10483 static void
10484 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10486 struct task_group *tg = cgroup_tg(cgrp);
10488 sched_destroy_group(tg);
10491 static int
10492 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10494 if ((current != tsk) && (!capable(CAP_SYS_NICE))) {
10495 const struct cred *cred = current_cred(), *tcred;
10497 tcred = __task_cred(tsk);
10499 if (cred->euid != tcred->uid && cred->euid != tcred->suid)
10500 return -EPERM;
10503 #ifdef CONFIG_RT_GROUP_SCHED
10504 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10505 return -EINVAL;
10506 #else
10507 /* We don't support RT-tasks being in separate groups */
10508 if (tsk->sched_class != &fair_sched_class)
10509 return -EINVAL;
10510 #endif
10511 return 0;
10514 static int
10515 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10516 struct task_struct *tsk, bool threadgroup)
10518 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10519 if (retval)
10520 return retval;
10521 if (threadgroup) {
10522 struct task_struct *c;
10523 rcu_read_lock();
10524 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10525 retval = cpu_cgroup_can_attach_task(cgrp, c);
10526 if (retval) {
10527 rcu_read_unlock();
10528 return retval;
10531 rcu_read_unlock();
10533 return 0;
10536 static void
10537 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10538 struct cgroup *old_cont, struct task_struct *tsk,
10539 bool threadgroup)
10541 sched_move_task(tsk);
10542 if (threadgroup) {
10543 struct task_struct *c;
10544 rcu_read_lock();
10545 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10546 sched_move_task(c);
10548 rcu_read_unlock();
10552 #ifdef CONFIG_FAIR_GROUP_SCHED
10553 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10554 u64 shareval)
10556 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10559 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10561 struct task_group *tg = cgroup_tg(cgrp);
10563 return (u64) tg->shares;
10565 #endif /* CONFIG_FAIR_GROUP_SCHED */
10567 #ifdef CONFIG_RT_GROUP_SCHED
10568 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10569 s64 val)
10571 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10574 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10576 return sched_group_rt_runtime(cgroup_tg(cgrp));
10579 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10580 u64 rt_period_us)
10582 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10585 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10587 return sched_group_rt_period(cgroup_tg(cgrp));
10589 #endif /* CONFIG_RT_GROUP_SCHED */
10591 static struct cftype cpu_files[] = {
10592 #ifdef CONFIG_FAIR_GROUP_SCHED
10594 .name = "shares",
10595 .read_u64 = cpu_shares_read_u64,
10596 .write_u64 = cpu_shares_write_u64,
10598 #endif
10599 #ifdef CONFIG_RT_GROUP_SCHED
10601 .name = "rt_runtime_us",
10602 .read_s64 = cpu_rt_runtime_read,
10603 .write_s64 = cpu_rt_runtime_write,
10606 .name = "rt_period_us",
10607 .read_u64 = cpu_rt_period_read_uint,
10608 .write_u64 = cpu_rt_period_write_uint,
10610 #endif
10613 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10615 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10618 struct cgroup_subsys cpu_cgroup_subsys = {
10619 .name = "cpu",
10620 .create = cpu_cgroup_create,
10621 .destroy = cpu_cgroup_destroy,
10622 .can_attach = cpu_cgroup_can_attach,
10623 .attach = cpu_cgroup_attach,
10624 .populate = cpu_cgroup_populate,
10625 .subsys_id = cpu_cgroup_subsys_id,
10626 .early_init = 1,
10629 #endif /* CONFIG_CGROUP_SCHED */
10631 #ifdef CONFIG_CGROUP_CPUACCT
10634 * CPU accounting code for task groups.
10636 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10637 * (balbir@in.ibm.com).
10640 /* track cpu usage of a group of tasks and its child groups */
10641 struct cpuacct {
10642 struct cgroup_subsys_state css;
10643 /* cpuusage holds pointer to a u64-type object on every cpu */
10644 u64 *cpuusage;
10645 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10646 struct cpuacct *parent;
10649 struct cgroup_subsys cpuacct_subsys;
10651 /* return cpu accounting group corresponding to this container */
10652 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10654 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10655 struct cpuacct, css);
10658 /* return cpu accounting group to which this task belongs */
10659 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10661 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10662 struct cpuacct, css);
10665 /* create a new cpu accounting group */
10666 static struct cgroup_subsys_state *cpuacct_create(
10667 struct cgroup_subsys *ss, struct cgroup *cgrp)
10669 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10670 int i;
10672 if (!ca)
10673 goto out;
10675 ca->cpuusage = alloc_percpu(u64);
10676 if (!ca->cpuusage)
10677 goto out_free_ca;
10679 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10680 if (percpu_counter_init(&ca->cpustat[i], 0))
10681 goto out_free_counters;
10683 if (cgrp->parent)
10684 ca->parent = cgroup_ca(cgrp->parent);
10686 return &ca->css;
10688 out_free_counters:
10689 while (--i >= 0)
10690 percpu_counter_destroy(&ca->cpustat[i]);
10691 free_percpu(ca->cpuusage);
10692 out_free_ca:
10693 kfree(ca);
10694 out:
10695 return ERR_PTR(-ENOMEM);
10698 /* destroy an existing cpu accounting group */
10699 static void
10700 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10702 struct cpuacct *ca = cgroup_ca(cgrp);
10703 int i;
10705 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10706 percpu_counter_destroy(&ca->cpustat[i]);
10707 free_percpu(ca->cpuusage);
10708 kfree(ca);
10711 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10713 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10714 u64 data;
10716 #ifndef CONFIG_64BIT
10718 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10720 spin_lock_irq(&cpu_rq(cpu)->lock);
10721 data = *cpuusage;
10722 spin_unlock_irq(&cpu_rq(cpu)->lock);
10723 #else
10724 data = *cpuusage;
10725 #endif
10727 return data;
10730 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10732 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10734 #ifndef CONFIG_64BIT
10736 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10738 spin_lock_irq(&cpu_rq(cpu)->lock);
10739 *cpuusage = val;
10740 spin_unlock_irq(&cpu_rq(cpu)->lock);
10741 #else
10742 *cpuusage = val;
10743 #endif
10746 /* return total cpu usage (in nanoseconds) of a group */
10747 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10749 struct cpuacct *ca = cgroup_ca(cgrp);
10750 u64 totalcpuusage = 0;
10751 int i;
10753 for_each_present_cpu(i)
10754 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10756 return totalcpuusage;
10759 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10760 u64 reset)
10762 struct cpuacct *ca = cgroup_ca(cgrp);
10763 int err = 0;
10764 int i;
10766 if (reset) {
10767 err = -EINVAL;
10768 goto out;
10771 for_each_present_cpu(i)
10772 cpuacct_cpuusage_write(ca, i, 0);
10774 out:
10775 return err;
10778 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10779 struct seq_file *m)
10781 struct cpuacct *ca = cgroup_ca(cgroup);
10782 u64 percpu;
10783 int i;
10785 for_each_present_cpu(i) {
10786 percpu = cpuacct_cpuusage_read(ca, i);
10787 seq_printf(m, "%llu ", (unsigned long long) percpu);
10789 seq_printf(m, "\n");
10790 return 0;
10793 static const char *cpuacct_stat_desc[] = {
10794 [CPUACCT_STAT_USER] = "user",
10795 [CPUACCT_STAT_SYSTEM] = "system",
10798 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10799 struct cgroup_map_cb *cb)
10801 struct cpuacct *ca = cgroup_ca(cgrp);
10802 int i;
10804 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10805 s64 val = percpu_counter_read(&ca->cpustat[i]);
10806 val = cputime64_to_clock_t(val);
10807 cb->fill(cb, cpuacct_stat_desc[i], val);
10809 return 0;
10812 static struct cftype files[] = {
10814 .name = "usage",
10815 .read_u64 = cpuusage_read,
10816 .write_u64 = cpuusage_write,
10819 .name = "usage_percpu",
10820 .read_seq_string = cpuacct_percpu_seq_read,
10823 .name = "stat",
10824 .read_map = cpuacct_stats_show,
10828 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10830 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10834 * charge this task's execution time to its accounting group.
10836 * called with rq->lock held.
10838 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10840 struct cpuacct *ca;
10841 int cpu;
10843 if (unlikely(!cpuacct_subsys.active))
10844 return;
10846 cpu = task_cpu(tsk);
10848 rcu_read_lock();
10850 ca = task_ca(tsk);
10852 for (; ca; ca = ca->parent) {
10853 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10854 *cpuusage += cputime;
10857 rcu_read_unlock();
10861 * Charge the system/user time to the task's accounting group.
10863 static void cpuacct_update_stats(struct task_struct *tsk,
10864 enum cpuacct_stat_index idx, cputime_t val)
10866 struct cpuacct *ca;
10868 if (unlikely(!cpuacct_subsys.active))
10869 return;
10871 rcu_read_lock();
10872 ca = task_ca(tsk);
10874 do {
10875 percpu_counter_add(&ca->cpustat[idx], val);
10876 ca = ca->parent;
10877 } while (ca);
10878 rcu_read_unlock();
10881 struct cgroup_subsys cpuacct_subsys = {
10882 .name = "cpuacct",
10883 .create = cpuacct_create,
10884 .destroy = cpuacct_destroy,
10885 .populate = cpuacct_populate,
10886 .subsys_id = cpuacct_subsys_id,
10888 #endif /* CONFIG_CGROUP_CPUACCT */
10890 #ifndef CONFIG_SMP
10892 int rcu_expedited_torture_stats(char *page)
10894 return 0;
10896 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10898 void synchronize_sched_expedited(void)
10901 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10903 #else /* #ifndef CONFIG_SMP */
10905 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10906 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10908 #define RCU_EXPEDITED_STATE_POST -2
10909 #define RCU_EXPEDITED_STATE_IDLE -1
10911 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10913 int rcu_expedited_torture_stats(char *page)
10915 int cnt = 0;
10916 int cpu;
10918 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10919 for_each_online_cpu(cpu) {
10920 cnt += sprintf(&page[cnt], " %d:%d",
10921 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10923 cnt += sprintf(&page[cnt], "\n");
10924 return cnt;
10926 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10928 static long synchronize_sched_expedited_count;
10931 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10932 * approach to force grace period to end quickly. This consumes
10933 * significant time on all CPUs, and is thus not recommended for
10934 * any sort of common-case code.
10936 * Note that it is illegal to call this function while holding any
10937 * lock that is acquired by a CPU-hotplug notifier. Failing to
10938 * observe this restriction will result in deadlock.
10940 void synchronize_sched_expedited(void)
10942 int cpu;
10943 unsigned long flags;
10944 bool need_full_sync = 0;
10945 struct rq *rq;
10946 struct migration_req *req;
10947 long snap;
10948 int trycount = 0;
10950 smp_mb(); /* ensure prior mod happens before capturing snap. */
10951 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10952 get_online_cpus();
10953 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10954 put_online_cpus();
10955 if (trycount++ < 10)
10956 udelay(trycount * num_online_cpus());
10957 else {
10958 synchronize_sched();
10959 return;
10961 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10962 smp_mb(); /* ensure test happens before caller kfree */
10963 return;
10965 get_online_cpus();
10967 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10968 for_each_online_cpu(cpu) {
10969 rq = cpu_rq(cpu);
10970 req = &per_cpu(rcu_migration_req, cpu);
10971 init_completion(&req->done);
10972 req->task = NULL;
10973 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10974 spin_lock_irqsave(&rq->lock, flags);
10975 list_add(&req->list, &rq->migration_queue);
10976 spin_unlock_irqrestore(&rq->lock, flags);
10977 wake_up_process(rq->migration_thread);
10979 for_each_online_cpu(cpu) {
10980 rcu_expedited_state = cpu;
10981 req = &per_cpu(rcu_migration_req, cpu);
10982 rq = cpu_rq(cpu);
10983 wait_for_completion(&req->done);
10984 spin_lock_irqsave(&rq->lock, flags);
10985 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10986 need_full_sync = 1;
10987 req->dest_cpu = RCU_MIGRATION_IDLE;
10988 spin_unlock_irqrestore(&rq->lock, flags);
10990 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10991 mutex_unlock(&rcu_sched_expedited_mutex);
10992 put_online_cpus();
10993 if (need_full_sync)
10994 synchronize_sched();
10996 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10998 #endif /* #else #ifndef CONFIG_SMP */