4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_USER_SCHED
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity
**se
;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq
**cfs_rq
;
259 unsigned long shares
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct
*user
)
282 user
->tg
->uid
= user
->uid
;
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group
;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq
, init_tg_cfs_rq
);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq
, init_rt_rq
);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock
);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group
.children
);
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group
;
346 /* return group to which a task belongs */
347 static inline struct task_group
*task_group(struct task_struct
*p
)
349 struct task_group
*tg
;
351 #ifdef CONFIG_USER_SCHED
353 tg
= __task_cred(p
)->user
->tg
;
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
357 struct task_group
, css
);
359 tg
= &init_task_group
;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
369 p
->se
.parent
= task_group(p
)->se
[cpu
];
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
374 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
380 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
381 static inline struct task_group
*task_group(struct task_struct
*p
)
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
390 struct load_weight load
;
391 unsigned long nr_running
;
396 struct rb_root tasks_timeline
;
397 struct rb_node
*rb_leftmost
;
399 struct list_head tasks
;
400 struct list_head
*balance_iterator
;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity
*curr
, *next
, *last
;
408 unsigned int nr_spread_over
;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list
;
422 struct task_group
*tg
; /* group that "owns" this runqueue */
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight
;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
436 unsigned long h_load
;
439 * this cpu's part of tg->shares
441 unsigned long shares
;
444 * load.weight at the time we set shares
446 unsigned long rq_weight
;
451 /* Real-Time classes' related field in a runqueue: */
453 struct rt_prio_array active
;
454 unsigned long rt_nr_running
;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
457 int curr
; /* highest queued rt task prio */
459 int next
; /* next highest */
464 unsigned long rt_nr_migratory
;
465 unsigned long rt_nr_total
;
467 struct plist_head pushable_tasks
;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock
;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted
;
479 struct list_head leaf_rt_rq_list
;
480 struct task_group
*tg
;
481 struct sched_rt_entity
*rt_se
;
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
498 cpumask_var_t online
;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask
;
507 struct cpupri cpupri
;
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain
;
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running
;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
538 unsigned long last_tick_seen
;
539 unsigned char in_nohz_recently
;
541 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load
;
543 unsigned long nr_load_updates
;
545 u64 nr_migrations_in
;
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list
;
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list
;
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
564 unsigned long nr_uninterruptible
;
566 struct task_struct
*curr
, *idle
;
567 unsigned long next_balance
;
568 struct mm_struct
*prev_mm
;
575 struct root_domain
*rd
;
576 struct sched_domain
*sd
;
578 unsigned char idle_at_tick
;
579 /* For active balancing */
583 /* cpu of this runqueue: */
587 unsigned long avg_load_per_task
;
589 struct task_struct
*migration_thread
;
590 struct list_head migration_queue
;
598 /* calc_load related fields */
599 unsigned long calc_load_update
;
600 long calc_load_active
;
602 #ifdef CONFIG_SCHED_HRTICK
604 int hrtick_csd_pending
;
605 struct call_single_data hrtick_csd
;
607 struct hrtimer hrtick_timer
;
610 #ifdef CONFIG_SCHEDSTATS
612 struct sched_info rq_sched_info
;
613 unsigned long long rq_cpu_time
;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616 /* sys_sched_yield() stats */
617 unsigned int yld_count
;
619 /* schedule() stats */
620 unsigned int sched_switch
;
621 unsigned int sched_count
;
622 unsigned int sched_goidle
;
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count
;
626 unsigned int ttwu_local
;
629 unsigned int bkl_count
;
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
636 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
638 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
641 static inline int cpu_of(struct rq
*rq
)
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
666 inline void update_rq_clock(struct rq
*rq
)
668 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
677 # define const_debug static const
682 * @cpu: the processor in question.
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
688 int runqueue_is_locked(int cpu
)
690 return spin_is_locked(&cpu_rq(cpu
)->lock
);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
701 #include "sched_features.h"
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug
unsigned int sysctl_sched_features
=
710 #include "sched_features.h"
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
719 static __read_mostly
char *sched_feat_names
[] = {
720 #include "sched_features.h"
726 static int sched_feat_show(struct seq_file
*m
, void *v
)
730 for (i
= 0; sched_feat_names
[i
]; i
++) {
731 if (!(sysctl_sched_features
& (1UL << i
)))
733 seq_printf(m
, "%s ", sched_feat_names
[i
]);
741 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
742 size_t cnt
, loff_t
*ppos
)
752 if (copy_from_user(&buf
, ubuf
, cnt
))
757 if (strncmp(buf
, "NO_", 3) == 0) {
762 for (i
= 0; sched_feat_names
[i
]; i
++) {
763 int len
= strlen(sched_feat_names
[i
]);
765 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
767 sysctl_sched_features
&= ~(1UL << i
);
769 sysctl_sched_features
|= (1UL << i
);
774 if (!sched_feat_names
[i
])
782 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
784 return single_open(filp
, sched_feat_show
, NULL
);
787 static const struct file_operations sched_feat_fops
= {
788 .open
= sched_feat_open
,
789 .write
= sched_feat_write
,
792 .release
= single_release
,
795 static __init
int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
802 late_initcall(sched_init_debug
);
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
815 * ratelimit for updating the group shares.
818 unsigned int sysctl_sched_shares_ratelimit
= 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
826 unsigned int sysctl_sched_shares_thresh
= 4;
829 * period over which we average the RT time consumption, measured
834 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
837 * period over which we measure -rt task cpu usage in us.
840 unsigned int sysctl_sched_rt_period
= 1000000;
842 static __read_mostly
int scheduler_running
;
845 * part of the period that we allow rt tasks to run in us.
848 int sysctl_sched_rt_runtime
= 950000;
850 static inline u64
global_rt_period(void)
852 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
855 static inline u64
global_rt_runtime(void)
857 if (sysctl_sched_rt_runtime
< 0)
860 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
870 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
872 return rq
->curr
== p
;
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
878 return task_current(rq
, p
);
881 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
885 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq
->lock
.owner
= current
;
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
896 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
898 spin_unlock_irq(&rq
->lock
);
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
907 return task_current(rq
, p
);
911 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 spin_unlock_irq(&rq
->lock
);
924 spin_unlock(&rq
->lock
);
928 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
949 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
953 struct rq
*rq
= task_rq(p
);
954 spin_lock(&rq
->lock
);
955 if (likely(rq
== task_rq(p
)))
957 spin_unlock(&rq
->lock
);
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
966 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
972 local_irq_save(*flags
);
974 spin_lock(&rq
->lock
);
975 if (likely(rq
== task_rq(p
)))
977 spin_unlock_irqrestore(&rq
->lock
, *flags
);
981 void task_rq_unlock_wait(struct task_struct
*p
)
983 struct rq
*rq
= task_rq(p
);
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 spin_unlock_wait(&rq
->lock
);
989 static void __task_rq_unlock(struct rq
*rq
)
992 spin_unlock(&rq
->lock
);
995 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
998 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1004 static struct rq
*this_rq_lock(void)
1005 __acquires(rq
->lock
)
1009 local_irq_disable();
1011 spin_lock(&rq
->lock
);
1016 #ifdef CONFIG_SCHED_HRTICK
1018 * Use HR-timers to deliver accurate preemption points.
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1030 * - enabled by features
1031 * - hrtimer is actually high res
1033 static inline int hrtick_enabled(struct rq
*rq
)
1035 if (!sched_feat(HRTICK
))
1037 if (!cpu_active(cpu_of(rq
)))
1039 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1042 static void hrtick_clear(struct rq
*rq
)
1044 if (hrtimer_active(&rq
->hrtick_timer
))
1045 hrtimer_cancel(&rq
->hrtick_timer
);
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1052 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1054 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1056 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1058 spin_lock(&rq
->lock
);
1059 update_rq_clock(rq
);
1060 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1061 spin_unlock(&rq
->lock
);
1063 return HRTIMER_NORESTART
;
1068 * called from hardirq (IPI) context
1070 static void __hrtick_start(void *arg
)
1072 struct rq
*rq
= arg
;
1074 spin_lock(&rq
->lock
);
1075 hrtimer_restart(&rq
->hrtick_timer
);
1076 rq
->hrtick_csd_pending
= 0;
1077 spin_unlock(&rq
->lock
);
1081 * Called to set the hrtick timer state.
1083 * called with rq->lock held and irqs disabled
1085 static void hrtick_start(struct rq
*rq
, u64 delay
)
1087 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1088 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1090 hrtimer_set_expires(timer
, time
);
1092 if (rq
== this_rq()) {
1093 hrtimer_restart(timer
);
1094 } else if (!rq
->hrtick_csd_pending
) {
1095 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1096 rq
->hrtick_csd_pending
= 1;
1101 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1103 int cpu
= (int)(long)hcpu
;
1106 case CPU_UP_CANCELED
:
1107 case CPU_UP_CANCELED_FROZEN
:
1108 case CPU_DOWN_PREPARE
:
1109 case CPU_DOWN_PREPARE_FROZEN
:
1111 case CPU_DEAD_FROZEN
:
1112 hrtick_clear(cpu_rq(cpu
));
1119 static __init
void init_hrtick(void)
1121 hotcpu_notifier(hotplug_hrtick
, 0);
1125 * Called to set the hrtick timer state.
1127 * called with rq->lock held and irqs disabled
1129 static void hrtick_start(struct rq
*rq
, u64 delay
)
1131 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1132 HRTIMER_MODE_REL_PINNED
, 0);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq
*rq
)
1143 rq
->hrtick_csd_pending
= 0;
1145 rq
->hrtick_csd
.flags
= 0;
1146 rq
->hrtick_csd
.func
= __hrtick_start
;
1147 rq
->hrtick_csd
.info
= rq
;
1150 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1151 rq
->hrtick_timer
.function
= hrtick
;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq
*rq
)
1158 static inline void init_rq_hrtick(struct rq
*rq
)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1180 static void resched_task(struct task_struct
*p
)
1184 assert_spin_locked(&task_rq(p
)->lock
);
1186 if (test_tsk_need_resched(p
))
1189 set_tsk_need_resched(p
);
1192 if (cpu
== smp_processor_id())
1195 /* NEED_RESCHED must be visible before we test polling */
1197 if (!tsk_is_polling(p
))
1198 smp_send_reschedule(cpu
);
1201 static void resched_cpu(int cpu
)
1203 struct rq
*rq
= cpu_rq(cpu
);
1204 unsigned long flags
;
1206 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1208 resched_task(cpu_curr(cpu
));
1209 spin_unlock_irqrestore(&rq
->lock
, flags
);
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu
)
1225 struct rq
*rq
= cpu_rq(cpu
);
1227 if (cpu
== smp_processor_id())
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq
->curr
!= rq
->idle
)
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_need_resched(rq
->idle
);
1247 /* NEED_RESCHED must be visible before we test polling */
1249 if (!tsk_is_polling(rq
->idle
))
1250 smp_send_reschedule(cpu
);
1252 #endif /* CONFIG_NO_HZ */
1254 static u64
sched_avg_period(void)
1256 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1259 static void sched_avg_update(struct rq
*rq
)
1261 s64 period
= sched_avg_period();
1263 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1264 rq
->age_stamp
+= period
;
1269 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1271 rq
->rt_avg
+= rt_delta
;
1272 sched_avg_update(rq
);
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct
*p
)
1278 assert_spin_locked(&task_rq(p
)->lock
);
1279 set_tsk_need_resched(p
);
1282 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1290 # define WMULT_CONST (1UL << 32)
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1305 struct load_weight
*lw
)
1309 if (!lw
->inv_weight
) {
1310 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1313 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1317 tmp
= (u64
)delta_exec
* weight
;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp
> WMULT_CONST
))
1322 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1325 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1327 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1330 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1336 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight
[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult
[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator
{
1404 struct task_struct
*(*start
)(void *);
1405 struct task_struct
*(*next
)(void *);
1409 static unsigned long
1410 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1411 unsigned long max_load_move
, struct sched_domain
*sd
,
1412 enum cpu_idle_type idle
, int *all_pinned
,
1413 int *this_best_prio
, struct rq_iterator
*iterator
);
1416 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1417 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1418 struct rq_iterator
*iterator
);
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index
{
1423 CPUACCT_STAT_USER
, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1426 CPUACCT_STAT_NSTATS
,
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1431 static void cpuacct_update_stats(struct task_struct
*tsk
,
1432 enum cpuacct_stat_index idx
, cputime_t val
);
1434 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1435 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1436 enum cpuacct_stat_index idx
, cputime_t val
) {}
1439 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1441 update_load_add(&rq
->load
, load
);
1444 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1446 update_load_sub(&rq
->load
, load
);
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor
)(struct task_group
*, void *);
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1456 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1458 struct task_group
*parent
, *child
;
1462 parent
= &root_task_group
;
1464 ret
= (*down
)(parent
, data
);
1467 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1474 ret
= (*up
)(parent
, data
);
1479 parent
= parent
->parent
;
1488 static int tg_nop(struct task_group
*tg
, void *data
)
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu
)
1498 return cpu_rq(cpu
)->load
.weight
;
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1508 static unsigned long source_load(int cpu
, int type
)
1510 struct rq
*rq
= cpu_rq(cpu
);
1511 unsigned long total
= weighted_cpuload(cpu
);
1513 if (type
== 0 || !sched_feat(LB_BIAS
))
1516 return min(rq
->cpu_load
[type
-1], total
);
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1523 static unsigned long target_load(int cpu
, int type
)
1525 struct rq
*rq
= cpu_rq(cpu
);
1526 unsigned long total
= weighted_cpuload(cpu
);
1528 if (type
== 0 || !sched_feat(LB_BIAS
))
1531 return max(rq
->cpu_load
[type
-1], total
);
1534 static struct sched_group
*group_of(int cpu
)
1536 struct sched_domain
*sd
= rcu_dereference(cpu_rq(cpu
)->sd
);
1544 static unsigned long power_of(int cpu
)
1546 struct sched_group
*group
= group_of(cpu
);
1549 return SCHED_LOAD_SCALE
;
1551 return group
->cpu_power
;
1554 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1556 static unsigned long cpu_avg_load_per_task(int cpu
)
1558 struct rq
*rq
= cpu_rq(cpu
);
1559 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1562 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1564 rq
->avg_load_per_task
= 0;
1566 return rq
->avg_load_per_task
;
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1571 static __read_mostly
unsigned long *update_shares_data
;
1573 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1576 * Calculate and set the cpu's group shares.
1578 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1579 unsigned long sd_shares
,
1580 unsigned long sd_rq_weight
,
1581 unsigned long *usd_rq_weight
)
1583 unsigned long shares
, rq_weight
;
1586 rq_weight
= usd_rq_weight
[cpu
];
1589 rq_weight
= NICE_0_LOAD
;
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1597 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1598 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1600 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1601 sysctl_sched_shares_thresh
) {
1602 struct rq
*rq
= cpu_rq(cpu
);
1603 unsigned long flags
;
1605 spin_lock_irqsave(&rq
->lock
, flags
);
1606 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1607 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1608 __set_se_shares(tg
->se
[cpu
], shares
);
1609 spin_unlock_irqrestore(&rq
->lock
, flags
);
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1618 static int tg_shares_up(struct task_group
*tg
, void *data
)
1620 unsigned long weight
, rq_weight
= 0, shares
= 0;
1621 unsigned long *usd_rq_weight
;
1622 struct sched_domain
*sd
= data
;
1623 unsigned long flags
;
1629 local_irq_save(flags
);
1630 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1632 for_each_cpu(i
, sched_domain_span(sd
)) {
1633 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1634 usd_rq_weight
[i
] = weight
;
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1642 weight
= NICE_0_LOAD
;
1644 rq_weight
+= weight
;
1645 shares
+= tg
->cfs_rq
[i
]->shares
;
1648 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1649 shares
= tg
->shares
;
1651 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1652 shares
= tg
->shares
;
1654 for_each_cpu(i
, sched_domain_span(sd
))
1655 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1657 local_irq_restore(flags
);
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
1667 static int tg_load_down(struct task_group
*tg
, void *data
)
1670 long cpu
= (long)data
;
1673 load
= cpu_rq(cpu
)->load
.weight
;
1675 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1676 load
*= tg
->cfs_rq
[cpu
]->shares
;
1677 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1680 tg
->cfs_rq
[cpu
]->h_load
= load
;
1685 static void update_shares(struct sched_domain
*sd
)
1690 if (root_task_group_empty())
1693 now
= cpu_clock(raw_smp_processor_id());
1694 elapsed
= now
- sd
->last_update
;
1696 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1697 sd
->last_update
= now
;
1698 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1702 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1704 if (root_task_group_empty())
1707 spin_unlock(&rq
->lock
);
1709 spin_lock(&rq
->lock
);
1712 static void update_h_load(long cpu
)
1714 if (root_task_group_empty())
1717 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1722 static inline void update_shares(struct sched_domain
*sd
)
1726 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1732 #ifdef CONFIG_PREEMPT
1734 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
1744 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1745 __releases(this_rq
->lock
)
1746 __acquires(busiest
->lock
)
1747 __acquires(this_rq
->lock
)
1749 spin_unlock(&this_rq
->lock
);
1750 double_rq_lock(this_rq
, busiest
);
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1763 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1764 __releases(this_rq
->lock
)
1765 __acquires(busiest
->lock
)
1766 __acquires(this_rq
->lock
)
1770 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1771 if (busiest
< this_rq
) {
1772 spin_unlock(&this_rq
->lock
);
1773 spin_lock(&busiest
->lock
);
1774 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1777 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1782 #endif /* CONFIG_PREEMPT */
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1787 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq
->lock
);
1795 return _double_lock_balance(this_rq
, busiest
);
1798 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1799 __releases(busiest
->lock
)
1801 spin_unlock(&busiest
->lock
);
1802 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1806 #ifdef CONFIG_FAIR_GROUP_SCHED
1807 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1810 cfs_rq
->shares
= shares
;
1815 static void calc_load_account_active(struct rq
*this_rq
);
1816 static void update_sysctl(void);
1818 #include "sched_stats.h"
1819 #include "sched_idletask.c"
1820 #include "sched_fair.c"
1821 #include "sched_rt.c"
1822 #ifdef CONFIG_SCHED_DEBUG
1823 # include "sched_debug.c"
1826 #define sched_class_highest (&rt_sched_class)
1827 #define for_each_class(class) \
1828 for (class = sched_class_highest; class; class = class->next)
1830 static void inc_nr_running(struct rq
*rq
)
1835 static void dec_nr_running(struct rq
*rq
)
1840 static void set_load_weight(struct task_struct
*p
)
1842 if (task_has_rt_policy(p
)) {
1843 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1844 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1849 * SCHED_IDLE tasks get minimal weight:
1851 if (p
->policy
== SCHED_IDLE
) {
1852 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1853 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1857 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1858 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1861 static void update_avg(u64
*avg
, u64 sample
)
1863 s64 diff
= sample
- *avg
;
1867 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1870 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1872 sched_info_queued(p
);
1873 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1877 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1880 if (p
->se
.last_wakeup
) {
1881 update_avg(&p
->se
.avg_overlap
,
1882 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1883 p
->se
.last_wakeup
= 0;
1885 update_avg(&p
->se
.avg_wakeup
,
1886 sysctl_sched_wakeup_granularity
);
1890 sched_info_dequeued(p
);
1891 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1896 * __normal_prio - return the priority that is based on the static prio
1898 static inline int __normal_prio(struct task_struct
*p
)
1900 return p
->static_prio
;
1904 * Calculate the expected normal priority: i.e. priority
1905 * without taking RT-inheritance into account. Might be
1906 * boosted by interactivity modifiers. Changes upon fork,
1907 * setprio syscalls, and whenever the interactivity
1908 * estimator recalculates.
1910 static inline int normal_prio(struct task_struct
*p
)
1914 if (task_has_rt_policy(p
))
1915 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1917 prio
= __normal_prio(p
);
1922 * Calculate the current priority, i.e. the priority
1923 * taken into account by the scheduler. This value might
1924 * be boosted by RT tasks, or might be boosted by
1925 * interactivity modifiers. Will be RT if the task got
1926 * RT-boosted. If not then it returns p->normal_prio.
1928 static int effective_prio(struct task_struct
*p
)
1930 p
->normal_prio
= normal_prio(p
);
1932 * If we are RT tasks or we were boosted to RT priority,
1933 * keep the priority unchanged. Otherwise, update priority
1934 * to the normal priority:
1936 if (!rt_prio(p
->prio
))
1937 return p
->normal_prio
;
1942 * activate_task - move a task to the runqueue.
1944 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1946 if (task_contributes_to_load(p
))
1947 rq
->nr_uninterruptible
--;
1949 enqueue_task(rq
, p
, wakeup
);
1954 * deactivate_task - remove a task from the runqueue.
1956 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1958 if (task_contributes_to_load(p
))
1959 rq
->nr_uninterruptible
++;
1961 dequeue_task(rq
, p
, sleep
);
1966 * task_curr - is this task currently executing on a CPU?
1967 * @p: the task in question.
1969 inline int task_curr(const struct task_struct
*p
)
1971 return cpu_curr(task_cpu(p
)) == p
;
1974 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1976 set_task_rq(p
, cpu
);
1979 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1980 * successfuly executed on another CPU. We must ensure that updates of
1981 * per-task data have been completed by this moment.
1984 task_thread_info(p
)->cpu
= cpu
;
1988 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1989 const struct sched_class
*prev_class
,
1990 int oldprio
, int running
)
1992 if (prev_class
!= p
->sched_class
) {
1993 if (prev_class
->switched_from
)
1994 prev_class
->switched_from(rq
, p
, running
);
1995 p
->sched_class
->switched_to(rq
, p
, running
);
1997 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2001 * kthread_bind - bind a just-created kthread to a cpu.
2002 * @p: thread created by kthread_create().
2003 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2005 * Description: This function is equivalent to set_cpus_allowed(),
2006 * except that @cpu doesn't need to be online, and the thread must be
2007 * stopped (i.e., just returned from kthread_create()).
2009 * Function lives here instead of kthread.c because it messes with
2010 * scheduler internals which require locking.
2012 void kthread_bind(struct task_struct
*p
, unsigned int cpu
)
2014 struct rq
*rq
= cpu_rq(cpu
);
2015 unsigned long flags
;
2017 /* Must have done schedule() in kthread() before we set_task_cpu */
2018 if (!wait_task_inactive(p
, TASK_UNINTERRUPTIBLE
)) {
2023 spin_lock_irqsave(&rq
->lock
, flags
);
2024 set_task_cpu(p
, cpu
);
2025 p
->cpus_allowed
= cpumask_of_cpu(cpu
);
2026 p
->rt
.nr_cpus_allowed
= 1;
2027 p
->flags
|= PF_THREAD_BOUND
;
2028 spin_unlock_irqrestore(&rq
->lock
, flags
);
2030 EXPORT_SYMBOL(kthread_bind
);
2034 * Is this task likely cache-hot:
2037 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2041 if (p
->sched_class
!= &fair_sched_class
)
2045 * Buddy candidates are cache hot:
2047 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2048 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2049 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2052 if (sysctl_sched_migration_cost
== -1)
2054 if (sysctl_sched_migration_cost
== 0)
2057 delta
= now
- p
->se
.exec_start
;
2059 return delta
< (s64
)sysctl_sched_migration_cost
;
2063 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2065 int old_cpu
= task_cpu(p
);
2066 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
2067 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2068 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2071 clock_offset
= old_rq
->clock
- new_rq
->clock
;
2073 trace_sched_migrate_task(p
, new_cpu
);
2075 #ifdef CONFIG_SCHEDSTATS
2076 if (p
->se
.wait_start
)
2077 p
->se
.wait_start
-= clock_offset
;
2078 if (p
->se
.sleep_start
)
2079 p
->se
.sleep_start
-= clock_offset
;
2080 if (p
->se
.block_start
)
2081 p
->se
.block_start
-= clock_offset
;
2083 if (old_cpu
!= new_cpu
) {
2084 p
->se
.nr_migrations
++;
2085 new_rq
->nr_migrations_in
++;
2086 #ifdef CONFIG_SCHEDSTATS
2087 if (task_hot(p
, old_rq
->clock
, NULL
))
2088 schedstat_inc(p
, se
.nr_forced2_migrations
);
2090 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
,
2093 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2094 new_cfsrq
->min_vruntime
;
2096 __set_task_cpu(p
, new_cpu
);
2099 struct migration_req
{
2100 struct list_head list
;
2102 struct task_struct
*task
;
2105 struct completion done
;
2109 * The task's runqueue lock must be held.
2110 * Returns true if you have to wait for migration thread.
2113 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2115 struct rq
*rq
= task_rq(p
);
2118 * If the task is not on a runqueue (and not running), then
2119 * the next wake-up will properly place the task.
2121 if (!p
->se
.on_rq
&& !task_running(rq
, p
))
2124 init_completion(&req
->done
);
2126 req
->dest_cpu
= dest_cpu
;
2127 list_add(&req
->list
, &rq
->migration_queue
);
2133 * wait_task_context_switch - wait for a thread to complete at least one
2136 * @p must not be current.
2138 void wait_task_context_switch(struct task_struct
*p
)
2140 unsigned long nvcsw
, nivcsw
, flags
;
2148 * The runqueue is assigned before the actual context
2149 * switch. We need to take the runqueue lock.
2151 * We could check initially without the lock but it is
2152 * very likely that we need to take the lock in every
2155 rq
= task_rq_lock(p
, &flags
);
2156 running
= task_running(rq
, p
);
2157 task_rq_unlock(rq
, &flags
);
2159 if (likely(!running
))
2162 * The switch count is incremented before the actual
2163 * context switch. We thus wait for two switches to be
2164 * sure at least one completed.
2166 if ((p
->nvcsw
- nvcsw
) > 1)
2168 if ((p
->nivcsw
- nivcsw
) > 1)
2176 * wait_task_inactive - wait for a thread to unschedule.
2178 * If @match_state is nonzero, it's the @p->state value just checked and
2179 * not expected to change. If it changes, i.e. @p might have woken up,
2180 * then return zero. When we succeed in waiting for @p to be off its CPU,
2181 * we return a positive number (its total switch count). If a second call
2182 * a short while later returns the same number, the caller can be sure that
2183 * @p has remained unscheduled the whole time.
2185 * The caller must ensure that the task *will* unschedule sometime soon,
2186 * else this function might spin for a *long* time. This function can't
2187 * be called with interrupts off, or it may introduce deadlock with
2188 * smp_call_function() if an IPI is sent by the same process we are
2189 * waiting to become inactive.
2191 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2193 unsigned long flags
;
2200 * We do the initial early heuristics without holding
2201 * any task-queue locks at all. We'll only try to get
2202 * the runqueue lock when things look like they will
2208 * If the task is actively running on another CPU
2209 * still, just relax and busy-wait without holding
2212 * NOTE! Since we don't hold any locks, it's not
2213 * even sure that "rq" stays as the right runqueue!
2214 * But we don't care, since "task_running()" will
2215 * return false if the runqueue has changed and p
2216 * is actually now running somewhere else!
2218 while (task_running(rq
, p
)) {
2219 if (match_state
&& unlikely(p
->state
!= match_state
))
2225 * Ok, time to look more closely! We need the rq
2226 * lock now, to be *sure*. If we're wrong, we'll
2227 * just go back and repeat.
2229 rq
= task_rq_lock(p
, &flags
);
2230 trace_sched_wait_task(rq
, p
);
2231 running
= task_running(rq
, p
);
2232 on_rq
= p
->se
.on_rq
;
2234 if (!match_state
|| p
->state
== match_state
)
2235 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2236 task_rq_unlock(rq
, &flags
);
2239 * If it changed from the expected state, bail out now.
2241 if (unlikely(!ncsw
))
2245 * Was it really running after all now that we
2246 * checked with the proper locks actually held?
2248 * Oops. Go back and try again..
2250 if (unlikely(running
)) {
2256 * It's not enough that it's not actively running,
2257 * it must be off the runqueue _entirely_, and not
2260 * So if it was still runnable (but just not actively
2261 * running right now), it's preempted, and we should
2262 * yield - it could be a while.
2264 if (unlikely(on_rq
)) {
2265 schedule_timeout_uninterruptible(1);
2270 * Ahh, all good. It wasn't running, and it wasn't
2271 * runnable, which means that it will never become
2272 * running in the future either. We're all done!
2281 * kick_process - kick a running thread to enter/exit the kernel
2282 * @p: the to-be-kicked thread
2284 * Cause a process which is running on another CPU to enter
2285 * kernel-mode, without any delay. (to get signals handled.)
2287 * NOTE: this function doesnt have to take the runqueue lock,
2288 * because all it wants to ensure is that the remote task enters
2289 * the kernel. If the IPI races and the task has been migrated
2290 * to another CPU then no harm is done and the purpose has been
2293 void kick_process(struct task_struct
*p
)
2299 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2300 smp_send_reschedule(cpu
);
2303 EXPORT_SYMBOL_GPL(kick_process
);
2304 #endif /* CONFIG_SMP */
2307 * task_oncpu_function_call - call a function on the cpu on which a task runs
2308 * @p: the task to evaluate
2309 * @func: the function to be called
2310 * @info: the function call argument
2312 * Calls the function @func when the task is currently running. This might
2313 * be on the current CPU, which just calls the function directly
2315 void task_oncpu_function_call(struct task_struct
*p
,
2316 void (*func
) (void *info
), void *info
)
2323 smp_call_function_single(cpu
, func
, info
, 1);
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2339 * returns failure only if the task is already active.
2341 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2344 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2345 unsigned long flags
;
2346 struct rq
*rq
, *orig_rq
;
2348 if (!sched_feat(SYNC_WAKEUPS
))
2349 wake_flags
&= ~WF_SYNC
;
2351 this_cpu
= get_cpu();
2354 rq
= orig_rq
= task_rq_lock(p
, &flags
);
2355 update_rq_clock(rq
);
2356 if (!(p
->state
& state
))
2366 if (unlikely(task_running(rq
, p
)))
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
2373 * First fix up the nr_uninterruptible count:
2375 if (task_contributes_to_load(p
))
2376 rq
->nr_uninterruptible
--;
2377 p
->state
= TASK_WAKING
;
2378 task_rq_unlock(rq
, &flags
);
2380 cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2381 if (cpu
!= orig_cpu
)
2382 set_task_cpu(p
, cpu
);
2384 rq
= task_rq_lock(p
, &flags
);
2387 update_rq_clock(rq
);
2389 WARN_ON(p
->state
!= TASK_WAKING
);
2392 #ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq
, ttwu_count
);
2394 if (cpu
== this_cpu
)
2395 schedstat_inc(rq
, ttwu_local
);
2397 struct sched_domain
*sd
;
2398 for_each_domain(this_cpu
, sd
) {
2399 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2400 schedstat_inc(sd
, ttwu_wake_remote
);
2405 #endif /* CONFIG_SCHEDSTATS */
2408 #endif /* CONFIG_SMP */
2409 schedstat_inc(p
, se
.nr_wakeups
);
2410 if (wake_flags
& WF_SYNC
)
2411 schedstat_inc(p
, se
.nr_wakeups_sync
);
2412 if (orig_cpu
!= cpu
)
2413 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2414 if (cpu
== this_cpu
)
2415 schedstat_inc(p
, se
.nr_wakeups_local
);
2417 schedstat_inc(p
, se
.nr_wakeups_remote
);
2418 activate_task(rq
, p
, 1);
2422 * Only attribute actual wakeups done by this task.
2424 if (!in_interrupt()) {
2425 struct sched_entity
*se
= ¤t
->se
;
2426 u64 sample
= se
->sum_exec_runtime
;
2428 if (se
->last_wakeup
)
2429 sample
-= se
->last_wakeup
;
2431 sample
-= se
->start_runtime
;
2432 update_avg(&se
->avg_wakeup
, sample
);
2434 se
->last_wakeup
= se
->sum_exec_runtime
;
2438 trace_sched_wakeup(rq
, p
, success
);
2439 check_preempt_curr(rq
, p
, wake_flags
);
2441 p
->state
= TASK_RUNNING
;
2443 if (p
->sched_class
->task_wake_up
)
2444 p
->sched_class
->task_wake_up(rq
, p
);
2446 if (unlikely(rq
->idle_stamp
)) {
2447 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2448 u64 max
= 2*sysctl_sched_migration_cost
;
2453 update_avg(&rq
->avg_idle
, delta
);
2458 task_rq_unlock(rq
, &flags
);
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2475 int wake_up_process(struct task_struct
*p
)
2477 return try_to_wake_up(p
, TASK_ALL
, 0);
2479 EXPORT_SYMBOL(wake_up_process
);
2481 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2483 return try_to_wake_up(p
, state
, 0);
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2490 * __sched_fork() is basic setup used by init_idle() too:
2492 static void __sched_fork(struct task_struct
*p
)
2494 p
->se
.exec_start
= 0;
2495 p
->se
.sum_exec_runtime
= 0;
2496 p
->se
.prev_sum_exec_runtime
= 0;
2497 p
->se
.nr_migrations
= 0;
2498 p
->se
.last_wakeup
= 0;
2499 p
->se
.avg_overlap
= 0;
2500 p
->se
.start_runtime
= 0;
2501 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2502 p
->se
.avg_running
= 0;
2504 #ifdef CONFIG_SCHEDSTATS
2505 p
->se
.wait_start
= 0;
2507 p
->se
.wait_count
= 0;
2510 p
->se
.sleep_start
= 0;
2511 p
->se
.sleep_max
= 0;
2512 p
->se
.sum_sleep_runtime
= 0;
2514 p
->se
.block_start
= 0;
2515 p
->se
.block_max
= 0;
2517 p
->se
.slice_max
= 0;
2519 p
->se
.nr_migrations_cold
= 0;
2520 p
->se
.nr_failed_migrations_affine
= 0;
2521 p
->se
.nr_failed_migrations_running
= 0;
2522 p
->se
.nr_failed_migrations_hot
= 0;
2523 p
->se
.nr_forced_migrations
= 0;
2524 p
->se
.nr_forced2_migrations
= 0;
2526 p
->se
.nr_wakeups
= 0;
2527 p
->se
.nr_wakeups_sync
= 0;
2528 p
->se
.nr_wakeups_migrate
= 0;
2529 p
->se
.nr_wakeups_local
= 0;
2530 p
->se
.nr_wakeups_remote
= 0;
2531 p
->se
.nr_wakeups_affine
= 0;
2532 p
->se
.nr_wakeups_affine_attempts
= 0;
2533 p
->se
.nr_wakeups_passive
= 0;
2534 p
->se
.nr_wakeups_idle
= 0;
2538 INIT_LIST_HEAD(&p
->rt
.run_list
);
2540 INIT_LIST_HEAD(&p
->se
.group_node
);
2542 #ifdef CONFIG_PREEMPT_NOTIFIERS
2543 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2547 * We mark the process as running here, but have not actually
2548 * inserted it onto the runqueue yet. This guarantees that
2549 * nobody will actually run it, and a signal or other external
2550 * event cannot wake it up and insert it on the runqueue either.
2552 p
->state
= TASK_RUNNING
;
2556 * fork()/clone()-time setup:
2558 void sched_fork(struct task_struct
*p
, int clone_flags
)
2560 int cpu
= get_cpu();
2565 * Revert to default priority/policy on fork if requested.
2567 if (unlikely(p
->sched_reset_on_fork
)) {
2568 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2569 p
->policy
= SCHED_NORMAL
;
2570 p
->normal_prio
= p
->static_prio
;
2573 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2574 p
->static_prio
= NICE_TO_PRIO(0);
2575 p
->normal_prio
= p
->static_prio
;
2580 * We don't need the reset flag anymore after the fork. It has
2581 * fulfilled its duty:
2583 p
->sched_reset_on_fork
= 0;
2587 * Make sure we do not leak PI boosting priority to the child.
2589 p
->prio
= current
->normal_prio
;
2591 if (!rt_prio(p
->prio
))
2592 p
->sched_class
= &fair_sched_class
;
2595 cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_FORK
, 0);
2597 set_task_cpu(p
, cpu
);
2599 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2600 if (likely(sched_info_on()))
2601 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2603 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2606 #ifdef CONFIG_PREEMPT
2607 /* Want to start with kernel preemption disabled. */
2608 task_thread_info(p
)->preempt_count
= 1;
2610 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2616 * wake_up_new_task - wake up a newly created task for the first time.
2618 * This function will do some initial scheduler statistics housekeeping
2619 * that must be done for every newly created context, then puts the task
2620 * on the runqueue and wakes it.
2622 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2624 unsigned long flags
;
2627 rq
= task_rq_lock(p
, &flags
);
2628 BUG_ON(p
->state
!= TASK_RUNNING
);
2629 update_rq_clock(rq
);
2631 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2632 activate_task(rq
, p
, 0);
2635 * Let the scheduling class do new task startup
2636 * management (if any):
2638 p
->sched_class
->task_new(rq
, p
);
2641 trace_sched_wakeup_new(rq
, p
, 1);
2642 check_preempt_curr(rq
, p
, WF_FORK
);
2644 if (p
->sched_class
->task_wake_up
)
2645 p
->sched_class
->task_wake_up(rq
, p
);
2647 task_rq_unlock(rq
, &flags
);
2650 #ifdef CONFIG_PREEMPT_NOTIFIERS
2653 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2654 * @notifier: notifier struct to register
2656 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2658 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2660 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2663 * preempt_notifier_unregister - no longer interested in preemption notifications
2664 * @notifier: notifier struct to unregister
2666 * This is safe to call from within a preemption notifier.
2668 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2670 hlist_del(¬ifier
->link
);
2672 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2674 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2676 struct preempt_notifier
*notifier
;
2677 struct hlist_node
*node
;
2679 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2680 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2684 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2685 struct task_struct
*next
)
2687 struct preempt_notifier
*notifier
;
2688 struct hlist_node
*node
;
2690 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2691 notifier
->ops
->sched_out(notifier
, next
);
2694 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2696 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2701 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2702 struct task_struct
*next
)
2706 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2709 * prepare_task_switch - prepare to switch tasks
2710 * @rq: the runqueue preparing to switch
2711 * @prev: the current task that is being switched out
2712 * @next: the task we are going to switch to.
2714 * This is called with the rq lock held and interrupts off. It must
2715 * be paired with a subsequent finish_task_switch after the context
2718 * prepare_task_switch sets up locking and calls architecture specific
2722 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2723 struct task_struct
*next
)
2725 fire_sched_out_preempt_notifiers(prev
, next
);
2726 prepare_lock_switch(rq
, next
);
2727 prepare_arch_switch(next
);
2731 * finish_task_switch - clean up after a task-switch
2732 * @rq: runqueue associated with task-switch
2733 * @prev: the thread we just switched away from.
2735 * finish_task_switch must be called after the context switch, paired
2736 * with a prepare_task_switch call before the context switch.
2737 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2738 * and do any other architecture-specific cleanup actions.
2740 * Note that we may have delayed dropping an mm in context_switch(). If
2741 * so, we finish that here outside of the runqueue lock. (Doing it
2742 * with the lock held can cause deadlocks; see schedule() for
2745 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2746 __releases(rq
->lock
)
2748 struct mm_struct
*mm
= rq
->prev_mm
;
2754 * A task struct has one reference for the use as "current".
2755 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2756 * schedule one last time. The schedule call will never return, and
2757 * the scheduled task must drop that reference.
2758 * The test for TASK_DEAD must occur while the runqueue locks are
2759 * still held, otherwise prev could be scheduled on another cpu, die
2760 * there before we look at prev->state, and then the reference would
2762 * Manfred Spraul <manfred@colorfullife.com>
2764 prev_state
= prev
->state
;
2765 finish_arch_switch(prev
);
2766 perf_event_task_sched_in(current
, cpu_of(rq
));
2767 finish_lock_switch(rq
, prev
);
2769 fire_sched_in_preempt_notifiers(current
);
2772 if (unlikely(prev_state
== TASK_DEAD
)) {
2774 * Remove function-return probe instances associated with this
2775 * task and put them back on the free list.
2777 kprobe_flush_task(prev
);
2778 put_task_struct(prev
);
2784 /* assumes rq->lock is held */
2785 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2787 if (prev
->sched_class
->pre_schedule
)
2788 prev
->sched_class
->pre_schedule(rq
, prev
);
2791 /* rq->lock is NOT held, but preemption is disabled */
2792 static inline void post_schedule(struct rq
*rq
)
2794 if (rq
->post_schedule
) {
2795 unsigned long flags
;
2797 spin_lock_irqsave(&rq
->lock
, flags
);
2798 if (rq
->curr
->sched_class
->post_schedule
)
2799 rq
->curr
->sched_class
->post_schedule(rq
);
2800 spin_unlock_irqrestore(&rq
->lock
, flags
);
2802 rq
->post_schedule
= 0;
2808 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2812 static inline void post_schedule(struct rq
*rq
)
2819 * schedule_tail - first thing a freshly forked thread must call.
2820 * @prev: the thread we just switched away from.
2822 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2823 __releases(rq
->lock
)
2825 struct rq
*rq
= this_rq();
2827 finish_task_switch(rq
, prev
);
2830 * FIXME: do we need to worry about rq being invalidated by the
2835 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2836 /* In this case, finish_task_switch does not reenable preemption */
2839 if (current
->set_child_tid
)
2840 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2844 * context_switch - switch to the new MM and the new
2845 * thread's register state.
2848 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2849 struct task_struct
*next
)
2851 struct mm_struct
*mm
, *oldmm
;
2853 prepare_task_switch(rq
, prev
, next
);
2854 trace_sched_switch(rq
, prev
, next
);
2856 oldmm
= prev
->active_mm
;
2858 * For paravirt, this is coupled with an exit in switch_to to
2859 * combine the page table reload and the switch backend into
2862 arch_start_context_switch(prev
);
2864 if (unlikely(!mm
)) {
2865 next
->active_mm
= oldmm
;
2866 atomic_inc(&oldmm
->mm_count
);
2867 enter_lazy_tlb(oldmm
, next
);
2869 switch_mm(oldmm
, mm
, next
);
2871 if (unlikely(!prev
->mm
)) {
2872 prev
->active_mm
= NULL
;
2873 rq
->prev_mm
= oldmm
;
2876 * Since the runqueue lock will be released by the next
2877 * task (which is an invalid locking op but in the case
2878 * of the scheduler it's an obvious special-case), so we
2879 * do an early lockdep release here:
2881 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2882 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2885 /* Here we just switch the register state and the stack. */
2886 switch_to(prev
, next
, prev
);
2890 * this_rq must be evaluated again because prev may have moved
2891 * CPUs since it called schedule(), thus the 'rq' on its stack
2892 * frame will be invalid.
2894 finish_task_switch(this_rq(), prev
);
2898 * nr_running, nr_uninterruptible and nr_context_switches:
2900 * externally visible scheduler statistics: current number of runnable
2901 * threads, current number of uninterruptible-sleeping threads, total
2902 * number of context switches performed since bootup.
2904 unsigned long nr_running(void)
2906 unsigned long i
, sum
= 0;
2908 for_each_online_cpu(i
)
2909 sum
+= cpu_rq(i
)->nr_running
;
2913 EXPORT_SYMBOL_GPL(nr_running
);
2915 unsigned long nr_uninterruptible(void)
2917 unsigned long i
, sum
= 0;
2919 for_each_possible_cpu(i
)
2920 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2923 * Since we read the counters lockless, it might be slightly
2924 * inaccurate. Do not allow it to go below zero though:
2926 if (unlikely((long)sum
< 0))
2932 unsigned long long nr_context_switches(void)
2935 unsigned long long sum
= 0;
2937 for_each_possible_cpu(i
)
2938 sum
+= cpu_rq(i
)->nr_switches
;
2943 unsigned long nr_iowait(void)
2945 unsigned long i
, sum
= 0;
2947 for_each_possible_cpu(i
)
2948 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2953 unsigned long nr_iowait_cpu(void)
2955 struct rq
*this = this_rq();
2956 return atomic_read(&this->nr_iowait
);
2959 unsigned long this_cpu_load(void)
2961 struct rq
*this = this_rq();
2962 return this->cpu_load
[0];
2966 /* Variables and functions for calc_load */
2967 static atomic_long_t calc_load_tasks
;
2968 static unsigned long calc_load_update
;
2969 unsigned long avenrun
[3];
2970 EXPORT_SYMBOL(avenrun
);
2973 * get_avenrun - get the load average array
2974 * @loads: pointer to dest load array
2975 * @offset: offset to add
2976 * @shift: shift count to shift the result left
2978 * These values are estimates at best, so no need for locking.
2980 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2982 loads
[0] = (avenrun
[0] + offset
) << shift
;
2983 loads
[1] = (avenrun
[1] + offset
) << shift
;
2984 loads
[2] = (avenrun
[2] + offset
) << shift
;
2987 static unsigned long
2988 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2991 load
+= active
* (FIXED_1
- exp
);
2992 return load
>> FSHIFT
;
2996 * calc_load - update the avenrun load estimates 10 ticks after the
2997 * CPUs have updated calc_load_tasks.
2999 void calc_global_load(void)
3001 unsigned long upd
= calc_load_update
+ 10;
3004 if (time_before(jiffies
, upd
))
3007 active
= atomic_long_read(&calc_load_tasks
);
3008 active
= active
> 0 ? active
* FIXED_1
: 0;
3010 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3011 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3012 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3014 calc_load_update
+= LOAD_FREQ
;
3018 * Either called from update_cpu_load() or from a cpu going idle
3020 static void calc_load_account_active(struct rq
*this_rq
)
3022 long nr_active
, delta
;
3024 nr_active
= this_rq
->nr_running
;
3025 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3027 if (nr_active
!= this_rq
->calc_load_active
) {
3028 delta
= nr_active
- this_rq
->calc_load_active
;
3029 this_rq
->calc_load_active
= nr_active
;
3030 atomic_long_add(delta
, &calc_load_tasks
);
3035 * Externally visible per-cpu scheduler statistics:
3036 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3038 u64
cpu_nr_migrations(int cpu
)
3040 return cpu_rq(cpu
)->nr_migrations_in
;
3044 * Update rq->cpu_load[] statistics. This function is usually called every
3045 * scheduler tick (TICK_NSEC).
3047 static void update_cpu_load(struct rq
*this_rq
)
3049 unsigned long this_load
= this_rq
->load
.weight
;
3052 this_rq
->nr_load_updates
++;
3054 /* Update our load: */
3055 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3056 unsigned long old_load
, new_load
;
3058 /* scale is effectively 1 << i now, and >> i divides by scale */
3060 old_load
= this_rq
->cpu_load
[i
];
3061 new_load
= this_load
;
3063 * Round up the averaging division if load is increasing. This
3064 * prevents us from getting stuck on 9 if the load is 10, for
3067 if (new_load
> old_load
)
3068 new_load
+= scale
-1;
3069 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3072 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3073 this_rq
->calc_load_update
+= LOAD_FREQ
;
3074 calc_load_account_active(this_rq
);
3081 * double_rq_lock - safely lock two runqueues
3083 * Note this does not disable interrupts like task_rq_lock,
3084 * you need to do so manually before calling.
3086 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3087 __acquires(rq1
->lock
)
3088 __acquires(rq2
->lock
)
3090 BUG_ON(!irqs_disabled());
3092 spin_lock(&rq1
->lock
);
3093 __acquire(rq2
->lock
); /* Fake it out ;) */
3096 spin_lock(&rq1
->lock
);
3097 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3099 spin_lock(&rq2
->lock
);
3100 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3103 update_rq_clock(rq1
);
3104 update_rq_clock(rq2
);
3108 * double_rq_unlock - safely unlock two runqueues
3110 * Note this does not restore interrupts like task_rq_unlock,
3111 * you need to do so manually after calling.
3113 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3114 __releases(rq1
->lock
)
3115 __releases(rq2
->lock
)
3117 spin_unlock(&rq1
->lock
);
3119 spin_unlock(&rq2
->lock
);
3121 __release(rq2
->lock
);
3125 * If dest_cpu is allowed for this process, migrate the task to it.
3126 * This is accomplished by forcing the cpu_allowed mask to only
3127 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3128 * the cpu_allowed mask is restored.
3130 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3132 struct migration_req req
;
3133 unsigned long flags
;
3136 rq
= task_rq_lock(p
, &flags
);
3137 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3138 || unlikely(!cpu_active(dest_cpu
)))
3141 /* force the process onto the specified CPU */
3142 if (migrate_task(p
, dest_cpu
, &req
)) {
3143 /* Need to wait for migration thread (might exit: take ref). */
3144 struct task_struct
*mt
= rq
->migration_thread
;
3146 get_task_struct(mt
);
3147 task_rq_unlock(rq
, &flags
);
3148 wake_up_process(mt
);
3149 put_task_struct(mt
);
3150 wait_for_completion(&req
.done
);
3155 task_rq_unlock(rq
, &flags
);
3159 * sched_exec - execve() is a valuable balancing opportunity, because at
3160 * this point the task has the smallest effective memory and cache footprint.
3162 void sched_exec(void)
3164 int new_cpu
, this_cpu
= get_cpu();
3165 new_cpu
= current
->sched_class
->select_task_rq(current
, SD_BALANCE_EXEC
, 0);
3167 if (new_cpu
!= this_cpu
)
3168 sched_migrate_task(current
, new_cpu
);
3172 * pull_task - move a task from a remote runqueue to the local runqueue.
3173 * Both runqueues must be locked.
3175 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3176 struct rq
*this_rq
, int this_cpu
)
3178 deactivate_task(src_rq
, p
, 0);
3179 set_task_cpu(p
, this_cpu
);
3180 activate_task(this_rq
, p
, 0);
3181 check_preempt_curr(this_rq
, p
, 0);
3185 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3188 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3189 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3192 int tsk_cache_hot
= 0;
3194 * We do not migrate tasks that are:
3195 * 1) running (obviously), or
3196 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3197 * 3) are cache-hot on their current CPU.
3199 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3200 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3205 if (task_running(rq
, p
)) {
3206 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3211 * Aggressive migration if:
3212 * 1) task is cache cold, or
3213 * 2) too many balance attempts have failed.
3216 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3217 if (!tsk_cache_hot
||
3218 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3219 #ifdef CONFIG_SCHEDSTATS
3220 if (tsk_cache_hot
) {
3221 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3222 schedstat_inc(p
, se
.nr_forced_migrations
);
3228 if (tsk_cache_hot
) {
3229 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3235 static unsigned long
3236 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3237 unsigned long max_load_move
, struct sched_domain
*sd
,
3238 enum cpu_idle_type idle
, int *all_pinned
,
3239 int *this_best_prio
, struct rq_iterator
*iterator
)
3241 int loops
= 0, pulled
= 0, pinned
= 0;
3242 struct task_struct
*p
;
3243 long rem_load_move
= max_load_move
;
3245 if (max_load_move
== 0)
3251 * Start the load-balancing iterator:
3253 p
= iterator
->start(iterator
->arg
);
3255 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3258 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3259 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3260 p
= iterator
->next(iterator
->arg
);
3264 pull_task(busiest
, p
, this_rq
, this_cpu
);
3266 rem_load_move
-= p
->se
.load
.weight
;
3268 #ifdef CONFIG_PREEMPT
3270 * NEWIDLE balancing is a source of latency, so preemptible kernels
3271 * will stop after the first task is pulled to minimize the critical
3274 if (idle
== CPU_NEWLY_IDLE
)
3279 * We only want to steal up to the prescribed amount of weighted load.
3281 if (rem_load_move
> 0) {
3282 if (p
->prio
< *this_best_prio
)
3283 *this_best_prio
= p
->prio
;
3284 p
= iterator
->next(iterator
->arg
);
3289 * Right now, this is one of only two places pull_task() is called,
3290 * so we can safely collect pull_task() stats here rather than
3291 * inside pull_task().
3293 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3296 *all_pinned
= pinned
;
3298 return max_load_move
- rem_load_move
;
3302 * move_tasks tries to move up to max_load_move weighted load from busiest to
3303 * this_rq, as part of a balancing operation within domain "sd".
3304 * Returns 1 if successful and 0 otherwise.
3306 * Called with both runqueues locked.
3308 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3309 unsigned long max_load_move
,
3310 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3313 const struct sched_class
*class = sched_class_highest
;
3314 unsigned long total_load_moved
= 0;
3315 int this_best_prio
= this_rq
->curr
->prio
;
3319 class->load_balance(this_rq
, this_cpu
, busiest
,
3320 max_load_move
- total_load_moved
,
3321 sd
, idle
, all_pinned
, &this_best_prio
);
3322 class = class->next
;
3324 #ifdef CONFIG_PREEMPT
3326 * NEWIDLE balancing is a source of latency, so preemptible
3327 * kernels will stop after the first task is pulled to minimize
3328 * the critical section.
3330 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3333 } while (class && max_load_move
> total_load_moved
);
3335 return total_load_moved
> 0;
3339 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3340 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3341 struct rq_iterator
*iterator
)
3343 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3347 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3348 pull_task(busiest
, p
, this_rq
, this_cpu
);
3350 * Right now, this is only the second place pull_task()
3351 * is called, so we can safely collect pull_task()
3352 * stats here rather than inside pull_task().
3354 schedstat_inc(sd
, lb_gained
[idle
]);
3358 p
= iterator
->next(iterator
->arg
);
3365 * move_one_task tries to move exactly one task from busiest to this_rq, as
3366 * part of active balancing operations within "domain".
3367 * Returns 1 if successful and 0 otherwise.
3369 * Called with both runqueues locked.
3371 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3372 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3374 const struct sched_class
*class;
3376 for_each_class(class) {
3377 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3383 /********** Helpers for find_busiest_group ************************/
3385 * sd_lb_stats - Structure to store the statistics of a sched_domain
3386 * during load balancing.
3388 struct sd_lb_stats
{
3389 struct sched_group
*busiest
; /* Busiest group in this sd */
3390 struct sched_group
*this; /* Local group in this sd */
3391 unsigned long total_load
; /* Total load of all groups in sd */
3392 unsigned long total_pwr
; /* Total power of all groups in sd */
3393 unsigned long avg_load
; /* Average load across all groups in sd */
3395 /** Statistics of this group */
3396 unsigned long this_load
;
3397 unsigned long this_load_per_task
;
3398 unsigned long this_nr_running
;
3400 /* Statistics of the busiest group */
3401 unsigned long max_load
;
3402 unsigned long busiest_load_per_task
;
3403 unsigned long busiest_nr_running
;
3404 unsigned long busiest_group_capacity
;
3406 int group_imb
; /* Is there imbalance in this sd */
3407 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3408 int power_savings_balance
; /* Is powersave balance needed for this sd */
3409 struct sched_group
*group_min
; /* Least loaded group in sd */
3410 struct sched_group
*group_leader
; /* Group which relieves group_min */
3411 unsigned long min_load_per_task
; /* load_per_task in group_min */
3412 unsigned long leader_nr_running
; /* Nr running of group_leader */
3413 unsigned long min_nr_running
; /* Nr running of group_min */
3418 * sg_lb_stats - stats of a sched_group required for load_balancing
3420 struct sg_lb_stats
{
3421 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3422 unsigned long group_load
; /* Total load over the CPUs of the group */
3423 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3424 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3425 unsigned long group_capacity
;
3426 int group_imb
; /* Is there an imbalance in the group ? */
3430 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3431 * @group: The group whose first cpu is to be returned.
3433 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3435 return cpumask_first(sched_group_cpus(group
));
3439 * get_sd_load_idx - Obtain the load index for a given sched domain.
3440 * @sd: The sched_domain whose load_idx is to be obtained.
3441 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3443 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3444 enum cpu_idle_type idle
)
3450 load_idx
= sd
->busy_idx
;
3453 case CPU_NEWLY_IDLE
:
3454 load_idx
= sd
->newidle_idx
;
3457 load_idx
= sd
->idle_idx
;
3465 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3467 * init_sd_power_savings_stats - Initialize power savings statistics for
3468 * the given sched_domain, during load balancing.
3470 * @sd: Sched domain whose power-savings statistics are to be initialized.
3471 * @sds: Variable containing the statistics for sd.
3472 * @idle: Idle status of the CPU at which we're performing load-balancing.
3474 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3475 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3478 * Busy processors will not participate in power savings
3481 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3482 sds
->power_savings_balance
= 0;
3484 sds
->power_savings_balance
= 1;
3485 sds
->min_nr_running
= ULONG_MAX
;
3486 sds
->leader_nr_running
= 0;
3491 * update_sd_power_savings_stats - Update the power saving stats for a
3492 * sched_domain while performing load balancing.
3494 * @group: sched_group belonging to the sched_domain under consideration.
3495 * @sds: Variable containing the statistics of the sched_domain
3496 * @local_group: Does group contain the CPU for which we're performing
3498 * @sgs: Variable containing the statistics of the group.
3500 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3501 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3504 if (!sds
->power_savings_balance
)
3508 * If the local group is idle or completely loaded
3509 * no need to do power savings balance at this domain
3511 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3512 !sds
->this_nr_running
))
3513 sds
->power_savings_balance
= 0;
3516 * If a group is already running at full capacity or idle,
3517 * don't include that group in power savings calculations
3519 if (!sds
->power_savings_balance
||
3520 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3521 !sgs
->sum_nr_running
)
3525 * Calculate the group which has the least non-idle load.
3526 * This is the group from where we need to pick up the load
3529 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3530 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3531 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3532 sds
->group_min
= group
;
3533 sds
->min_nr_running
= sgs
->sum_nr_running
;
3534 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3535 sgs
->sum_nr_running
;
3539 * Calculate the group which is almost near its
3540 * capacity but still has some space to pick up some load
3541 * from other group and save more power
3543 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3546 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3547 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3548 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3549 sds
->group_leader
= group
;
3550 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3555 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3556 * @sds: Variable containing the statistics of the sched_domain
3557 * under consideration.
3558 * @this_cpu: Cpu at which we're currently performing load-balancing.
3559 * @imbalance: Variable to store the imbalance.
3562 * Check if we have potential to perform some power-savings balance.
3563 * If yes, set the busiest group to be the least loaded group in the
3564 * sched_domain, so that it's CPUs can be put to idle.
3566 * Returns 1 if there is potential to perform power-savings balance.
3569 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3570 int this_cpu
, unsigned long *imbalance
)
3572 if (!sds
->power_savings_balance
)
3575 if (sds
->this != sds
->group_leader
||
3576 sds
->group_leader
== sds
->group_min
)
3579 *imbalance
= sds
->min_load_per_task
;
3580 sds
->busiest
= sds
->group_min
;
3585 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3586 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3587 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3592 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3593 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3598 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3599 int this_cpu
, unsigned long *imbalance
)
3603 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3606 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3608 return SCHED_LOAD_SCALE
;
3611 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3613 return default_scale_freq_power(sd
, cpu
);
3616 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3618 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3619 unsigned long smt_gain
= sd
->smt_gain
;
3626 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3628 return default_scale_smt_power(sd
, cpu
);
3631 unsigned long scale_rt_power(int cpu
)
3633 struct rq
*rq
= cpu_rq(cpu
);
3634 u64 total
, available
;
3636 sched_avg_update(rq
);
3638 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3639 available
= total
- rq
->rt_avg
;
3641 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
3642 total
= SCHED_LOAD_SCALE
;
3644 total
>>= SCHED_LOAD_SHIFT
;
3646 return div_u64(available
, total
);
3649 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3651 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3652 unsigned long power
= SCHED_LOAD_SCALE
;
3653 struct sched_group
*sdg
= sd
->groups
;
3655 if (sched_feat(ARCH_POWER
))
3656 power
*= arch_scale_freq_power(sd
, cpu
);
3658 power
*= default_scale_freq_power(sd
, cpu
);
3660 power
>>= SCHED_LOAD_SHIFT
;
3662 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3663 if (sched_feat(ARCH_POWER
))
3664 power
*= arch_scale_smt_power(sd
, cpu
);
3666 power
*= default_scale_smt_power(sd
, cpu
);
3668 power
>>= SCHED_LOAD_SHIFT
;
3671 power
*= scale_rt_power(cpu
);
3672 power
>>= SCHED_LOAD_SHIFT
;
3677 sdg
->cpu_power
= power
;
3680 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3682 struct sched_domain
*child
= sd
->child
;
3683 struct sched_group
*group
, *sdg
= sd
->groups
;
3684 unsigned long power
;
3687 update_cpu_power(sd
, cpu
);
3693 group
= child
->groups
;
3695 power
+= group
->cpu_power
;
3696 group
= group
->next
;
3697 } while (group
!= child
->groups
);
3699 sdg
->cpu_power
= power
;
3703 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3704 * @sd: The sched_domain whose statistics are to be updated.
3705 * @group: sched_group whose statistics are to be updated.
3706 * @this_cpu: Cpu for which load balance is currently performed.
3707 * @idle: Idle status of this_cpu
3708 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3709 * @sd_idle: Idle status of the sched_domain containing group.
3710 * @local_group: Does group contain this_cpu.
3711 * @cpus: Set of cpus considered for load balancing.
3712 * @balance: Should we balance.
3713 * @sgs: variable to hold the statistics for this group.
3715 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3716 struct sched_group
*group
, int this_cpu
,
3717 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3718 int local_group
, const struct cpumask
*cpus
,
3719 int *balance
, struct sg_lb_stats
*sgs
)
3721 unsigned long load
, max_cpu_load
, min_cpu_load
;
3723 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3724 unsigned long avg_load_per_task
= 0;
3727 balance_cpu
= group_first_cpu(group
);
3728 if (balance_cpu
== this_cpu
)
3729 update_group_power(sd
, this_cpu
);
3732 /* Tally up the load of all CPUs in the group */
3734 min_cpu_load
= ~0UL;
3736 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3737 struct rq
*rq
= cpu_rq(i
);
3739 if (*sd_idle
&& rq
->nr_running
)
3742 /* Bias balancing toward cpus of our domain */
3744 if (idle_cpu(i
) && !first_idle_cpu
) {
3749 load
= target_load(i
, load_idx
);
3751 load
= source_load(i
, load_idx
);
3752 if (load
> max_cpu_load
)
3753 max_cpu_load
= load
;
3754 if (min_cpu_load
> load
)
3755 min_cpu_load
= load
;
3758 sgs
->group_load
+= load
;
3759 sgs
->sum_nr_running
+= rq
->nr_running
;
3760 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3765 * First idle cpu or the first cpu(busiest) in this sched group
3766 * is eligible for doing load balancing at this and above
3767 * domains. In the newly idle case, we will allow all the cpu's
3768 * to do the newly idle load balance.
3770 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3771 balance_cpu
!= this_cpu
&& balance
) {
3776 /* Adjust by relative CPU power of the group */
3777 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
3780 * Consider the group unbalanced when the imbalance is larger
3781 * than the average weight of two tasks.
3783 * APZ: with cgroup the avg task weight can vary wildly and
3784 * might not be a suitable number - should we keep a
3785 * normalized nr_running number somewhere that negates
3788 if (sgs
->sum_nr_running
)
3789 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
3791 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3794 sgs
->group_capacity
=
3795 DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
3799 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3800 * @sd: sched_domain whose statistics are to be updated.
3801 * @this_cpu: Cpu for which load balance is currently performed.
3802 * @idle: Idle status of this_cpu
3803 * @sd_idle: Idle status of the sched_domain containing group.
3804 * @cpus: Set of cpus considered for load balancing.
3805 * @balance: Should we balance.
3806 * @sds: variable to hold the statistics for this sched_domain.
3808 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3809 enum cpu_idle_type idle
, int *sd_idle
,
3810 const struct cpumask
*cpus
, int *balance
,
3811 struct sd_lb_stats
*sds
)
3813 struct sched_domain
*child
= sd
->child
;
3814 struct sched_group
*group
= sd
->groups
;
3815 struct sg_lb_stats sgs
;
3816 int load_idx
, prefer_sibling
= 0;
3818 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3821 init_sd_power_savings_stats(sd
, sds
, idle
);
3822 load_idx
= get_sd_load_idx(sd
, idle
);
3827 local_group
= cpumask_test_cpu(this_cpu
,
3828 sched_group_cpus(group
));
3829 memset(&sgs
, 0, sizeof(sgs
));
3830 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
3831 local_group
, cpus
, balance
, &sgs
);
3833 if (local_group
&& balance
&& !(*balance
))
3836 sds
->total_load
+= sgs
.group_load
;
3837 sds
->total_pwr
+= group
->cpu_power
;
3840 * In case the child domain prefers tasks go to siblings
3841 * first, lower the group capacity to one so that we'll try
3842 * and move all the excess tasks away.
3845 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3848 sds
->this_load
= sgs
.avg_load
;
3850 sds
->this_nr_running
= sgs
.sum_nr_running
;
3851 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3852 } else if (sgs
.avg_load
> sds
->max_load
&&
3853 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3855 sds
->max_load
= sgs
.avg_load
;
3856 sds
->busiest
= group
;
3857 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3858 sds
->busiest_group_capacity
= sgs
.group_capacity
;
3859 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3860 sds
->group_imb
= sgs
.group_imb
;
3863 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3864 group
= group
->next
;
3865 } while (group
!= sd
->groups
);
3869 * fix_small_imbalance - Calculate the minor imbalance that exists
3870 * amongst the groups of a sched_domain, during
3872 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3873 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3874 * @imbalance: Variable to store the imbalance.
3876 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3877 int this_cpu
, unsigned long *imbalance
)
3879 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3880 unsigned int imbn
= 2;
3881 unsigned long scaled_busy_load_per_task
;
3883 if (sds
->this_nr_running
) {
3884 sds
->this_load_per_task
/= sds
->this_nr_running
;
3885 if (sds
->busiest_load_per_task
>
3886 sds
->this_load_per_task
)
3889 sds
->this_load_per_task
=
3890 cpu_avg_load_per_task(this_cpu
);
3892 scaled_busy_load_per_task
= sds
->busiest_load_per_task
3894 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
3896 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
3897 (scaled_busy_load_per_task
* imbn
)) {
3898 *imbalance
= sds
->busiest_load_per_task
;
3903 * OK, we don't have enough imbalance to justify moving tasks,
3904 * however we may be able to increase total CPU power used by
3908 pwr_now
+= sds
->busiest
->cpu_power
*
3909 min(sds
->busiest_load_per_task
, sds
->max_load
);
3910 pwr_now
+= sds
->this->cpu_power
*
3911 min(sds
->this_load_per_task
, sds
->this_load
);
3912 pwr_now
/= SCHED_LOAD_SCALE
;
3914 /* Amount of load we'd subtract */
3915 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3916 sds
->busiest
->cpu_power
;
3917 if (sds
->max_load
> tmp
)
3918 pwr_move
+= sds
->busiest
->cpu_power
*
3919 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3921 /* Amount of load we'd add */
3922 if (sds
->max_load
* sds
->busiest
->cpu_power
<
3923 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3924 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
3925 sds
->this->cpu_power
;
3927 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3928 sds
->this->cpu_power
;
3929 pwr_move
+= sds
->this->cpu_power
*
3930 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3931 pwr_move
/= SCHED_LOAD_SCALE
;
3933 /* Move if we gain throughput */
3934 if (pwr_move
> pwr_now
)
3935 *imbalance
= sds
->busiest_load_per_task
;
3939 * calculate_imbalance - Calculate the amount of imbalance present within the
3940 * groups of a given sched_domain during load balance.
3941 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3942 * @this_cpu: Cpu for which currently load balance is being performed.
3943 * @imbalance: The variable to store the imbalance.
3945 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3946 unsigned long *imbalance
)
3948 unsigned long max_pull
, load_above_capacity
= ~0UL;
3950 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
3951 if (sds
->group_imb
) {
3952 sds
->busiest_load_per_task
=
3953 min(sds
->busiest_load_per_task
, sds
->avg_load
);
3957 * In the presence of smp nice balancing, certain scenarios can have
3958 * max load less than avg load(as we skip the groups at or below
3959 * its cpu_power, while calculating max_load..)
3961 if (sds
->max_load
< sds
->avg_load
) {
3963 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3966 if (!sds
->group_imb
) {
3968 * Don't want to pull so many tasks that a group would go idle.
3970 load_above_capacity
= (sds
->busiest_nr_running
-
3971 sds
->busiest_group_capacity
);
3973 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
3975 load_above_capacity
/= sds
->busiest
->cpu_power
;
3979 * We're trying to get all the cpus to the average_load, so we don't
3980 * want to push ourselves above the average load, nor do we wish to
3981 * reduce the max loaded cpu below the average load. At the same time,
3982 * we also don't want to reduce the group load below the group capacity
3983 * (so that we can implement power-savings policies etc). Thus we look
3984 * for the minimum possible imbalance.
3985 * Be careful of negative numbers as they'll appear as very large values
3986 * with unsigned longs.
3988 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
3990 /* How much load to actually move to equalise the imbalance */
3991 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
3992 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
3996 * if *imbalance is less than the average load per runnable task
3997 * there is no gaurantee that any tasks will be moved so we'll have
3998 * a think about bumping its value to force at least one task to be
4001 if (*imbalance
< sds
->busiest_load_per_task
)
4002 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
4005 /******* find_busiest_group() helpers end here *********************/
4008 * find_busiest_group - Returns the busiest group within the sched_domain
4009 * if there is an imbalance. If there isn't an imbalance, and
4010 * the user has opted for power-savings, it returns a group whose
4011 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4012 * such a group exists.
4014 * Also calculates the amount of weighted load which should be moved
4015 * to restore balance.
4017 * @sd: The sched_domain whose busiest group is to be returned.
4018 * @this_cpu: The cpu for which load balancing is currently being performed.
4019 * @imbalance: Variable which stores amount of weighted load which should
4020 * be moved to restore balance/put a group to idle.
4021 * @idle: The idle status of this_cpu.
4022 * @sd_idle: The idleness of sd
4023 * @cpus: The set of CPUs under consideration for load-balancing.
4024 * @balance: Pointer to a variable indicating if this_cpu
4025 * is the appropriate cpu to perform load balancing at this_level.
4027 * Returns: - the busiest group if imbalance exists.
4028 * - If no imbalance and user has opted for power-savings balance,
4029 * return the least loaded group whose CPUs can be
4030 * put to idle by rebalancing its tasks onto our group.
4032 static struct sched_group
*
4033 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
4034 unsigned long *imbalance
, enum cpu_idle_type idle
,
4035 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
4037 struct sd_lb_stats sds
;
4039 memset(&sds
, 0, sizeof(sds
));
4042 * Compute the various statistics relavent for load balancing at
4045 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
4048 /* Cases where imbalance does not exist from POV of this_cpu */
4049 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4051 * 2) There is no busy sibling group to pull from.
4052 * 3) This group is the busiest group.
4053 * 4) This group is more busy than the avg busieness at this
4055 * 5) The imbalance is within the specified limit.
4057 if (balance
&& !(*balance
))
4060 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
4063 if (sds
.this_load
>= sds
.max_load
)
4066 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
4068 if (sds
.this_load
>= sds
.avg_load
)
4071 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
4074 /* Looks like there is an imbalance. Compute it */
4075 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4080 * There is no obvious imbalance. But check if we can do some balancing
4083 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4091 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4094 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
4095 unsigned long imbalance
, const struct cpumask
*cpus
)
4097 struct rq
*busiest
= NULL
, *rq
;
4098 unsigned long max_load
= 0;
4101 for_each_cpu(i
, sched_group_cpus(group
)) {
4102 unsigned long power
= power_of(i
);
4103 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
4106 if (!cpumask_test_cpu(i
, cpus
))
4110 wl
= weighted_cpuload(i
);
4113 * When comparing with imbalance, use weighted_cpuload()
4114 * which is not scaled with the cpu power.
4116 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4120 * For the load comparisons with the other cpu's, consider
4121 * the weighted_cpuload() scaled with the cpu power, so that
4122 * the load can be moved away from the cpu that is potentially
4123 * running at a lower capacity.
4125 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
4127 if (wl
> max_load
) {
4137 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4138 * so long as it is large enough.
4140 #define MAX_PINNED_INTERVAL 512
4142 /* Working cpumask for load_balance and load_balance_newidle. */
4143 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4146 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4147 * tasks if there is an imbalance.
4149 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4150 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4153 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4154 struct sched_group
*group
;
4155 unsigned long imbalance
;
4157 unsigned long flags
;
4158 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4160 cpumask_copy(cpus
, cpu_active_mask
);
4163 * When power savings policy is enabled for the parent domain, idle
4164 * sibling can pick up load irrespective of busy siblings. In this case,
4165 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4166 * portraying it as CPU_NOT_IDLE.
4168 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4169 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4172 schedstat_inc(sd
, lb_count
[idle
]);
4176 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4183 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4187 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4189 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4193 BUG_ON(busiest
== this_rq
);
4195 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4198 if (busiest
->nr_running
> 1) {
4200 * Attempt to move tasks. If find_busiest_group has found
4201 * an imbalance but busiest->nr_running <= 1, the group is
4202 * still unbalanced. ld_moved simply stays zero, so it is
4203 * correctly treated as an imbalance.
4205 local_irq_save(flags
);
4206 double_rq_lock(this_rq
, busiest
);
4207 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4208 imbalance
, sd
, idle
, &all_pinned
);
4209 double_rq_unlock(this_rq
, busiest
);
4210 local_irq_restore(flags
);
4213 * some other cpu did the load balance for us.
4215 if (ld_moved
&& this_cpu
!= smp_processor_id())
4216 resched_cpu(this_cpu
);
4218 /* All tasks on this runqueue were pinned by CPU affinity */
4219 if (unlikely(all_pinned
)) {
4220 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4221 if (!cpumask_empty(cpus
))
4228 schedstat_inc(sd
, lb_failed
[idle
]);
4229 sd
->nr_balance_failed
++;
4231 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4233 spin_lock_irqsave(&busiest
->lock
, flags
);
4235 /* don't kick the migration_thread, if the curr
4236 * task on busiest cpu can't be moved to this_cpu
4238 if (!cpumask_test_cpu(this_cpu
,
4239 &busiest
->curr
->cpus_allowed
)) {
4240 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4242 goto out_one_pinned
;
4245 if (!busiest
->active_balance
) {
4246 busiest
->active_balance
= 1;
4247 busiest
->push_cpu
= this_cpu
;
4250 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4252 wake_up_process(busiest
->migration_thread
);
4255 * We've kicked active balancing, reset the failure
4258 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4261 sd
->nr_balance_failed
= 0;
4263 if (likely(!active_balance
)) {
4264 /* We were unbalanced, so reset the balancing interval */
4265 sd
->balance_interval
= sd
->min_interval
;
4268 * If we've begun active balancing, start to back off. This
4269 * case may not be covered by the all_pinned logic if there
4270 * is only 1 task on the busy runqueue (because we don't call
4273 if (sd
->balance_interval
< sd
->max_interval
)
4274 sd
->balance_interval
*= 2;
4277 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4278 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4284 schedstat_inc(sd
, lb_balanced
[idle
]);
4286 sd
->nr_balance_failed
= 0;
4289 /* tune up the balancing interval */
4290 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4291 (sd
->balance_interval
< sd
->max_interval
))
4292 sd
->balance_interval
*= 2;
4294 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4295 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4306 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4307 * tasks if there is an imbalance.
4309 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4310 * this_rq is locked.
4313 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4315 struct sched_group
*group
;
4316 struct rq
*busiest
= NULL
;
4317 unsigned long imbalance
;
4321 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4323 cpumask_copy(cpus
, cpu_active_mask
);
4326 * When power savings policy is enabled for the parent domain, idle
4327 * sibling can pick up load irrespective of busy siblings. In this case,
4328 * let the state of idle sibling percolate up as IDLE, instead of
4329 * portraying it as CPU_NOT_IDLE.
4331 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4332 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4335 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4337 update_shares_locked(this_rq
, sd
);
4338 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4339 &sd_idle
, cpus
, NULL
);
4341 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4345 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4347 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4351 BUG_ON(busiest
== this_rq
);
4353 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4356 if (busiest
->nr_running
> 1) {
4357 /* Attempt to move tasks */
4358 double_lock_balance(this_rq
, busiest
);
4359 /* this_rq->clock is already updated */
4360 update_rq_clock(busiest
);
4361 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4362 imbalance
, sd
, CPU_NEWLY_IDLE
,
4364 double_unlock_balance(this_rq
, busiest
);
4366 if (unlikely(all_pinned
)) {
4367 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4368 if (!cpumask_empty(cpus
))
4374 int active_balance
= 0;
4376 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4377 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4378 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4381 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4384 if (sd
->nr_balance_failed
++ < 2)
4388 * The only task running in a non-idle cpu can be moved to this
4389 * cpu in an attempt to completely freeup the other CPU
4390 * package. The same method used to move task in load_balance()
4391 * have been extended for load_balance_newidle() to speedup
4392 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4394 * The package power saving logic comes from
4395 * find_busiest_group(). If there are no imbalance, then
4396 * f_b_g() will return NULL. However when sched_mc={1,2} then
4397 * f_b_g() will select a group from which a running task may be
4398 * pulled to this cpu in order to make the other package idle.
4399 * If there is no opportunity to make a package idle and if
4400 * there are no imbalance, then f_b_g() will return NULL and no
4401 * action will be taken in load_balance_newidle().
4403 * Under normal task pull operation due to imbalance, there
4404 * will be more than one task in the source run queue and
4405 * move_tasks() will succeed. ld_moved will be true and this
4406 * active balance code will not be triggered.
4409 /* Lock busiest in correct order while this_rq is held */
4410 double_lock_balance(this_rq
, busiest
);
4413 * don't kick the migration_thread, if the curr
4414 * task on busiest cpu can't be moved to this_cpu
4416 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4417 double_unlock_balance(this_rq
, busiest
);
4422 if (!busiest
->active_balance
) {
4423 busiest
->active_balance
= 1;
4424 busiest
->push_cpu
= this_cpu
;
4428 double_unlock_balance(this_rq
, busiest
);
4430 * Should not call ttwu while holding a rq->lock
4432 spin_unlock(&this_rq
->lock
);
4434 wake_up_process(busiest
->migration_thread
);
4435 spin_lock(&this_rq
->lock
);
4438 sd
->nr_balance_failed
= 0;
4440 update_shares_locked(this_rq
, sd
);
4444 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4445 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4446 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4448 sd
->nr_balance_failed
= 0;
4454 * idle_balance is called by schedule() if this_cpu is about to become
4455 * idle. Attempts to pull tasks from other CPUs.
4457 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4459 struct sched_domain
*sd
;
4460 int pulled_task
= 0;
4461 unsigned long next_balance
= jiffies
+ HZ
;
4463 this_rq
->idle_stamp
= this_rq
->clock
;
4465 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4468 for_each_domain(this_cpu
, sd
) {
4469 unsigned long interval
;
4471 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4474 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4475 /* If we've pulled tasks over stop searching: */
4476 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4479 interval
= msecs_to_jiffies(sd
->balance_interval
);
4480 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4481 next_balance
= sd
->last_balance
+ interval
;
4483 this_rq
->idle_stamp
= 0;
4487 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4489 * We are going idle. next_balance may be set based on
4490 * a busy processor. So reset next_balance.
4492 this_rq
->next_balance
= next_balance
;
4497 * active_load_balance is run by migration threads. It pushes running tasks
4498 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4499 * running on each physical CPU where possible, and avoids physical /
4500 * logical imbalances.
4502 * Called with busiest_rq locked.
4504 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4506 int target_cpu
= busiest_rq
->push_cpu
;
4507 struct sched_domain
*sd
;
4508 struct rq
*target_rq
;
4510 /* Is there any task to move? */
4511 if (busiest_rq
->nr_running
<= 1)
4514 target_rq
= cpu_rq(target_cpu
);
4517 * This condition is "impossible", if it occurs
4518 * we need to fix it. Originally reported by
4519 * Bjorn Helgaas on a 128-cpu setup.
4521 BUG_ON(busiest_rq
== target_rq
);
4523 /* move a task from busiest_rq to target_rq */
4524 double_lock_balance(busiest_rq
, target_rq
);
4525 update_rq_clock(busiest_rq
);
4526 update_rq_clock(target_rq
);
4528 /* Search for an sd spanning us and the target CPU. */
4529 for_each_domain(target_cpu
, sd
) {
4530 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4531 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4536 schedstat_inc(sd
, alb_count
);
4538 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4540 schedstat_inc(sd
, alb_pushed
);
4542 schedstat_inc(sd
, alb_failed
);
4544 double_unlock_balance(busiest_rq
, target_rq
);
4549 atomic_t load_balancer
;
4550 cpumask_var_t cpu_mask
;
4551 cpumask_var_t ilb_grp_nohz_mask
;
4552 } nohz ____cacheline_aligned
= {
4553 .load_balancer
= ATOMIC_INIT(-1),
4556 int get_nohz_load_balancer(void)
4558 return atomic_read(&nohz
.load_balancer
);
4561 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4563 * lowest_flag_domain - Return lowest sched_domain containing flag.
4564 * @cpu: The cpu whose lowest level of sched domain is to
4566 * @flag: The flag to check for the lowest sched_domain
4567 * for the given cpu.
4569 * Returns the lowest sched_domain of a cpu which contains the given flag.
4571 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4573 struct sched_domain
*sd
;
4575 for_each_domain(cpu
, sd
)
4576 if (sd
&& (sd
->flags
& flag
))
4583 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4584 * @cpu: The cpu whose domains we're iterating over.
4585 * @sd: variable holding the value of the power_savings_sd
4587 * @flag: The flag to filter the sched_domains to be iterated.
4589 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4590 * set, starting from the lowest sched_domain to the highest.
4592 #define for_each_flag_domain(cpu, sd, flag) \
4593 for (sd = lowest_flag_domain(cpu, flag); \
4594 (sd && (sd->flags & flag)); sd = sd->parent)
4597 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4598 * @ilb_group: group to be checked for semi-idleness
4600 * Returns: 1 if the group is semi-idle. 0 otherwise.
4602 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4603 * and atleast one non-idle CPU. This helper function checks if the given
4604 * sched_group is semi-idle or not.
4606 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4608 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4609 sched_group_cpus(ilb_group
));
4612 * A sched_group is semi-idle when it has atleast one busy cpu
4613 * and atleast one idle cpu.
4615 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4618 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4624 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4625 * @cpu: The cpu which is nominating a new idle_load_balancer.
4627 * Returns: Returns the id of the idle load balancer if it exists,
4628 * Else, returns >= nr_cpu_ids.
4630 * This algorithm picks the idle load balancer such that it belongs to a
4631 * semi-idle powersavings sched_domain. The idea is to try and avoid
4632 * completely idle packages/cores just for the purpose of idle load balancing
4633 * when there are other idle cpu's which are better suited for that job.
4635 static int find_new_ilb(int cpu
)
4637 struct sched_domain
*sd
;
4638 struct sched_group
*ilb_group
;
4641 * Have idle load balancer selection from semi-idle packages only
4642 * when power-aware load balancing is enabled
4644 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4648 * Optimize for the case when we have no idle CPUs or only one
4649 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4651 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4654 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4655 ilb_group
= sd
->groups
;
4658 if (is_semi_idle_group(ilb_group
))
4659 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4661 ilb_group
= ilb_group
->next
;
4663 } while (ilb_group
!= sd
->groups
);
4667 return cpumask_first(nohz
.cpu_mask
);
4669 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4670 static inline int find_new_ilb(int call_cpu
)
4672 return cpumask_first(nohz
.cpu_mask
);
4677 * This routine will try to nominate the ilb (idle load balancing)
4678 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4679 * load balancing on behalf of all those cpus. If all the cpus in the system
4680 * go into this tickless mode, then there will be no ilb owner (as there is
4681 * no need for one) and all the cpus will sleep till the next wakeup event
4684 * For the ilb owner, tick is not stopped. And this tick will be used
4685 * for idle load balancing. ilb owner will still be part of
4688 * While stopping the tick, this cpu will become the ilb owner if there
4689 * is no other owner. And will be the owner till that cpu becomes busy
4690 * or if all cpus in the system stop their ticks at which point
4691 * there is no need for ilb owner.
4693 * When the ilb owner becomes busy, it nominates another owner, during the
4694 * next busy scheduler_tick()
4696 int select_nohz_load_balancer(int stop_tick
)
4698 int cpu
= smp_processor_id();
4701 cpu_rq(cpu
)->in_nohz_recently
= 1;
4703 if (!cpu_active(cpu
)) {
4704 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4708 * If we are going offline and still the leader,
4711 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4717 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4719 /* time for ilb owner also to sleep */
4720 if (cpumask_weight(nohz
.cpu_mask
) == num_active_cpus()) {
4721 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4722 atomic_set(&nohz
.load_balancer
, -1);
4726 if (atomic_read(&nohz
.load_balancer
) == -1) {
4727 /* make me the ilb owner */
4728 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4730 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4733 if (!(sched_smt_power_savings
||
4734 sched_mc_power_savings
))
4737 * Check to see if there is a more power-efficient
4740 new_ilb
= find_new_ilb(cpu
);
4741 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4742 atomic_set(&nohz
.load_balancer
, -1);
4743 resched_cpu(new_ilb
);
4749 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4752 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4754 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4755 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4762 static DEFINE_SPINLOCK(balancing
);
4765 * It checks each scheduling domain to see if it is due to be balanced,
4766 * and initiates a balancing operation if so.
4768 * Balancing parameters are set up in arch_init_sched_domains.
4770 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4773 struct rq
*rq
= cpu_rq(cpu
);
4774 unsigned long interval
;
4775 struct sched_domain
*sd
;
4776 /* Earliest time when we have to do rebalance again */
4777 unsigned long next_balance
= jiffies
+ 60*HZ
;
4778 int update_next_balance
= 0;
4781 for_each_domain(cpu
, sd
) {
4782 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4785 interval
= sd
->balance_interval
;
4786 if (idle
!= CPU_IDLE
)
4787 interval
*= sd
->busy_factor
;
4789 /* scale ms to jiffies */
4790 interval
= msecs_to_jiffies(interval
);
4791 if (unlikely(!interval
))
4793 if (interval
> HZ
*NR_CPUS
/10)
4794 interval
= HZ
*NR_CPUS
/10;
4796 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4798 if (need_serialize
) {
4799 if (!spin_trylock(&balancing
))
4803 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4804 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4806 * We've pulled tasks over so either we're no
4807 * longer idle, or one of our SMT siblings is
4810 idle
= CPU_NOT_IDLE
;
4812 sd
->last_balance
= jiffies
;
4815 spin_unlock(&balancing
);
4817 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4818 next_balance
= sd
->last_balance
+ interval
;
4819 update_next_balance
= 1;
4823 * Stop the load balance at this level. There is another
4824 * CPU in our sched group which is doing load balancing more
4832 * next_balance will be updated only when there is a need.
4833 * When the cpu is attached to null domain for ex, it will not be
4836 if (likely(update_next_balance
))
4837 rq
->next_balance
= next_balance
;
4841 * run_rebalance_domains is triggered when needed from the scheduler tick.
4842 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4843 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4845 static void run_rebalance_domains(struct softirq_action
*h
)
4847 int this_cpu
= smp_processor_id();
4848 struct rq
*this_rq
= cpu_rq(this_cpu
);
4849 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4850 CPU_IDLE
: CPU_NOT_IDLE
;
4852 rebalance_domains(this_cpu
, idle
);
4856 * If this cpu is the owner for idle load balancing, then do the
4857 * balancing on behalf of the other idle cpus whose ticks are
4860 if (this_rq
->idle_at_tick
&&
4861 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4865 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4866 if (balance_cpu
== this_cpu
)
4870 * If this cpu gets work to do, stop the load balancing
4871 * work being done for other cpus. Next load
4872 * balancing owner will pick it up.
4877 rebalance_domains(balance_cpu
, CPU_IDLE
);
4879 rq
= cpu_rq(balance_cpu
);
4880 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4881 this_rq
->next_balance
= rq
->next_balance
;
4887 static inline int on_null_domain(int cpu
)
4889 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4893 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4895 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4896 * idle load balancing owner or decide to stop the periodic load balancing,
4897 * if the whole system is idle.
4899 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4903 * If we were in the nohz mode recently and busy at the current
4904 * scheduler tick, then check if we need to nominate new idle
4907 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4908 rq
->in_nohz_recently
= 0;
4910 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4911 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4912 atomic_set(&nohz
.load_balancer
, -1);
4915 if (atomic_read(&nohz
.load_balancer
) == -1) {
4916 int ilb
= find_new_ilb(cpu
);
4918 if (ilb
< nr_cpu_ids
)
4924 * If this cpu is idle and doing idle load balancing for all the
4925 * cpus with ticks stopped, is it time for that to stop?
4927 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4928 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4934 * If this cpu is idle and the idle load balancing is done by
4935 * someone else, then no need raise the SCHED_SOFTIRQ
4937 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4938 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4941 /* Don't need to rebalance while attached to NULL domain */
4942 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4943 likely(!on_null_domain(cpu
)))
4944 raise_softirq(SCHED_SOFTIRQ
);
4947 #else /* CONFIG_SMP */
4950 * on UP we do not need to balance between CPUs:
4952 static inline void idle_balance(int cpu
, struct rq
*rq
)
4958 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4960 EXPORT_PER_CPU_SYMBOL(kstat
);
4963 * Return any ns on the sched_clock that have not yet been accounted in
4964 * @p in case that task is currently running.
4966 * Called with task_rq_lock() held on @rq.
4968 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4972 if (task_current(rq
, p
)) {
4973 update_rq_clock(rq
);
4974 ns
= rq
->clock
- p
->se
.exec_start
;
4982 unsigned long long task_delta_exec(struct task_struct
*p
)
4984 unsigned long flags
;
4988 rq
= task_rq_lock(p
, &flags
);
4989 ns
= do_task_delta_exec(p
, rq
);
4990 task_rq_unlock(rq
, &flags
);
4996 * Return accounted runtime for the task.
4997 * In case the task is currently running, return the runtime plus current's
4998 * pending runtime that have not been accounted yet.
5000 unsigned long long task_sched_runtime(struct task_struct
*p
)
5002 unsigned long flags
;
5006 rq
= task_rq_lock(p
, &flags
);
5007 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5008 task_rq_unlock(rq
, &flags
);
5014 * Return sum_exec_runtime for the thread group.
5015 * In case the task is currently running, return the sum plus current's
5016 * pending runtime that have not been accounted yet.
5018 * Note that the thread group might have other running tasks as well,
5019 * so the return value not includes other pending runtime that other
5020 * running tasks might have.
5022 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
5024 struct task_cputime totals
;
5025 unsigned long flags
;
5029 rq
= task_rq_lock(p
, &flags
);
5030 thread_group_cputime(p
, &totals
);
5031 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5032 task_rq_unlock(rq
, &flags
);
5038 * Account user cpu time to a process.
5039 * @p: the process that the cpu time gets accounted to
5040 * @cputime: the cpu time spent in user space since the last update
5041 * @cputime_scaled: cputime scaled by cpu frequency
5043 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
5044 cputime_t cputime_scaled
)
5046 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5049 /* Add user time to process. */
5050 p
->utime
= cputime_add(p
->utime
, cputime
);
5051 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5052 account_group_user_time(p
, cputime
);
5054 /* Add user time to cpustat. */
5055 tmp
= cputime_to_cputime64(cputime
);
5056 if (TASK_NICE(p
) > 0)
5057 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5059 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5061 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
5062 /* Account for user time used */
5063 acct_update_integrals(p
);
5067 * Account guest cpu time to a process.
5068 * @p: the process that the cpu time gets accounted to
5069 * @cputime: the cpu time spent in virtual machine since the last update
5070 * @cputime_scaled: cputime scaled by cpu frequency
5072 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
5073 cputime_t cputime_scaled
)
5076 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5078 tmp
= cputime_to_cputime64(cputime
);
5080 /* Add guest time to process. */
5081 p
->utime
= cputime_add(p
->utime
, cputime
);
5082 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5083 account_group_user_time(p
, cputime
);
5084 p
->gtime
= cputime_add(p
->gtime
, cputime
);
5086 /* Add guest time to cpustat. */
5087 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5088 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
5092 * Account system cpu time to a process.
5093 * @p: the process that the cpu time gets accounted to
5094 * @hardirq_offset: the offset to subtract from hardirq_count()
5095 * @cputime: the cpu time spent in kernel space since the last update
5096 * @cputime_scaled: cputime scaled by cpu frequency
5098 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
5099 cputime_t cputime
, cputime_t cputime_scaled
)
5101 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5104 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
5105 account_guest_time(p
, cputime
, cputime_scaled
);
5109 /* Add system time to process. */
5110 p
->stime
= cputime_add(p
->stime
, cputime
);
5111 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
5112 account_group_system_time(p
, cputime
);
5114 /* Add system time to cpustat. */
5115 tmp
= cputime_to_cputime64(cputime
);
5116 if (hardirq_count() - hardirq_offset
)
5117 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
5118 else if (softirq_count())
5119 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
5121 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
5123 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
5125 /* Account for system time used */
5126 acct_update_integrals(p
);
5130 * Account for involuntary wait time.
5131 * @steal: the cpu time spent in involuntary wait
5133 void account_steal_time(cputime_t cputime
)
5135 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5136 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5138 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
5142 * Account for idle time.
5143 * @cputime: the cpu time spent in idle wait
5145 void account_idle_time(cputime_t cputime
)
5147 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5148 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5149 struct rq
*rq
= this_rq();
5150 struct task_struct
*task
;
5152 if (atomic_read(&rq
->nr_iowait
) > 0) {
5153 for (task
= current
; task
!= &init_task
; task
= task
->parent
)
5155 /* task now points to init */
5156 for_each_process(task
) {
5157 /* this pointlessly prints the name and PID of each task */
5158 if (task
->in_iowait
) {
5159 task
->iowait
= cputime64_add(task
->iowait
, cputime64
);
5160 //printk("%s[%d]\n", task->comm, task->pid);
5163 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
5166 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5169 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5172 * Account a single tick of cpu time.
5173 * @p: the process that the cpu time gets accounted to
5174 * @user_tick: indicates if the tick is a user or a system tick
5176 void account_process_tick(struct task_struct
*p
, int user_tick
)
5178 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
5179 struct rq
*rq
= this_rq();
5182 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
5183 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5184 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
5187 account_idle_time(cputime_one_jiffy
);
5191 * Account multiple ticks of steal time.
5192 * @p: the process from which the cpu time has been stolen
5193 * @ticks: number of stolen ticks
5195 void account_steal_ticks(unsigned long ticks
)
5197 account_steal_time(jiffies_to_cputime(ticks
));
5201 * Account multiple ticks of idle time.
5202 * @ticks: number of stolen ticks
5204 void account_idle_ticks(unsigned long ticks
)
5206 account_idle_time(jiffies_to_cputime(ticks
));
5212 * Use precise platform statistics if available:
5214 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5215 cputime_t
task_utime(struct task_struct
*p
)
5220 cputime_t
task_stime(struct task_struct
*p
)
5225 cputime_t
task_utime(struct task_struct
*p
)
5227 clock_t utime
= cputime_to_clock_t(p
->utime
),
5228 total
= utime
+ cputime_to_clock_t(p
->stime
);
5232 * Use CFS's precise accounting:
5234 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
5238 do_div(temp
, total
);
5240 utime
= (clock_t)temp
;
5242 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
5243 return p
->prev_utime
;
5246 cputime_t
task_stime(struct task_struct
*p
)
5251 * Use CFS's precise accounting. (we subtract utime from
5252 * the total, to make sure the total observed by userspace
5253 * grows monotonically - apps rely on that):
5255 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
5256 cputime_to_clock_t(task_utime(p
));
5259 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
5261 return p
->prev_stime
;
5265 inline cputime_t
task_gtime(struct task_struct
*p
)
5271 * This function gets called by the timer code, with HZ frequency.
5272 * We call it with interrupts disabled.
5274 * It also gets called by the fork code, when changing the parent's
5277 void scheduler_tick(void)
5279 int cpu
= smp_processor_id();
5280 struct rq
*rq
= cpu_rq(cpu
);
5281 struct task_struct
*curr
= rq
->curr
;
5285 spin_lock(&rq
->lock
);
5286 update_rq_clock(rq
);
5287 update_cpu_load(rq
);
5288 curr
->sched_class
->task_tick(rq
, curr
, 0);
5289 spin_unlock(&rq
->lock
);
5291 perf_event_task_tick(curr
, cpu
);
5294 rq
->idle_at_tick
= idle_cpu(cpu
);
5295 trigger_load_balance(rq
, cpu
);
5299 notrace
unsigned long get_parent_ip(unsigned long addr
)
5301 if (in_lock_functions(addr
)) {
5302 addr
= CALLER_ADDR2
;
5303 if (in_lock_functions(addr
))
5304 addr
= CALLER_ADDR3
;
5309 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5310 defined(CONFIG_PREEMPT_TRACER))
5312 void __kprobes
add_preempt_count(int val
)
5314 #ifdef CONFIG_DEBUG_PREEMPT
5318 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5321 preempt_count() += val
;
5322 #ifdef CONFIG_DEBUG_PREEMPT
5324 * Spinlock count overflowing soon?
5326 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5329 if (preempt_count() == val
)
5330 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5332 EXPORT_SYMBOL(add_preempt_count
);
5334 void __kprobes
sub_preempt_count(int val
)
5336 #ifdef CONFIG_DEBUG_PREEMPT
5340 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5343 * Is the spinlock portion underflowing?
5345 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5346 !(preempt_count() & PREEMPT_MASK
)))
5350 if (preempt_count() == val
)
5351 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5352 preempt_count() -= val
;
5354 EXPORT_SYMBOL(sub_preempt_count
);
5359 * Print scheduling while atomic bug:
5361 static noinline
void __schedule_bug(struct task_struct
*prev
)
5363 struct pt_regs
*regs
= get_irq_regs();
5365 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5366 prev
->comm
, prev
->pid
, preempt_count());
5368 debug_show_held_locks(prev
);
5370 if (irqs_disabled())
5371 print_irqtrace_events(prev
);
5380 * Various schedule()-time debugging checks and statistics:
5382 static inline void schedule_debug(struct task_struct
*prev
)
5385 * Test if we are atomic. Since do_exit() needs to call into
5386 * schedule() atomically, we ignore that path for now.
5387 * Otherwise, whine if we are scheduling when we should not be.
5389 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5390 __schedule_bug(prev
);
5392 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5394 schedstat_inc(this_rq(), sched_count
);
5395 #ifdef CONFIG_SCHEDSTATS
5396 if (unlikely(prev
->lock_depth
>= 0)) {
5397 schedstat_inc(this_rq(), bkl_count
);
5398 schedstat_inc(prev
, sched_info
.bkl_count
);
5403 static void put_prev_task(struct rq
*rq
, struct task_struct
*p
)
5405 u64 runtime
= p
->se
.sum_exec_runtime
- p
->se
.prev_sum_exec_runtime
;
5407 update_avg(&p
->se
.avg_running
, runtime
);
5409 if (p
->state
== TASK_RUNNING
) {
5411 * In order to avoid avg_overlap growing stale when we are
5412 * indeed overlapping and hence not getting put to sleep, grow
5413 * the avg_overlap on preemption.
5415 * We use the average preemption runtime because that
5416 * correlates to the amount of cache footprint a task can
5419 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5420 update_avg(&p
->se
.avg_overlap
, runtime
);
5422 update_avg(&p
->se
.avg_running
, 0);
5424 p
->sched_class
->put_prev_task(rq
, p
);
5428 * Pick up the highest-prio task:
5430 static inline struct task_struct
*
5431 pick_next_task(struct rq
*rq
)
5433 const struct sched_class
*class;
5434 struct task_struct
*p
;
5437 * Optimization: we know that if all tasks are in
5438 * the fair class we can call that function directly:
5440 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5441 p
= fair_sched_class
.pick_next_task(rq
);
5446 class = sched_class_highest
;
5448 p
= class->pick_next_task(rq
);
5452 * Will never be NULL as the idle class always
5453 * returns a non-NULL p:
5455 class = class->next
;
5460 * schedule() is the main scheduler function.
5462 asmlinkage
void __sched
schedule(void)
5464 struct task_struct
*prev
, *next
;
5465 unsigned long *switch_count
;
5471 cpu
= smp_processor_id();
5475 switch_count
= &prev
->nivcsw
;
5477 release_kernel_lock(prev
);
5478 need_resched_nonpreemptible
:
5480 schedule_debug(prev
);
5482 if (sched_feat(HRTICK
))
5485 spin_lock_irq(&rq
->lock
);
5486 update_rq_clock(rq
);
5487 clear_tsk_need_resched(prev
);
5489 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5490 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5491 prev
->state
= TASK_RUNNING
;
5493 deactivate_task(rq
, prev
, 1);
5494 switch_count
= &prev
->nvcsw
;
5497 pre_schedule(rq
, prev
);
5499 if (unlikely(!rq
->nr_running
))
5500 idle_balance(cpu
, rq
);
5502 put_prev_task(rq
, prev
);
5503 next
= pick_next_task(rq
);
5505 if (likely(prev
!= next
)) {
5506 sched_info_switch(prev
, next
);
5507 perf_event_task_sched_out(prev
, next
, cpu
);
5513 context_switch(rq
, prev
, next
); /* unlocks the rq */
5515 * the context switch might have flipped the stack from under
5516 * us, hence refresh the local variables.
5518 cpu
= smp_processor_id();
5521 spin_unlock_irq(&rq
->lock
);
5525 if (unlikely(reacquire_kernel_lock(current
) < 0))
5526 goto need_resched_nonpreemptible
;
5528 preempt_enable_no_resched();
5532 EXPORT_SYMBOL(schedule
);
5536 * Look out! "owner" is an entirely speculative pointer
5537 * access and not reliable.
5539 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5544 if (!sched_feat(OWNER_SPIN
))
5547 #ifdef CONFIG_DEBUG_PAGEALLOC
5549 * Need to access the cpu field knowing that
5550 * DEBUG_PAGEALLOC could have unmapped it if
5551 * the mutex owner just released it and exited.
5553 if (probe_kernel_address(&owner
->cpu
, cpu
))
5560 * Even if the access succeeded (likely case),
5561 * the cpu field may no longer be valid.
5563 if (cpu
>= nr_cpumask_bits
)
5567 * We need to validate that we can do a
5568 * get_cpu() and that we have the percpu area.
5570 if (!cpu_online(cpu
))
5577 * Owner changed, break to re-assess state.
5579 if (lock
->owner
!= owner
)
5583 * Is that owner really running on that cpu?
5585 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5595 #ifdef CONFIG_PREEMPT
5597 * this is the entry point to schedule() from in-kernel preemption
5598 * off of preempt_enable. Kernel preemptions off return from interrupt
5599 * occur there and call schedule directly.
5601 asmlinkage
void __sched
preempt_schedule(void)
5603 struct thread_info
*ti
= current_thread_info();
5606 * If there is a non-zero preempt_count or interrupts are disabled,
5607 * we do not want to preempt the current task. Just return..
5609 if (likely(ti
->preempt_count
|| irqs_disabled()))
5613 add_preempt_count(PREEMPT_ACTIVE
);
5615 sub_preempt_count(PREEMPT_ACTIVE
);
5618 * Check again in case we missed a preemption opportunity
5619 * between schedule and now.
5622 } while (need_resched());
5624 EXPORT_SYMBOL(preempt_schedule
);
5627 * this is the entry point to schedule() from kernel preemption
5628 * off of irq context.
5629 * Note, that this is called and return with irqs disabled. This will
5630 * protect us against recursive calling from irq.
5632 asmlinkage
void __sched
preempt_schedule_irq(void)
5634 struct thread_info
*ti
= current_thread_info();
5636 /* Catch callers which need to be fixed */
5637 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5640 add_preempt_count(PREEMPT_ACTIVE
);
5643 local_irq_disable();
5644 sub_preempt_count(PREEMPT_ACTIVE
);
5647 * Check again in case we missed a preemption opportunity
5648 * between schedule and now.
5651 } while (need_resched());
5654 #endif /* CONFIG_PREEMPT */
5656 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
5659 return try_to_wake_up(curr
->private, mode
, wake_flags
);
5661 EXPORT_SYMBOL(default_wake_function
);
5664 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5665 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5666 * number) then we wake all the non-exclusive tasks and one exclusive task.
5668 * There are circumstances in which we can try to wake a task which has already
5669 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5670 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5672 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5673 int nr_exclusive
, int wake_flags
, void *key
)
5675 wait_queue_t
*curr
, *next
;
5677 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5678 unsigned flags
= curr
->flags
;
5680 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
5681 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5687 * __wake_up - wake up threads blocked on a waitqueue.
5689 * @mode: which threads
5690 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5691 * @key: is directly passed to the wakeup function
5693 * It may be assumed that this function implies a write memory barrier before
5694 * changing the task state if and only if any tasks are woken up.
5696 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5697 int nr_exclusive
, void *key
)
5699 unsigned long flags
;
5701 spin_lock_irqsave(&q
->lock
, flags
);
5702 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5703 spin_unlock_irqrestore(&q
->lock
, flags
);
5705 EXPORT_SYMBOL(__wake_up
);
5708 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5710 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5712 __wake_up_common(q
, mode
, 1, 0, NULL
);
5715 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5717 __wake_up_common(q
, mode
, 1, 0, key
);
5721 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5723 * @mode: which threads
5724 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5725 * @key: opaque value to be passed to wakeup targets
5727 * The sync wakeup differs that the waker knows that it will schedule
5728 * away soon, so while the target thread will be woken up, it will not
5729 * be migrated to another CPU - ie. the two threads are 'synchronized'
5730 * with each other. This can prevent needless bouncing between CPUs.
5732 * On UP it can prevent extra preemption.
5734 * It may be assumed that this function implies a write memory barrier before
5735 * changing the task state if and only if any tasks are woken up.
5737 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5738 int nr_exclusive
, void *key
)
5740 unsigned long flags
;
5741 int wake_flags
= WF_SYNC
;
5746 if (unlikely(!nr_exclusive
))
5749 spin_lock_irqsave(&q
->lock
, flags
);
5750 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
5751 spin_unlock_irqrestore(&q
->lock
, flags
);
5753 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5756 * __wake_up_sync - see __wake_up_sync_key()
5758 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5760 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5762 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5765 * complete: - signals a single thread waiting on this completion
5766 * @x: holds the state of this particular completion
5768 * This will wake up a single thread waiting on this completion. Threads will be
5769 * awakened in the same order in which they were queued.
5771 * See also complete_all(), wait_for_completion() and related routines.
5773 * It may be assumed that this function implies a write memory barrier before
5774 * changing the task state if and only if any tasks are woken up.
5776 void complete(struct completion
*x
)
5778 unsigned long flags
;
5780 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5782 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5783 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5785 EXPORT_SYMBOL(complete
);
5788 * complete_all: - signals all threads waiting on this completion
5789 * @x: holds the state of this particular completion
5791 * This will wake up all threads waiting on this particular completion event.
5793 * It may be assumed that this function implies a write memory barrier before
5794 * changing the task state if and only if any tasks are woken up.
5796 void complete_all(struct completion
*x
)
5798 unsigned long flags
;
5800 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5801 x
->done
+= UINT_MAX
/2;
5802 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5803 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5805 EXPORT_SYMBOL(complete_all
);
5807 static inline long __sched
5808 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5811 DECLARE_WAITQUEUE(wait
, current
);
5813 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5814 __add_wait_queue_tail(&x
->wait
, &wait
);
5816 if (signal_pending_state(state
, current
)) {
5817 timeout
= -ERESTARTSYS
;
5820 __set_current_state(state
);
5821 spin_unlock_irq(&x
->wait
.lock
);
5822 timeout
= schedule_timeout(timeout
);
5823 spin_lock_irq(&x
->wait
.lock
);
5824 } while (!x
->done
&& timeout
);
5825 __remove_wait_queue(&x
->wait
, &wait
);
5830 return timeout
?: 1;
5834 wait_for_common(struct completion
*x
, long timeout
, int state
)
5838 spin_lock_irq(&x
->wait
.lock
);
5839 timeout
= do_wait_for_common(x
, timeout
, state
);
5840 spin_unlock_irq(&x
->wait
.lock
);
5845 * wait_for_completion: - waits for completion of a task
5846 * @x: holds the state of this particular completion
5848 * This waits to be signaled for completion of a specific task. It is NOT
5849 * interruptible and there is no timeout.
5851 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5852 * and interrupt capability. Also see complete().
5854 void __sched
wait_for_completion(struct completion
*x
)
5856 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5858 EXPORT_SYMBOL(wait_for_completion
);
5861 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5862 * @x: holds the state of this particular completion
5863 * @timeout: timeout value in jiffies
5865 * This waits for either a completion of a specific task to be signaled or for a
5866 * specified timeout to expire. The timeout is in jiffies. It is not
5869 unsigned long __sched
5870 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5872 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5874 EXPORT_SYMBOL(wait_for_completion_timeout
);
5877 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5878 * @x: holds the state of this particular completion
5880 * This waits for completion of a specific task to be signaled. It is
5883 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5885 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5886 if (t
== -ERESTARTSYS
)
5890 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5893 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5894 * @x: holds the state of this particular completion
5895 * @timeout: timeout value in jiffies
5897 * This waits for either a completion of a specific task to be signaled or for a
5898 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5900 unsigned long __sched
5901 wait_for_completion_interruptible_timeout(struct completion
*x
,
5902 unsigned long timeout
)
5904 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5906 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5909 * wait_for_completion_killable: - waits for completion of a task (killable)
5910 * @x: holds the state of this particular completion
5912 * This waits to be signaled for completion of a specific task. It can be
5913 * interrupted by a kill signal.
5915 int __sched
wait_for_completion_killable(struct completion
*x
)
5917 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5918 if (t
== -ERESTARTSYS
)
5922 EXPORT_SYMBOL(wait_for_completion_killable
);
5925 * try_wait_for_completion - try to decrement a completion without blocking
5926 * @x: completion structure
5928 * Returns: 0 if a decrement cannot be done without blocking
5929 * 1 if a decrement succeeded.
5931 * If a completion is being used as a counting completion,
5932 * attempt to decrement the counter without blocking. This
5933 * enables us to avoid waiting if the resource the completion
5934 * is protecting is not available.
5936 bool try_wait_for_completion(struct completion
*x
)
5940 spin_lock_irq(&x
->wait
.lock
);
5945 spin_unlock_irq(&x
->wait
.lock
);
5948 EXPORT_SYMBOL(try_wait_for_completion
);
5951 * completion_done - Test to see if a completion has any waiters
5952 * @x: completion structure
5954 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5955 * 1 if there are no waiters.
5958 bool completion_done(struct completion
*x
)
5962 spin_lock_irq(&x
->wait
.lock
);
5965 spin_unlock_irq(&x
->wait
.lock
);
5968 EXPORT_SYMBOL(completion_done
);
5971 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5973 unsigned long flags
;
5976 init_waitqueue_entry(&wait
, current
);
5978 __set_current_state(state
);
5980 spin_lock_irqsave(&q
->lock
, flags
);
5981 __add_wait_queue(q
, &wait
);
5982 spin_unlock(&q
->lock
);
5983 timeout
= schedule_timeout(timeout
);
5984 spin_lock_irq(&q
->lock
);
5985 __remove_wait_queue(q
, &wait
);
5986 spin_unlock_irqrestore(&q
->lock
, flags
);
5991 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5993 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5995 EXPORT_SYMBOL(interruptible_sleep_on
);
5998 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6000 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
6002 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
6004 void __sched
sleep_on(wait_queue_head_t
*q
)
6006 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
6008 EXPORT_SYMBOL(sleep_on
);
6010 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6012 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
6014 EXPORT_SYMBOL(sleep_on_timeout
);
6016 #ifdef CONFIG_RT_MUTEXES
6019 * rt_mutex_setprio - set the current priority of a task
6021 * @prio: prio value (kernel-internal form)
6023 * This function changes the 'effective' priority of a task. It does
6024 * not touch ->normal_prio like __setscheduler().
6026 * Used by the rt_mutex code to implement priority inheritance logic.
6028 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
6030 unsigned long flags
;
6031 int oldprio
, on_rq
, running
;
6033 const struct sched_class
*prev_class
;
6035 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
6037 rq
= task_rq_lock(p
, &flags
);
6038 update_rq_clock(rq
);
6041 prev_class
= p
->sched_class
;
6042 on_rq
= p
->se
.on_rq
;
6043 running
= task_current(rq
, p
);
6045 dequeue_task(rq
, p
, 0);
6047 p
->sched_class
->put_prev_task(rq
, p
);
6050 p
->sched_class
= &rt_sched_class
;
6052 p
->sched_class
= &fair_sched_class
;
6057 p
->sched_class
->set_curr_task(rq
);
6059 enqueue_task(rq
, p
, 0);
6061 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6063 task_rq_unlock(rq
, &flags
);
6068 void set_user_nice(struct task_struct
*p
, long nice
)
6070 int old_prio
, delta
, on_rq
;
6071 unsigned long flags
;
6074 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
6077 * We have to be careful, if called from sys_setpriority(),
6078 * the task might be in the middle of scheduling on another CPU.
6080 rq
= task_rq_lock(p
, &flags
);
6081 update_rq_clock(rq
);
6083 * The RT priorities are set via sched_setscheduler(), but we still
6084 * allow the 'normal' nice value to be set - but as expected
6085 * it wont have any effect on scheduling until the task is
6086 * SCHED_FIFO/SCHED_RR:
6088 if (task_has_rt_policy(p
)) {
6089 p
->static_prio
= NICE_TO_PRIO(nice
);
6092 on_rq
= p
->se
.on_rq
;
6094 dequeue_task(rq
, p
, 0);
6096 p
->static_prio
= NICE_TO_PRIO(nice
);
6099 p
->prio
= effective_prio(p
);
6100 delta
= p
->prio
- old_prio
;
6103 enqueue_task(rq
, p
, 0);
6105 * If the task increased its priority or is running and
6106 * lowered its priority, then reschedule its CPU:
6108 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
6109 resched_task(rq
->curr
);
6112 task_rq_unlock(rq
, &flags
);
6114 EXPORT_SYMBOL(set_user_nice
);
6117 * can_nice - check if a task can reduce its nice value
6121 int can_nice(const struct task_struct
*p
, const int nice
)
6123 /* convert nice value [19,-20] to rlimit style value [1,40] */
6124 int nice_rlim
= 20 - nice
;
6126 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
6127 capable(CAP_SYS_NICE
));
6130 #ifdef __ARCH_WANT_SYS_NICE
6133 * sys_nice - change the priority of the current process.
6134 * @increment: priority increment
6136 * sys_setpriority is a more generic, but much slower function that
6137 * does similar things.
6139 SYSCALL_DEFINE1(nice
, int, increment
)
6144 * Setpriority might change our priority at the same moment.
6145 * We don't have to worry. Conceptually one call occurs first
6146 * and we have a single winner.
6148 if (increment
< -40)
6153 nice
= TASK_NICE(current
) + increment
;
6159 if (increment
< 0 && !can_nice(current
, nice
))
6162 retval
= security_task_setnice(current
, nice
);
6166 set_user_nice(current
, nice
);
6173 * task_prio - return the priority value of a given task.
6174 * @p: the task in question.
6176 * This is the priority value as seen by users in /proc.
6177 * RT tasks are offset by -200. Normal tasks are centered
6178 * around 0, value goes from -16 to +15.
6180 int task_prio(const struct task_struct
*p
)
6182 return p
->prio
- MAX_RT_PRIO
;
6186 * task_nice - return the nice value of a given task.
6187 * @p: the task in question.
6189 int task_nice(const struct task_struct
*p
)
6191 return TASK_NICE(p
);
6193 EXPORT_SYMBOL(task_nice
);
6196 * idle_cpu - is a given cpu idle currently?
6197 * @cpu: the processor in question.
6199 int idle_cpu(int cpu
)
6201 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6205 * idle_task - return the idle task for a given cpu.
6206 * @cpu: the processor in question.
6208 struct task_struct
*idle_task(int cpu
)
6210 return cpu_rq(cpu
)->idle
;
6214 * find_process_by_pid - find a process with a matching PID value.
6215 * @pid: the pid in question.
6217 static struct task_struct
*find_process_by_pid(pid_t pid
)
6219 return pid
? find_task_by_vpid(pid
) : current
;
6222 /* Actually do priority change: must hold rq lock. */
6224 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6226 BUG_ON(p
->se
.on_rq
);
6229 switch (p
->policy
) {
6233 p
->sched_class
= &fair_sched_class
;
6237 p
->sched_class
= &rt_sched_class
;
6241 p
->rt_priority
= prio
;
6242 p
->normal_prio
= normal_prio(p
);
6243 /* we are holding p->pi_lock already */
6244 p
->prio
= rt_mutex_getprio(p
);
6249 * check the target process has a UID that matches the current process's
6251 static bool check_same_owner(struct task_struct
*p
)
6253 const struct cred
*cred
= current_cred(), *pcred
;
6257 pcred
= __task_cred(p
);
6258 match
= (cred
->euid
== pcred
->euid
||
6259 cred
->euid
== pcred
->uid
);
6264 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6265 struct sched_param
*param
, bool user
)
6267 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6268 unsigned long flags
;
6269 const struct sched_class
*prev_class
;
6273 /* may grab non-irq protected spin_locks */
6274 BUG_ON(in_interrupt());
6276 /* double check policy once rq lock held */
6278 reset_on_fork
= p
->sched_reset_on_fork
;
6279 policy
= oldpolicy
= p
->policy
;
6281 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
6282 policy
&= ~SCHED_RESET_ON_FORK
;
6284 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6285 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6286 policy
!= SCHED_IDLE
)
6291 * Valid priorities for SCHED_FIFO and SCHED_RR are
6292 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6293 * SCHED_BATCH and SCHED_IDLE is 0.
6295 if (param
->sched_priority
< 0 ||
6296 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6297 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6299 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6303 * Allow unprivileged RT tasks to decrease priority:
6305 if (user
&& !capable(CAP_SYS_NICE
)) {
6306 if (rt_policy(policy
)) {
6307 unsigned long rlim_rtprio
;
6309 if (!lock_task_sighand(p
, &flags
))
6311 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6312 unlock_task_sighand(p
, &flags
);
6314 /* can't set/change the rt policy */
6315 if (policy
!= p
->policy
&& !rlim_rtprio
)
6318 /* can't increase priority */
6319 if (param
->sched_priority
> p
->rt_priority
&&
6320 param
->sched_priority
> rlim_rtprio
)
6324 * Like positive nice levels, dont allow tasks to
6325 * move out of SCHED_IDLE either:
6327 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6330 /* can't change other user's priorities */
6331 if (!check_same_owner(p
))
6334 /* Normal users shall not reset the sched_reset_on_fork flag */
6335 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
6340 #ifdef CONFIG_RT_GROUP_SCHED
6342 * Do not allow realtime tasks into groups that have no runtime
6345 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6346 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6350 retval
= security_task_setscheduler(p
, policy
, param
);
6356 * make sure no PI-waiters arrive (or leave) while we are
6357 * changing the priority of the task:
6359 spin_lock_irqsave(&p
->pi_lock
, flags
);
6361 * To be able to change p->policy safely, the apropriate
6362 * runqueue lock must be held.
6364 rq
= __task_rq_lock(p
);
6365 /* recheck policy now with rq lock held */
6366 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6367 policy
= oldpolicy
= -1;
6368 __task_rq_unlock(rq
);
6369 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6372 update_rq_clock(rq
);
6373 on_rq
= p
->se
.on_rq
;
6374 running
= task_current(rq
, p
);
6376 deactivate_task(rq
, p
, 0);
6378 p
->sched_class
->put_prev_task(rq
, p
);
6380 p
->sched_reset_on_fork
= reset_on_fork
;
6383 prev_class
= p
->sched_class
;
6384 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6387 p
->sched_class
->set_curr_task(rq
);
6389 activate_task(rq
, p
, 0);
6391 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6393 __task_rq_unlock(rq
);
6394 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6396 rt_mutex_adjust_pi(p
);
6402 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6403 * @p: the task in question.
6404 * @policy: new policy.
6405 * @param: structure containing the new RT priority.
6407 * NOTE that the task may be already dead.
6409 int sched_setscheduler(struct task_struct
*p
, int policy
,
6410 struct sched_param
*param
)
6412 return __sched_setscheduler(p
, policy
, param
, true);
6414 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6417 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6418 * @p: the task in question.
6419 * @policy: new policy.
6420 * @param: structure containing the new RT priority.
6422 * Just like sched_setscheduler, only don't bother checking if the
6423 * current context has permission. For example, this is needed in
6424 * stop_machine(): we create temporary high priority worker threads,
6425 * but our caller might not have that capability.
6427 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6428 struct sched_param
*param
)
6430 return __sched_setscheduler(p
, policy
, param
, false);
6434 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6436 struct sched_param lparam
;
6437 struct task_struct
*p
;
6440 if (!param
|| pid
< 0)
6442 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6447 p
= find_process_by_pid(pid
);
6449 retval
= sched_setscheduler(p
, policy
, &lparam
);
6456 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6457 * @pid: the pid in question.
6458 * @policy: new policy.
6459 * @param: structure containing the new RT priority.
6461 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6462 struct sched_param __user
*, param
)
6464 /* negative values for policy are not valid */
6468 return do_sched_setscheduler(pid
, policy
, param
);
6472 * sys_sched_setparam - set/change the RT priority of a thread
6473 * @pid: the pid in question.
6474 * @param: structure containing the new RT priority.
6476 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6478 return do_sched_setscheduler(pid
, -1, param
);
6482 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6483 * @pid: the pid in question.
6485 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6487 struct task_struct
*p
;
6494 read_lock(&tasklist_lock
);
6495 p
= find_process_by_pid(pid
);
6497 retval
= security_task_getscheduler(p
);
6500 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
6502 read_unlock(&tasklist_lock
);
6507 * sys_sched_getparam - get the RT priority of a thread
6508 * @pid: the pid in question.
6509 * @param: structure containing the RT priority.
6511 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6513 struct sched_param lp
;
6514 struct task_struct
*p
;
6517 if (!param
|| pid
< 0)
6520 read_lock(&tasklist_lock
);
6521 p
= find_process_by_pid(pid
);
6526 retval
= security_task_getscheduler(p
);
6530 lp
.sched_priority
= p
->rt_priority
;
6531 read_unlock(&tasklist_lock
);
6534 * This one might sleep, we cannot do it with a spinlock held ...
6536 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6541 read_unlock(&tasklist_lock
);
6545 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6547 cpumask_var_t cpus_allowed
, new_mask
;
6548 struct task_struct
*p
;
6552 read_lock(&tasklist_lock
);
6554 p
= find_process_by_pid(pid
);
6556 read_unlock(&tasklist_lock
);
6562 * It is not safe to call set_cpus_allowed with the
6563 * tasklist_lock held. We will bump the task_struct's
6564 * usage count and then drop tasklist_lock.
6567 read_unlock(&tasklist_lock
);
6569 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6573 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6575 goto out_free_cpus_allowed
;
6578 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6581 retval
= security_task_setscheduler(p
, 0, NULL
);
6585 cpuset_cpus_allowed(p
, cpus_allowed
);
6586 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6588 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6591 cpuset_cpus_allowed(p
, cpus_allowed
);
6592 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6594 * We must have raced with a concurrent cpuset
6595 * update. Just reset the cpus_allowed to the
6596 * cpuset's cpus_allowed
6598 cpumask_copy(new_mask
, cpus_allowed
);
6603 free_cpumask_var(new_mask
);
6604 out_free_cpus_allowed
:
6605 free_cpumask_var(cpus_allowed
);
6612 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6613 struct cpumask
*new_mask
)
6615 if (len
< cpumask_size())
6616 cpumask_clear(new_mask
);
6617 else if (len
> cpumask_size())
6618 len
= cpumask_size();
6620 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6624 * sys_sched_setaffinity - set the cpu affinity of a process
6625 * @pid: pid of the process
6626 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6627 * @user_mask_ptr: user-space pointer to the new cpu mask
6629 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6630 unsigned long __user
*, user_mask_ptr
)
6632 cpumask_var_t new_mask
;
6635 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6638 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6640 retval
= sched_setaffinity(pid
, new_mask
);
6641 free_cpumask_var(new_mask
);
6645 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6647 struct task_struct
*p
;
6651 read_lock(&tasklist_lock
);
6654 p
= find_process_by_pid(pid
);
6658 retval
= security_task_getscheduler(p
);
6662 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6665 read_unlock(&tasklist_lock
);
6672 * sys_sched_getaffinity - get the cpu affinity of a process
6673 * @pid: pid of the process
6674 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6675 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6677 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6678 unsigned long __user
*, user_mask_ptr
)
6683 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
6685 if (len
& (sizeof(unsigned long)-1))
6688 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6691 ret
= sched_getaffinity(pid
, mask
);
6693 size_t retlen
= min_t(size_t, len
, cpumask_size());
6695 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
6700 free_cpumask_var(mask
);
6706 * sys_sched_yield - yield the current processor to other threads.
6708 * This function yields the current CPU to other tasks. If there are no
6709 * other threads running on this CPU then this function will return.
6711 SYSCALL_DEFINE0(sched_yield
)
6713 struct rq
*rq
= this_rq_lock();
6715 schedstat_inc(rq
, yld_count
);
6716 current
->sched_class
->yield_task(rq
);
6719 * Since we are going to call schedule() anyway, there's
6720 * no need to preempt or enable interrupts:
6722 __release(rq
->lock
);
6723 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6724 _raw_spin_unlock(&rq
->lock
);
6725 preempt_enable_no_resched();
6732 static inline int should_resched(void)
6734 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
6737 static void __cond_resched(void)
6739 add_preempt_count(PREEMPT_ACTIVE
);
6741 sub_preempt_count(PREEMPT_ACTIVE
);
6744 int __sched
_cond_resched(void)
6746 if (should_resched()) {
6752 EXPORT_SYMBOL(_cond_resched
);
6755 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6756 * call schedule, and on return reacquire the lock.
6758 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6759 * operations here to prevent schedule() from being called twice (once via
6760 * spin_unlock(), once by hand).
6762 int __cond_resched_lock(spinlock_t
*lock
)
6764 int resched
= should_resched();
6767 lockdep_assert_held(lock
);
6769 if (spin_needbreak(lock
) || resched
) {
6780 EXPORT_SYMBOL(__cond_resched_lock
);
6782 int __sched
__cond_resched_softirq(void)
6784 BUG_ON(!in_softirq());
6786 if (should_resched()) {
6794 EXPORT_SYMBOL(__cond_resched_softirq
);
6797 * yield - yield the current processor to other threads.
6799 * This is a shortcut for kernel-space yielding - it marks the
6800 * thread runnable and calls sys_sched_yield().
6802 void __sched
yield(void)
6804 set_current_state(TASK_RUNNING
);
6807 EXPORT_SYMBOL(yield
);
6810 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6811 * that process accounting knows that this is a task in IO wait state.
6813 void __sched
io_schedule(void)
6815 struct rq
*rq
= raw_rq();
6817 delayacct_blkio_start();
6818 atomic_inc(&rq
->nr_iowait
);
6819 current
->in_iowait
= 1;
6821 current
->in_iowait
= 0;
6822 atomic_dec(&rq
->nr_iowait
);
6823 delayacct_blkio_end();
6825 EXPORT_SYMBOL(io_schedule
);
6827 long __sched
io_schedule_timeout(long timeout
)
6829 struct rq
*rq
= raw_rq();
6832 delayacct_blkio_start();
6833 atomic_inc(&rq
->nr_iowait
);
6834 current
->in_iowait
= 1;
6835 ret
= schedule_timeout(timeout
);
6836 current
->in_iowait
= 0;
6837 atomic_dec(&rq
->nr_iowait
);
6838 delayacct_blkio_end();
6843 * sys_sched_get_priority_max - return maximum RT priority.
6844 * @policy: scheduling class.
6846 * this syscall returns the maximum rt_priority that can be used
6847 * by a given scheduling class.
6849 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6856 ret
= MAX_USER_RT_PRIO
-1;
6868 * sys_sched_get_priority_min - return minimum RT priority.
6869 * @policy: scheduling class.
6871 * this syscall returns the minimum rt_priority that can be used
6872 * by a given scheduling class.
6874 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6892 * sys_sched_rr_get_interval - return the default timeslice of a process.
6893 * @pid: pid of the process.
6894 * @interval: userspace pointer to the timeslice value.
6896 * this syscall writes the default timeslice value of a given process
6897 * into the user-space timespec buffer. A value of '0' means infinity.
6899 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6900 struct timespec __user
*, interval
)
6902 struct task_struct
*p
;
6903 unsigned int time_slice
;
6911 read_lock(&tasklist_lock
);
6912 p
= find_process_by_pid(pid
);
6916 retval
= security_task_getscheduler(p
);
6920 time_slice
= p
->sched_class
->get_rr_interval(p
);
6922 read_unlock(&tasklist_lock
);
6923 jiffies_to_timespec(time_slice
, &t
);
6924 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6928 read_unlock(&tasklist_lock
);
6932 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6934 void sched_show_task(struct task_struct
*p
)
6936 unsigned long free
= 0;
6939 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6940 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
6941 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6942 #if BITS_PER_LONG == 32
6943 if (state
== TASK_RUNNING
)
6944 printk(KERN_CONT
" running ");
6946 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6948 if (state
== TASK_RUNNING
)
6949 printk(KERN_CONT
" running task ");
6951 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6953 #ifdef CONFIG_DEBUG_STACK_USAGE
6954 free
= stack_not_used(p
);
6956 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6957 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6958 (unsigned long)task_thread_info(p
)->flags
);
6960 show_stack(p
, NULL
);
6963 void show_state_filter(unsigned long state_filter
)
6965 struct task_struct
*g
, *p
;
6967 #if BITS_PER_LONG == 32
6969 " task PC stack pid father\n");
6972 " task PC stack pid father\n");
6974 read_lock(&tasklist_lock
);
6975 do_each_thread(g
, p
) {
6977 * reset the NMI-timeout, listing all files on a slow
6978 * console might take alot of time:
6980 touch_nmi_watchdog();
6981 if (!state_filter
|| (p
->state
& state_filter
))
6983 } while_each_thread(g
, p
);
6985 touch_all_softlockup_watchdogs();
6987 #ifdef CONFIG_SCHED_DEBUG
6988 sysrq_sched_debug_show();
6990 read_unlock(&tasklist_lock
);
6992 * Only show locks if all tasks are dumped:
6994 if (state_filter
== -1)
6995 debug_show_all_locks();
6998 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
7000 idle
->sched_class
= &idle_sched_class
;
7004 * init_idle - set up an idle thread for a given CPU
7005 * @idle: task in question
7006 * @cpu: cpu the idle task belongs to
7008 * NOTE: this function does not set the idle thread's NEED_RESCHED
7009 * flag, to make booting more robust.
7011 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
7013 struct rq
*rq
= cpu_rq(cpu
);
7014 unsigned long flags
;
7016 spin_lock_irqsave(&rq
->lock
, flags
);
7019 idle
->se
.exec_start
= sched_clock();
7021 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
7022 __set_task_cpu(idle
, cpu
);
7024 rq
->curr
= rq
->idle
= idle
;
7025 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7028 spin_unlock_irqrestore(&rq
->lock
, flags
);
7030 /* Set the preempt count _outside_ the spinlocks! */
7031 #if defined(CONFIG_PREEMPT)
7032 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
7034 task_thread_info(idle
)->preempt_count
= 0;
7037 * The idle tasks have their own, simple scheduling class:
7039 idle
->sched_class
= &idle_sched_class
;
7040 ftrace_graph_init_task(idle
);
7044 * In a system that switches off the HZ timer nohz_cpu_mask
7045 * indicates which cpus entered this state. This is used
7046 * in the rcu update to wait only for active cpus. For system
7047 * which do not switch off the HZ timer nohz_cpu_mask should
7048 * always be CPU_BITS_NONE.
7050 cpumask_var_t nohz_cpu_mask
;
7053 * Increase the granularity value when there are more CPUs,
7054 * because with more CPUs the 'effective latency' as visible
7055 * to users decreases. But the relationship is not linear,
7056 * so pick a second-best guess by going with the log2 of the
7059 * This idea comes from the SD scheduler of Con Kolivas:
7061 static void update_sysctl(void)
7063 unsigned int cpus
= min(num_online_cpus(), 8U);
7064 unsigned int factor
= 1 + ilog2(cpus
);
7066 #define SET_SYSCTL(name) \
7067 (sysctl_##name = (factor) * normalized_sysctl_##name)
7068 SET_SYSCTL(sched_min_granularity
);
7069 SET_SYSCTL(sched_latency
);
7070 SET_SYSCTL(sched_wakeup_granularity
);
7071 SET_SYSCTL(sched_shares_ratelimit
);
7075 static inline void sched_init_granularity(void)
7082 * This is how migration works:
7084 * 1) we queue a struct migration_req structure in the source CPU's
7085 * runqueue and wake up that CPU's migration thread.
7086 * 2) we down() the locked semaphore => thread blocks.
7087 * 3) migration thread wakes up (implicitly it forces the migrated
7088 * thread off the CPU)
7089 * 4) it gets the migration request and checks whether the migrated
7090 * task is still in the wrong runqueue.
7091 * 5) if it's in the wrong runqueue then the migration thread removes
7092 * it and puts it into the right queue.
7093 * 6) migration thread up()s the semaphore.
7094 * 7) we wake up and the migration is done.
7098 * Change a given task's CPU affinity. Migrate the thread to a
7099 * proper CPU and schedule it away if the CPU it's executing on
7100 * is removed from the allowed bitmask.
7102 * NOTE: the caller must have a valid reference to the task, the
7103 * task must not exit() & deallocate itself prematurely. The
7104 * call is not atomic; no spinlocks may be held.
7106 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
7108 struct migration_req req
;
7109 unsigned long flags
;
7113 rq
= task_rq_lock(p
, &flags
);
7114 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
7119 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
7120 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
7125 if (p
->sched_class
->set_cpus_allowed
)
7126 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
7128 cpumask_copy(&p
->cpus_allowed
, new_mask
);
7129 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
7132 /* Can the task run on the task's current CPU? If so, we're done */
7133 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
7136 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
7137 /* Need help from migration thread: drop lock and wait. */
7138 struct task_struct
*mt
= rq
->migration_thread
;
7140 get_task_struct(mt
);
7141 task_rq_unlock(rq
, &flags
);
7142 wake_up_process(rq
->migration_thread
);
7143 put_task_struct(mt
);
7144 wait_for_completion(&req
.done
);
7145 tlb_migrate_finish(p
->mm
);
7149 task_rq_unlock(rq
, &flags
);
7153 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
7156 * Move (not current) task off this cpu, onto dest cpu. We're doing
7157 * this because either it can't run here any more (set_cpus_allowed()
7158 * away from this CPU, or CPU going down), or because we're
7159 * attempting to rebalance this task on exec (sched_exec).
7161 * So we race with normal scheduler movements, but that's OK, as long
7162 * as the task is no longer on this CPU.
7164 * Returns non-zero if task was successfully migrated.
7166 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7168 struct rq
*rq_dest
, *rq_src
;
7171 if (unlikely(!cpu_active(dest_cpu
)))
7174 rq_src
= cpu_rq(src_cpu
);
7175 rq_dest
= cpu_rq(dest_cpu
);
7177 double_rq_lock(rq_src
, rq_dest
);
7178 /* Already moved. */
7179 if (task_cpu(p
) != src_cpu
)
7181 /* Waking up, don't get in the way of try_to_wake_up(). */
7182 if (p
->state
== TASK_WAKING
)
7184 /* Affinity changed (again). */
7185 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7188 on_rq
= p
->se
.on_rq
;
7190 deactivate_task(rq_src
, p
, 0);
7192 set_task_cpu(p
, dest_cpu
);
7194 activate_task(rq_dest
, p
, 0);
7195 check_preempt_curr(rq_dest
, p
, 0);
7200 double_rq_unlock(rq_src
, rq_dest
);
7204 #define RCU_MIGRATION_IDLE 0
7205 #define RCU_MIGRATION_NEED_QS 1
7206 #define RCU_MIGRATION_GOT_QS 2
7207 #define RCU_MIGRATION_MUST_SYNC 3
7210 * migration_thread - this is a highprio system thread that performs
7211 * thread migration by bumping thread off CPU then 'pushing' onto
7214 static int migration_thread(void *data
)
7217 int cpu
= (long)data
;
7221 BUG_ON(rq
->migration_thread
!= current
);
7223 set_current_state(TASK_INTERRUPTIBLE
);
7224 while (!kthread_should_stop()) {
7225 struct migration_req
*req
;
7226 struct list_head
*head
;
7228 spin_lock_irq(&rq
->lock
);
7230 if (cpu_is_offline(cpu
)) {
7231 spin_unlock_irq(&rq
->lock
);
7235 if (rq
->active_balance
) {
7236 active_load_balance(rq
, cpu
);
7237 rq
->active_balance
= 0;
7240 head
= &rq
->migration_queue
;
7242 if (list_empty(head
)) {
7243 spin_unlock_irq(&rq
->lock
);
7245 set_current_state(TASK_INTERRUPTIBLE
);
7248 req
= list_entry(head
->next
, struct migration_req
, list
);
7249 list_del_init(head
->next
);
7251 if (req
->task
!= NULL
) {
7252 spin_unlock(&rq
->lock
);
7253 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7254 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
7255 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
7256 spin_unlock(&rq
->lock
);
7258 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
7259 spin_unlock(&rq
->lock
);
7260 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
7264 complete(&req
->done
);
7266 __set_current_state(TASK_RUNNING
);
7271 #ifdef CONFIG_HOTPLUG_CPU
7273 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7277 local_irq_disable();
7278 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7284 * Figure out where task on dead CPU should go, use force if necessary.
7286 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7289 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
7292 /* Look for allowed, online CPU in same node. */
7293 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
7294 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7297 /* Any allowed, online CPU? */
7298 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
7299 if (dest_cpu
< nr_cpu_ids
)
7302 /* No more Mr. Nice Guy. */
7303 if (dest_cpu
>= nr_cpu_ids
) {
7304 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
7305 dest_cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
7308 * Don't tell them about moving exiting tasks or
7309 * kernel threads (both mm NULL), since they never
7312 if (p
->mm
&& printk_ratelimit()) {
7313 printk(KERN_INFO
"process %d (%s) no "
7314 "longer affine to cpu%d\n",
7315 task_pid_nr(p
), p
->comm
, dead_cpu
);
7320 /* It can have affinity changed while we were choosing. */
7321 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7326 * While a dead CPU has no uninterruptible tasks queued at this point,
7327 * it might still have a nonzero ->nr_uninterruptible counter, because
7328 * for performance reasons the counter is not stricly tracking tasks to
7329 * their home CPUs. So we just add the counter to another CPU's counter,
7330 * to keep the global sum constant after CPU-down:
7332 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7334 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
7335 unsigned long flags
;
7337 local_irq_save(flags
);
7338 double_rq_lock(rq_src
, rq_dest
);
7339 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7340 rq_src
->nr_uninterruptible
= 0;
7341 double_rq_unlock(rq_src
, rq_dest
);
7342 local_irq_restore(flags
);
7345 /* Run through task list and migrate tasks from the dead cpu. */
7346 static void migrate_live_tasks(int src_cpu
)
7348 struct task_struct
*p
, *t
;
7350 read_lock(&tasklist_lock
);
7352 do_each_thread(t
, p
) {
7356 if (task_cpu(p
) == src_cpu
)
7357 move_task_off_dead_cpu(src_cpu
, p
);
7358 } while_each_thread(t
, p
);
7360 read_unlock(&tasklist_lock
);
7364 * Schedules idle task to be the next runnable task on current CPU.
7365 * It does so by boosting its priority to highest possible.
7366 * Used by CPU offline code.
7368 void sched_idle_next(void)
7370 int this_cpu
= smp_processor_id();
7371 struct rq
*rq
= cpu_rq(this_cpu
);
7372 struct task_struct
*p
= rq
->idle
;
7373 unsigned long flags
;
7375 /* cpu has to be offline */
7376 BUG_ON(cpu_online(this_cpu
));
7379 * Strictly not necessary since rest of the CPUs are stopped by now
7380 * and interrupts disabled on the current cpu.
7382 spin_lock_irqsave(&rq
->lock
, flags
);
7384 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7386 update_rq_clock(rq
);
7387 activate_task(rq
, p
, 0);
7389 spin_unlock_irqrestore(&rq
->lock
, flags
);
7393 * Ensures that the idle task is using init_mm right before its cpu goes
7396 void idle_task_exit(void)
7398 struct mm_struct
*mm
= current
->active_mm
;
7400 BUG_ON(cpu_online(smp_processor_id()));
7403 switch_mm(mm
, &init_mm
, current
);
7407 /* called under rq->lock with disabled interrupts */
7408 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7410 struct rq
*rq
= cpu_rq(dead_cpu
);
7412 /* Must be exiting, otherwise would be on tasklist. */
7413 BUG_ON(!p
->exit_state
);
7415 /* Cannot have done final schedule yet: would have vanished. */
7416 BUG_ON(p
->state
== TASK_DEAD
);
7421 * Drop lock around migration; if someone else moves it,
7422 * that's OK. No task can be added to this CPU, so iteration is
7425 spin_unlock_irq(&rq
->lock
);
7426 move_task_off_dead_cpu(dead_cpu
, p
);
7427 spin_lock_irq(&rq
->lock
);
7432 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7433 static void migrate_dead_tasks(unsigned int dead_cpu
)
7435 struct rq
*rq
= cpu_rq(dead_cpu
);
7436 struct task_struct
*next
;
7439 if (!rq
->nr_running
)
7441 update_rq_clock(rq
);
7442 next
= pick_next_task(rq
);
7445 next
->sched_class
->put_prev_task(rq
, next
);
7446 migrate_dead(dead_cpu
, next
);
7452 * remove the tasks which were accounted by rq from calc_load_tasks.
7454 static void calc_global_load_remove(struct rq
*rq
)
7456 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7457 rq
->calc_load_active
= 0;
7459 #endif /* CONFIG_HOTPLUG_CPU */
7461 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7463 static struct ctl_table sd_ctl_dir
[] = {
7465 .procname
= "sched_domain",
7471 static struct ctl_table sd_ctl_root
[] = {
7473 .ctl_name
= CTL_KERN
,
7474 .procname
= "kernel",
7476 .child
= sd_ctl_dir
,
7481 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7483 struct ctl_table
*entry
=
7484 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7489 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7491 struct ctl_table
*entry
;
7494 * In the intermediate directories, both the child directory and
7495 * procname are dynamically allocated and could fail but the mode
7496 * will always be set. In the lowest directory the names are
7497 * static strings and all have proc handlers.
7499 for (entry
= *tablep
; entry
->mode
; entry
++) {
7501 sd_free_ctl_entry(&entry
->child
);
7502 if (entry
->proc_handler
== NULL
)
7503 kfree(entry
->procname
);
7511 set_table_entry(struct ctl_table
*entry
,
7512 const char *procname
, void *data
, int maxlen
,
7513 mode_t mode
, proc_handler
*proc_handler
)
7515 entry
->procname
= procname
;
7517 entry
->maxlen
= maxlen
;
7519 entry
->proc_handler
= proc_handler
;
7522 static struct ctl_table
*
7523 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7525 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7530 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7531 sizeof(long), 0644, proc_doulongvec_minmax
);
7532 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7533 sizeof(long), 0644, proc_doulongvec_minmax
);
7534 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7535 sizeof(int), 0644, proc_dointvec_minmax
);
7536 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7537 sizeof(int), 0644, proc_dointvec_minmax
);
7538 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7539 sizeof(int), 0644, proc_dointvec_minmax
);
7540 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7541 sizeof(int), 0644, proc_dointvec_minmax
);
7542 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7543 sizeof(int), 0644, proc_dointvec_minmax
);
7544 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7545 sizeof(int), 0644, proc_dointvec_minmax
);
7546 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7547 sizeof(int), 0644, proc_dointvec_minmax
);
7548 set_table_entry(&table
[9], "cache_nice_tries",
7549 &sd
->cache_nice_tries
,
7550 sizeof(int), 0644, proc_dointvec_minmax
);
7551 set_table_entry(&table
[10], "flags", &sd
->flags
,
7552 sizeof(int), 0644, proc_dointvec_minmax
);
7553 set_table_entry(&table
[11], "name", sd
->name
,
7554 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7555 /* &table[12] is terminator */
7560 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7562 struct ctl_table
*entry
, *table
;
7563 struct sched_domain
*sd
;
7564 int domain_num
= 0, i
;
7567 for_each_domain(cpu
, sd
)
7569 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7574 for_each_domain(cpu
, sd
) {
7575 snprintf(buf
, 32, "domain%d", i
);
7576 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7578 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7585 static struct ctl_table_header
*sd_sysctl_header
;
7586 static void register_sched_domain_sysctl(void)
7588 int i
, cpu_num
= num_possible_cpus();
7589 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7592 WARN_ON(sd_ctl_dir
[0].child
);
7593 sd_ctl_dir
[0].child
= entry
;
7598 for_each_possible_cpu(i
) {
7599 snprintf(buf
, 32, "cpu%d", i
);
7600 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7602 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7606 WARN_ON(sd_sysctl_header
);
7607 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7610 /* may be called multiple times per register */
7611 static void unregister_sched_domain_sysctl(void)
7613 if (sd_sysctl_header
)
7614 unregister_sysctl_table(sd_sysctl_header
);
7615 sd_sysctl_header
= NULL
;
7616 if (sd_ctl_dir
[0].child
)
7617 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7620 static void register_sched_domain_sysctl(void)
7623 static void unregister_sched_domain_sysctl(void)
7628 static void set_rq_online(struct rq
*rq
)
7631 const struct sched_class
*class;
7633 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7636 for_each_class(class) {
7637 if (class->rq_online
)
7638 class->rq_online(rq
);
7643 static void set_rq_offline(struct rq
*rq
)
7646 const struct sched_class
*class;
7648 for_each_class(class) {
7649 if (class->rq_offline
)
7650 class->rq_offline(rq
);
7653 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7659 * migration_call - callback that gets triggered when a CPU is added.
7660 * Here we can start up the necessary migration thread for the new CPU.
7662 static int __cpuinit
7663 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7665 struct task_struct
*p
;
7666 int cpu
= (long)hcpu
;
7667 unsigned long flags
;
7672 case CPU_UP_PREPARE
:
7673 case CPU_UP_PREPARE_FROZEN
:
7674 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7677 kthread_bind(p
, cpu
);
7678 /* Must be high prio: stop_machine expects to yield to it. */
7679 rq
= task_rq_lock(p
, &flags
);
7680 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7681 task_rq_unlock(rq
, &flags
);
7683 cpu_rq(cpu
)->migration_thread
= p
;
7684 rq
->calc_load_update
= calc_load_update
;
7688 case CPU_ONLINE_FROZEN
:
7689 /* Strictly unnecessary, as first user will wake it. */
7690 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7692 /* Update our root-domain */
7694 spin_lock_irqsave(&rq
->lock
, flags
);
7696 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7700 spin_unlock_irqrestore(&rq
->lock
, flags
);
7703 #ifdef CONFIG_HOTPLUG_CPU
7704 case CPU_UP_CANCELED
:
7705 case CPU_UP_CANCELED_FROZEN
:
7706 if (!cpu_rq(cpu
)->migration_thread
)
7708 /* Unbind it from offline cpu so it can run. Fall thru. */
7709 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7710 cpumask_any(cpu_online_mask
));
7711 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7712 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7713 cpu_rq(cpu
)->migration_thread
= NULL
;
7717 case CPU_DEAD_FROZEN
:
7718 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7719 migrate_live_tasks(cpu
);
7721 kthread_stop(rq
->migration_thread
);
7722 put_task_struct(rq
->migration_thread
);
7723 rq
->migration_thread
= NULL
;
7724 /* Idle task back to normal (off runqueue, low prio) */
7725 spin_lock_irq(&rq
->lock
);
7726 update_rq_clock(rq
);
7727 deactivate_task(rq
, rq
->idle
, 0);
7728 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7729 rq
->idle
->sched_class
= &idle_sched_class
;
7730 migrate_dead_tasks(cpu
);
7731 spin_unlock_irq(&rq
->lock
);
7733 migrate_nr_uninterruptible(rq
);
7734 BUG_ON(rq
->nr_running
!= 0);
7735 calc_global_load_remove(rq
);
7737 * No need to migrate the tasks: it was best-effort if
7738 * they didn't take sched_hotcpu_mutex. Just wake up
7741 spin_lock_irq(&rq
->lock
);
7742 while (!list_empty(&rq
->migration_queue
)) {
7743 struct migration_req
*req
;
7745 req
= list_entry(rq
->migration_queue
.next
,
7746 struct migration_req
, list
);
7747 list_del_init(&req
->list
);
7748 spin_unlock_irq(&rq
->lock
);
7749 complete(&req
->done
);
7750 spin_lock_irq(&rq
->lock
);
7752 spin_unlock_irq(&rq
->lock
);
7756 case CPU_DYING_FROZEN
:
7757 /* Update our root-domain */
7759 spin_lock_irqsave(&rq
->lock
, flags
);
7761 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7764 spin_unlock_irqrestore(&rq
->lock
, flags
);
7772 * Register at high priority so that task migration (migrate_all_tasks)
7773 * happens before everything else. This has to be lower priority than
7774 * the notifier in the perf_event subsystem, though.
7776 static struct notifier_block __cpuinitdata migration_notifier
= {
7777 .notifier_call
= migration_call
,
7781 static int __init
migration_init(void)
7783 void *cpu
= (void *)(long)smp_processor_id();
7786 /* Start one for the boot CPU: */
7787 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7788 BUG_ON(err
== NOTIFY_BAD
);
7789 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7790 register_cpu_notifier(&migration_notifier
);
7794 early_initcall(migration_init
);
7799 #ifdef CONFIG_SCHED_DEBUG
7801 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7802 struct cpumask
*groupmask
)
7804 struct sched_group
*group
= sd
->groups
;
7807 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7808 cpumask_clear(groupmask
);
7810 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7812 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7813 printk("does not load-balance\n");
7815 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7820 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7822 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7823 printk(KERN_ERR
"ERROR: domain->span does not contain "
7826 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7827 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7831 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7835 printk(KERN_ERR
"ERROR: group is NULL\n");
7839 if (!group
->cpu_power
) {
7840 printk(KERN_CONT
"\n");
7841 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7846 if (!cpumask_weight(sched_group_cpus(group
))) {
7847 printk(KERN_CONT
"\n");
7848 printk(KERN_ERR
"ERROR: empty group\n");
7852 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7853 printk(KERN_CONT
"\n");
7854 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7858 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7860 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7862 printk(KERN_CONT
" %s", str
);
7863 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
7864 printk(KERN_CONT
" (cpu_power = %d)",
7868 group
= group
->next
;
7869 } while (group
!= sd
->groups
);
7870 printk(KERN_CONT
"\n");
7872 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7873 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7876 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7877 printk(KERN_ERR
"ERROR: parent span is not a superset "
7878 "of domain->span\n");
7882 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7884 cpumask_var_t groupmask
;
7888 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7892 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7894 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7895 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7900 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7907 free_cpumask_var(groupmask
);
7909 #else /* !CONFIG_SCHED_DEBUG */
7910 # define sched_domain_debug(sd, cpu) do { } while (0)
7911 #endif /* CONFIG_SCHED_DEBUG */
7913 static int sd_degenerate(struct sched_domain
*sd
)
7915 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7918 /* Following flags need at least 2 groups */
7919 if (sd
->flags
& (SD_LOAD_BALANCE
|
7920 SD_BALANCE_NEWIDLE
|
7924 SD_SHARE_PKG_RESOURCES
)) {
7925 if (sd
->groups
!= sd
->groups
->next
)
7929 /* Following flags don't use groups */
7930 if (sd
->flags
& (SD_WAKE_AFFINE
))
7937 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7939 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7941 if (sd_degenerate(parent
))
7944 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7947 /* Flags needing groups don't count if only 1 group in parent */
7948 if (parent
->groups
== parent
->groups
->next
) {
7949 pflags
&= ~(SD_LOAD_BALANCE
|
7950 SD_BALANCE_NEWIDLE
|
7954 SD_SHARE_PKG_RESOURCES
);
7955 if (nr_node_ids
== 1)
7956 pflags
&= ~SD_SERIALIZE
;
7958 if (~cflags
& pflags
)
7964 static void free_rootdomain(struct root_domain
*rd
)
7966 synchronize_sched();
7968 cpupri_cleanup(&rd
->cpupri
);
7970 free_cpumask_var(rd
->rto_mask
);
7971 free_cpumask_var(rd
->online
);
7972 free_cpumask_var(rd
->span
);
7976 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7978 struct root_domain
*old_rd
= NULL
;
7979 unsigned long flags
;
7981 spin_lock_irqsave(&rq
->lock
, flags
);
7986 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7989 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7992 * If we dont want to free the old_rt yet then
7993 * set old_rd to NULL to skip the freeing later
7996 if (!atomic_dec_and_test(&old_rd
->refcount
))
8000 atomic_inc(&rd
->refcount
);
8003 cpumask_set_cpu(rq
->cpu
, rd
->span
);
8004 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
8007 spin_unlock_irqrestore(&rq
->lock
, flags
);
8010 free_rootdomain(old_rd
);
8013 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
8015 gfp_t gfp
= GFP_KERNEL
;
8017 memset(rd
, 0, sizeof(*rd
));
8022 if (!alloc_cpumask_var(&rd
->span
, gfp
))
8024 if (!alloc_cpumask_var(&rd
->online
, gfp
))
8026 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
8029 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
8034 free_cpumask_var(rd
->rto_mask
);
8036 free_cpumask_var(rd
->online
);
8038 free_cpumask_var(rd
->span
);
8043 static void init_defrootdomain(void)
8045 init_rootdomain(&def_root_domain
, true);
8047 atomic_set(&def_root_domain
.refcount
, 1);
8050 static struct root_domain
*alloc_rootdomain(void)
8052 struct root_domain
*rd
;
8054 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
8058 if (init_rootdomain(rd
, false) != 0) {
8067 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8068 * hold the hotplug lock.
8071 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
8073 struct rq
*rq
= cpu_rq(cpu
);
8074 struct sched_domain
*tmp
;
8076 /* Remove the sched domains which do not contribute to scheduling. */
8077 for (tmp
= sd
; tmp
; ) {
8078 struct sched_domain
*parent
= tmp
->parent
;
8082 if (sd_parent_degenerate(tmp
, parent
)) {
8083 tmp
->parent
= parent
->parent
;
8085 parent
->parent
->child
= tmp
;
8090 if (sd
&& sd_degenerate(sd
)) {
8096 sched_domain_debug(sd
, cpu
);
8098 rq_attach_root(rq
, rd
);
8099 rcu_assign_pointer(rq
->sd
, sd
);
8102 /* cpus with isolated domains */
8103 static cpumask_var_t cpu_isolated_map
;
8105 /* Setup the mask of cpus configured for isolated domains */
8106 static int __init
isolated_cpu_setup(char *str
)
8108 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8109 cpulist_parse(str
, cpu_isolated_map
);
8113 __setup("isolcpus=", isolated_cpu_setup
);
8116 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8117 * to a function which identifies what group(along with sched group) a CPU
8118 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8119 * (due to the fact that we keep track of groups covered with a struct cpumask).
8121 * init_sched_build_groups will build a circular linked list of the groups
8122 * covered by the given span, and will set each group's ->cpumask correctly,
8123 * and ->cpu_power to 0.
8126 init_sched_build_groups(const struct cpumask
*span
,
8127 const struct cpumask
*cpu_map
,
8128 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
8129 struct sched_group
**sg
,
8130 struct cpumask
*tmpmask
),
8131 struct cpumask
*covered
, struct cpumask
*tmpmask
)
8133 struct sched_group
*first
= NULL
, *last
= NULL
;
8136 cpumask_clear(covered
);
8138 for_each_cpu(i
, span
) {
8139 struct sched_group
*sg
;
8140 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
8143 if (cpumask_test_cpu(i
, covered
))
8146 cpumask_clear(sched_group_cpus(sg
));
8149 for_each_cpu(j
, span
) {
8150 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
8153 cpumask_set_cpu(j
, covered
);
8154 cpumask_set_cpu(j
, sched_group_cpus(sg
));
8165 #define SD_NODES_PER_DOMAIN 16
8170 * find_next_best_node - find the next node to include in a sched_domain
8171 * @node: node whose sched_domain we're building
8172 * @used_nodes: nodes already in the sched_domain
8174 * Find the next node to include in a given scheduling domain. Simply
8175 * finds the closest node not already in the @used_nodes map.
8177 * Should use nodemask_t.
8179 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
8181 int i
, n
, val
, min_val
, best_node
= 0;
8185 for (i
= 0; i
< nr_node_ids
; i
++) {
8186 /* Start at @node */
8187 n
= (node
+ i
) % nr_node_ids
;
8189 if (!nr_cpus_node(n
))
8192 /* Skip already used nodes */
8193 if (node_isset(n
, *used_nodes
))
8196 /* Simple min distance search */
8197 val
= node_distance(node
, n
);
8199 if (val
< min_val
) {
8205 node_set(best_node
, *used_nodes
);
8210 * sched_domain_node_span - get a cpumask for a node's sched_domain
8211 * @node: node whose cpumask we're constructing
8212 * @span: resulting cpumask
8214 * Given a node, construct a good cpumask for its sched_domain to span. It
8215 * should be one that prevents unnecessary balancing, but also spreads tasks
8218 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8220 nodemask_t used_nodes
;
8223 cpumask_clear(span
);
8224 nodes_clear(used_nodes
);
8226 cpumask_or(span
, span
, cpumask_of_node(node
));
8227 node_set(node
, used_nodes
);
8229 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8230 int next_node
= find_next_best_node(node
, &used_nodes
);
8232 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8235 #endif /* CONFIG_NUMA */
8237 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8240 * The cpus mask in sched_group and sched_domain hangs off the end.
8242 * ( See the the comments in include/linux/sched.h:struct sched_group
8243 * and struct sched_domain. )
8245 struct static_sched_group
{
8246 struct sched_group sg
;
8247 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8250 struct static_sched_domain
{
8251 struct sched_domain sd
;
8252 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8258 cpumask_var_t domainspan
;
8259 cpumask_var_t covered
;
8260 cpumask_var_t notcovered
;
8262 cpumask_var_t nodemask
;
8263 cpumask_var_t this_sibling_map
;
8264 cpumask_var_t this_core_map
;
8265 cpumask_var_t send_covered
;
8266 cpumask_var_t tmpmask
;
8267 struct sched_group
**sched_group_nodes
;
8268 struct root_domain
*rd
;
8272 sa_sched_groups
= 0,
8277 sa_this_sibling_map
,
8279 sa_sched_group_nodes
,
8289 * SMT sched-domains:
8291 #ifdef CONFIG_SCHED_SMT
8292 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8293 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
8296 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8297 struct sched_group
**sg
, struct cpumask
*unused
)
8300 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
8303 #endif /* CONFIG_SCHED_SMT */
8306 * multi-core sched-domains:
8308 #ifdef CONFIG_SCHED_MC
8309 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8310 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8311 #endif /* CONFIG_SCHED_MC */
8313 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8315 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8316 struct sched_group
**sg
, struct cpumask
*mask
)
8320 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8321 group
= cpumask_first(mask
);
8323 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8326 #elif defined(CONFIG_SCHED_MC)
8328 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8329 struct sched_group
**sg
, struct cpumask
*unused
)
8332 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8337 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8338 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8341 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8342 struct sched_group
**sg
, struct cpumask
*mask
)
8345 #ifdef CONFIG_SCHED_MC
8346 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8347 group
= cpumask_first(mask
);
8348 #elif defined(CONFIG_SCHED_SMT)
8349 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8350 group
= cpumask_first(mask
);
8355 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8361 * The init_sched_build_groups can't handle what we want to do with node
8362 * groups, so roll our own. Now each node has its own list of groups which
8363 * gets dynamically allocated.
8365 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8366 static struct sched_group
***sched_group_nodes_bycpu
;
8368 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8369 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8371 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8372 struct sched_group
**sg
,
8373 struct cpumask
*nodemask
)
8377 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8378 group
= cpumask_first(nodemask
);
8381 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8385 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8387 struct sched_group
*sg
= group_head
;
8393 for_each_cpu(j
, sched_group_cpus(sg
)) {
8394 struct sched_domain
*sd
;
8396 sd
= &per_cpu(phys_domains
, j
).sd
;
8397 if (j
!= group_first_cpu(sd
->groups
)) {
8399 * Only add "power" once for each
8405 sg
->cpu_power
+= sd
->groups
->cpu_power
;
8408 } while (sg
!= group_head
);
8411 static int build_numa_sched_groups(struct s_data
*d
,
8412 const struct cpumask
*cpu_map
, int num
)
8414 struct sched_domain
*sd
;
8415 struct sched_group
*sg
, *prev
;
8418 cpumask_clear(d
->covered
);
8419 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
8420 if (cpumask_empty(d
->nodemask
)) {
8421 d
->sched_group_nodes
[num
] = NULL
;
8425 sched_domain_node_span(num
, d
->domainspan
);
8426 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
8428 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8431 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
8435 d
->sched_group_nodes
[num
] = sg
;
8437 for_each_cpu(j
, d
->nodemask
) {
8438 sd
= &per_cpu(node_domains
, j
).sd
;
8443 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
8445 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
8448 for (j
= 0; j
< nr_node_ids
; j
++) {
8449 n
= (num
+ j
) % nr_node_ids
;
8450 cpumask_complement(d
->notcovered
, d
->covered
);
8451 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
8452 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
8453 if (cpumask_empty(d
->tmpmask
))
8455 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
8456 if (cpumask_empty(d
->tmpmask
))
8458 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8462 "Can not alloc domain group for node %d\n", j
);
8466 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
8467 sg
->next
= prev
->next
;
8468 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
8475 #endif /* CONFIG_NUMA */
8478 /* Free memory allocated for various sched_group structures */
8479 static void free_sched_groups(const struct cpumask
*cpu_map
,
8480 struct cpumask
*nodemask
)
8484 for_each_cpu(cpu
, cpu_map
) {
8485 struct sched_group
**sched_group_nodes
8486 = sched_group_nodes_bycpu
[cpu
];
8488 if (!sched_group_nodes
)
8491 for (i
= 0; i
< nr_node_ids
; i
++) {
8492 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8494 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8495 if (cpumask_empty(nodemask
))
8505 if (oldsg
!= sched_group_nodes
[i
])
8508 kfree(sched_group_nodes
);
8509 sched_group_nodes_bycpu
[cpu
] = NULL
;
8512 #else /* !CONFIG_NUMA */
8513 static void free_sched_groups(const struct cpumask
*cpu_map
,
8514 struct cpumask
*nodemask
)
8517 #endif /* CONFIG_NUMA */
8520 * Initialize sched groups cpu_power.
8522 * cpu_power indicates the capacity of sched group, which is used while
8523 * distributing the load between different sched groups in a sched domain.
8524 * Typically cpu_power for all the groups in a sched domain will be same unless
8525 * there are asymmetries in the topology. If there are asymmetries, group
8526 * having more cpu_power will pickup more load compared to the group having
8529 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8531 struct sched_domain
*child
;
8532 struct sched_group
*group
;
8536 WARN_ON(!sd
|| !sd
->groups
);
8538 if (cpu
!= group_first_cpu(sd
->groups
))
8543 sd
->groups
->cpu_power
= 0;
8546 power
= SCHED_LOAD_SCALE
;
8547 weight
= cpumask_weight(sched_domain_span(sd
));
8549 * SMT siblings share the power of a single core.
8550 * Usually multiple threads get a better yield out of
8551 * that one core than a single thread would have,
8552 * reflect that in sd->smt_gain.
8554 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
8555 power
*= sd
->smt_gain
;
8557 power
>>= SCHED_LOAD_SHIFT
;
8559 sd
->groups
->cpu_power
+= power
;
8564 * Add cpu_power of each child group to this groups cpu_power.
8566 group
= child
->groups
;
8568 sd
->groups
->cpu_power
+= group
->cpu_power
;
8569 group
= group
->next
;
8570 } while (group
!= child
->groups
);
8574 * Initializers for schedule domains
8575 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8578 #ifdef CONFIG_SCHED_DEBUG
8579 # define SD_INIT_NAME(sd, type) sd->name = #type
8581 # define SD_INIT_NAME(sd, type) do { } while (0)
8584 #define SD_INIT(sd, type) sd_init_##type(sd)
8586 #define SD_INIT_FUNC(type) \
8587 static noinline void sd_init_##type(struct sched_domain *sd) \
8589 memset(sd, 0, sizeof(*sd)); \
8590 *sd = SD_##type##_INIT; \
8591 sd->level = SD_LV_##type; \
8592 SD_INIT_NAME(sd, type); \
8597 SD_INIT_FUNC(ALLNODES
)
8600 #ifdef CONFIG_SCHED_SMT
8601 SD_INIT_FUNC(SIBLING
)
8603 #ifdef CONFIG_SCHED_MC
8607 static int default_relax_domain_level
= -1;
8609 static int __init
setup_relax_domain_level(char *str
)
8613 val
= simple_strtoul(str
, NULL
, 0);
8614 if (val
< SD_LV_MAX
)
8615 default_relax_domain_level
= val
;
8619 __setup("relax_domain_level=", setup_relax_domain_level
);
8621 static void set_domain_attribute(struct sched_domain
*sd
,
8622 struct sched_domain_attr
*attr
)
8626 if (!attr
|| attr
->relax_domain_level
< 0) {
8627 if (default_relax_domain_level
< 0)
8630 request
= default_relax_domain_level
;
8632 request
= attr
->relax_domain_level
;
8633 if (request
< sd
->level
) {
8634 /* turn off idle balance on this domain */
8635 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8637 /* turn on idle balance on this domain */
8638 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8642 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
8643 const struct cpumask
*cpu_map
)
8646 case sa_sched_groups
:
8647 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
8648 d
->sched_group_nodes
= NULL
;
8650 free_rootdomain(d
->rd
); /* fall through */
8652 free_cpumask_var(d
->tmpmask
); /* fall through */
8653 case sa_send_covered
:
8654 free_cpumask_var(d
->send_covered
); /* fall through */
8655 case sa_this_core_map
:
8656 free_cpumask_var(d
->this_core_map
); /* fall through */
8657 case sa_this_sibling_map
:
8658 free_cpumask_var(d
->this_sibling_map
); /* fall through */
8660 free_cpumask_var(d
->nodemask
); /* fall through */
8661 case sa_sched_group_nodes
:
8663 kfree(d
->sched_group_nodes
); /* fall through */
8665 free_cpumask_var(d
->notcovered
); /* fall through */
8667 free_cpumask_var(d
->covered
); /* fall through */
8669 free_cpumask_var(d
->domainspan
); /* fall through */
8676 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
8677 const struct cpumask
*cpu_map
)
8680 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
8682 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
8683 return sa_domainspan
;
8684 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
8686 /* Allocate the per-node list of sched groups */
8687 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
8688 sizeof(struct sched_group
*), GFP_KERNEL
);
8689 if (!d
->sched_group_nodes
) {
8690 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8691 return sa_notcovered
;
8693 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
8695 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
8696 return sa_sched_group_nodes
;
8697 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
8699 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
8700 return sa_this_sibling_map
;
8701 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
8702 return sa_this_core_map
;
8703 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
8704 return sa_send_covered
;
8705 d
->rd
= alloc_rootdomain();
8707 printk(KERN_WARNING
"Cannot alloc root domain\n");
8710 return sa_rootdomain
;
8713 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
8714 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
8716 struct sched_domain
*sd
= NULL
;
8718 struct sched_domain
*parent
;
8721 if (cpumask_weight(cpu_map
) >
8722 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
8723 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8724 SD_INIT(sd
, ALLNODES
);
8725 set_domain_attribute(sd
, attr
);
8726 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8727 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8732 sd
= &per_cpu(node_domains
, i
).sd
;
8734 set_domain_attribute(sd
, attr
);
8735 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8736 sd
->parent
= parent
;
8739 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
8744 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
8745 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8746 struct sched_domain
*parent
, int i
)
8748 struct sched_domain
*sd
;
8749 sd
= &per_cpu(phys_domains
, i
).sd
;
8751 set_domain_attribute(sd
, attr
);
8752 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
8753 sd
->parent
= parent
;
8756 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8760 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
8761 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8762 struct sched_domain
*parent
, int i
)
8764 struct sched_domain
*sd
= parent
;
8765 #ifdef CONFIG_SCHED_MC
8766 sd
= &per_cpu(core_domains
, i
).sd
;
8768 set_domain_attribute(sd
, attr
);
8769 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
8770 sd
->parent
= parent
;
8772 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8777 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
8778 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8779 struct sched_domain
*parent
, int i
)
8781 struct sched_domain
*sd
= parent
;
8782 #ifdef CONFIG_SCHED_SMT
8783 sd
= &per_cpu(cpu_domains
, i
).sd
;
8784 SD_INIT(sd
, SIBLING
);
8785 set_domain_attribute(sd
, attr
);
8786 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
8787 sd
->parent
= parent
;
8789 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8794 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
8795 const struct cpumask
*cpu_map
, int cpu
)
8798 #ifdef CONFIG_SCHED_SMT
8799 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
8800 cpumask_and(d
->this_sibling_map
, cpu_map
,
8801 topology_thread_cpumask(cpu
));
8802 if (cpu
== cpumask_first(d
->this_sibling_map
))
8803 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
8805 d
->send_covered
, d
->tmpmask
);
8808 #ifdef CONFIG_SCHED_MC
8809 case SD_LV_MC
: /* set up multi-core groups */
8810 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
8811 if (cpu
== cpumask_first(d
->this_core_map
))
8812 init_sched_build_groups(d
->this_core_map
, cpu_map
,
8814 d
->send_covered
, d
->tmpmask
);
8817 case SD_LV_CPU
: /* set up physical groups */
8818 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
8819 if (!cpumask_empty(d
->nodemask
))
8820 init_sched_build_groups(d
->nodemask
, cpu_map
,
8822 d
->send_covered
, d
->tmpmask
);
8825 case SD_LV_ALLNODES
:
8826 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
8827 d
->send_covered
, d
->tmpmask
);
8836 * Build sched domains for a given set of cpus and attach the sched domains
8837 * to the individual cpus
8839 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8840 struct sched_domain_attr
*attr
)
8842 enum s_alloc alloc_state
= sa_none
;
8844 struct sched_domain
*sd
;
8850 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
8851 if (alloc_state
!= sa_rootdomain
)
8853 alloc_state
= sa_sched_groups
;
8856 * Set up domains for cpus specified by the cpu_map.
8858 for_each_cpu(i
, cpu_map
) {
8859 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
8862 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
8863 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8864 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8865 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8868 for_each_cpu(i
, cpu_map
) {
8869 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
8870 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
8873 /* Set up physical groups */
8874 for (i
= 0; i
< nr_node_ids
; i
++)
8875 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
8878 /* Set up node groups */
8880 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
8882 for (i
= 0; i
< nr_node_ids
; i
++)
8883 if (build_numa_sched_groups(&d
, cpu_map
, i
))
8887 /* Calculate CPU power for physical packages and nodes */
8888 #ifdef CONFIG_SCHED_SMT
8889 for_each_cpu(i
, cpu_map
) {
8890 sd
= &per_cpu(cpu_domains
, i
).sd
;
8891 init_sched_groups_power(i
, sd
);
8894 #ifdef CONFIG_SCHED_MC
8895 for_each_cpu(i
, cpu_map
) {
8896 sd
= &per_cpu(core_domains
, i
).sd
;
8897 init_sched_groups_power(i
, sd
);
8901 for_each_cpu(i
, cpu_map
) {
8902 sd
= &per_cpu(phys_domains
, i
).sd
;
8903 init_sched_groups_power(i
, sd
);
8907 for (i
= 0; i
< nr_node_ids
; i
++)
8908 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
8910 if (d
.sd_allnodes
) {
8911 struct sched_group
*sg
;
8913 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8915 init_numa_sched_groups_power(sg
);
8919 /* Attach the domains */
8920 for_each_cpu(i
, cpu_map
) {
8921 #ifdef CONFIG_SCHED_SMT
8922 sd
= &per_cpu(cpu_domains
, i
).sd
;
8923 #elif defined(CONFIG_SCHED_MC)
8924 sd
= &per_cpu(core_domains
, i
).sd
;
8926 sd
= &per_cpu(phys_domains
, i
).sd
;
8928 cpu_attach_domain(sd
, d
.rd
, i
);
8931 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
8932 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
8936 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
8940 static int build_sched_domains(const struct cpumask
*cpu_map
)
8942 return __build_sched_domains(cpu_map
, NULL
);
8945 static struct cpumask
*doms_cur
; /* current sched domains */
8946 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8947 static struct sched_domain_attr
*dattr_cur
;
8948 /* attribues of custom domains in 'doms_cur' */
8951 * Special case: If a kmalloc of a doms_cur partition (array of
8952 * cpumask) fails, then fallback to a single sched domain,
8953 * as determined by the single cpumask fallback_doms.
8955 static cpumask_var_t fallback_doms
;
8958 * arch_update_cpu_topology lets virtualized architectures update the
8959 * cpu core maps. It is supposed to return 1 if the topology changed
8960 * or 0 if it stayed the same.
8962 int __attribute__((weak
)) arch_update_cpu_topology(void)
8968 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8969 * For now this just excludes isolated cpus, but could be used to
8970 * exclude other special cases in the future.
8972 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
8976 arch_update_cpu_topology();
8978 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
8980 doms_cur
= fallback_doms
;
8981 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
8983 err
= build_sched_domains(doms_cur
);
8984 register_sched_domain_sysctl();
8989 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
8990 struct cpumask
*tmpmask
)
8992 free_sched_groups(cpu_map
, tmpmask
);
8996 * Detach sched domains from a group of cpus specified in cpu_map
8997 * These cpus will now be attached to the NULL domain
8999 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
9001 /* Save because hotplug lock held. */
9002 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
9005 for_each_cpu(i
, cpu_map
)
9006 cpu_attach_domain(NULL
, &def_root_domain
, i
);
9007 synchronize_sched();
9008 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
9011 /* handle null as "default" */
9012 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
9013 struct sched_domain_attr
*new, int idx_new
)
9015 struct sched_domain_attr tmp
;
9022 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
9023 new ? (new + idx_new
) : &tmp
,
9024 sizeof(struct sched_domain_attr
));
9028 * Partition sched domains as specified by the 'ndoms_new'
9029 * cpumasks in the array doms_new[] of cpumasks. This compares
9030 * doms_new[] to the current sched domain partitioning, doms_cur[].
9031 * It destroys each deleted domain and builds each new domain.
9033 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9034 * The masks don't intersect (don't overlap.) We should setup one
9035 * sched domain for each mask. CPUs not in any of the cpumasks will
9036 * not be load balanced. If the same cpumask appears both in the
9037 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9040 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9041 * ownership of it and will kfree it when done with it. If the caller
9042 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9043 * ndoms_new == 1, and partition_sched_domains() will fallback to
9044 * the single partition 'fallback_doms', it also forces the domains
9047 * If doms_new == NULL it will be replaced with cpu_online_mask.
9048 * ndoms_new == 0 is a special case for destroying existing domains,
9049 * and it will not create the default domain.
9051 * Call with hotplug lock held
9053 /* FIXME: Change to struct cpumask *doms_new[] */
9054 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
9055 struct sched_domain_attr
*dattr_new
)
9060 mutex_lock(&sched_domains_mutex
);
9062 /* always unregister in case we don't destroy any domains */
9063 unregister_sched_domain_sysctl();
9065 /* Let architecture update cpu core mappings. */
9066 new_topology
= arch_update_cpu_topology();
9068 n
= doms_new
? ndoms_new
: 0;
9070 /* Destroy deleted domains */
9071 for (i
= 0; i
< ndoms_cur
; i
++) {
9072 for (j
= 0; j
< n
&& !new_topology
; j
++) {
9073 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
9074 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
9077 /* no match - a current sched domain not in new doms_new[] */
9078 detach_destroy_domains(doms_cur
+ i
);
9083 if (doms_new
== NULL
) {
9085 doms_new
= fallback_doms
;
9086 cpumask_andnot(&doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
9087 WARN_ON_ONCE(dattr_new
);
9090 /* Build new domains */
9091 for (i
= 0; i
< ndoms_new
; i
++) {
9092 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
9093 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
9094 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
9097 /* no match - add a new doms_new */
9098 __build_sched_domains(doms_new
+ i
,
9099 dattr_new
? dattr_new
+ i
: NULL
);
9104 /* Remember the new sched domains */
9105 if (doms_cur
!= fallback_doms
)
9107 kfree(dattr_cur
); /* kfree(NULL) is safe */
9108 doms_cur
= doms_new
;
9109 dattr_cur
= dattr_new
;
9110 ndoms_cur
= ndoms_new
;
9112 register_sched_domain_sysctl();
9114 mutex_unlock(&sched_domains_mutex
);
9117 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9118 static void arch_reinit_sched_domains(void)
9122 /* Destroy domains first to force the rebuild */
9123 partition_sched_domains(0, NULL
, NULL
);
9125 rebuild_sched_domains();
9129 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
9131 unsigned int level
= 0;
9133 if (sscanf(buf
, "%u", &level
) != 1)
9137 * level is always be positive so don't check for
9138 * level < POWERSAVINGS_BALANCE_NONE which is 0
9139 * What happens on 0 or 1 byte write,
9140 * need to check for count as well?
9143 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
9147 sched_smt_power_savings
= level
;
9149 sched_mc_power_savings
= level
;
9151 arch_reinit_sched_domains();
9156 #ifdef CONFIG_SCHED_MC
9157 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
9160 return sprintf(page
, "%u\n", sched_mc_power_savings
);
9162 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
9163 const char *buf
, size_t count
)
9165 return sched_power_savings_store(buf
, count
, 0);
9167 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
9168 sched_mc_power_savings_show
,
9169 sched_mc_power_savings_store
);
9172 #ifdef CONFIG_SCHED_SMT
9173 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
9176 return sprintf(page
, "%u\n", sched_smt_power_savings
);
9178 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
9179 const char *buf
, size_t count
)
9181 return sched_power_savings_store(buf
, count
, 1);
9183 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
9184 sched_smt_power_savings_show
,
9185 sched_smt_power_savings_store
);
9188 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
9192 #ifdef CONFIG_SCHED_SMT
9194 err
= sysfs_create_file(&cls
->kset
.kobj
,
9195 &attr_sched_smt_power_savings
.attr
);
9197 #ifdef CONFIG_SCHED_MC
9198 if (!err
&& mc_capable())
9199 err
= sysfs_create_file(&cls
->kset
.kobj
,
9200 &attr_sched_mc_power_savings
.attr
);
9204 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9206 #ifndef CONFIG_CPUSETS
9208 * Add online and remove offline CPUs from the scheduler domains.
9209 * When cpusets are enabled they take over this function.
9211 static int update_sched_domains(struct notifier_block
*nfb
,
9212 unsigned long action
, void *hcpu
)
9216 case CPU_ONLINE_FROZEN
:
9217 case CPU_DOWN_PREPARE
:
9218 case CPU_DOWN_PREPARE_FROZEN
:
9219 case CPU_DOWN_FAILED
:
9220 case CPU_DOWN_FAILED_FROZEN
:
9221 partition_sched_domains(1, NULL
, NULL
);
9230 static int update_runtime(struct notifier_block
*nfb
,
9231 unsigned long action
, void *hcpu
)
9233 int cpu
= (int)(long)hcpu
;
9236 case CPU_DOWN_PREPARE
:
9237 case CPU_DOWN_PREPARE_FROZEN
:
9238 disable_runtime(cpu_rq(cpu
));
9241 case CPU_DOWN_FAILED
:
9242 case CPU_DOWN_FAILED_FROZEN
:
9244 case CPU_ONLINE_FROZEN
:
9245 enable_runtime(cpu_rq(cpu
));
9253 void __init
sched_init_smp(void)
9255 cpumask_var_t non_isolated_cpus
;
9257 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
9258 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9260 #if defined(CONFIG_NUMA)
9261 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
9263 BUG_ON(sched_group_nodes_bycpu
== NULL
);
9266 mutex_lock(&sched_domains_mutex
);
9267 arch_init_sched_domains(cpu_active_mask
);
9268 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9269 if (cpumask_empty(non_isolated_cpus
))
9270 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9271 mutex_unlock(&sched_domains_mutex
);
9274 #ifndef CONFIG_CPUSETS
9275 /* XXX: Theoretical race here - CPU may be hotplugged now */
9276 hotcpu_notifier(update_sched_domains
, 0);
9279 /* RT runtime code needs to handle some hotplug events */
9280 hotcpu_notifier(update_runtime
, 0);
9284 /* Move init over to a non-isolated CPU */
9285 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9287 sched_init_granularity();
9288 free_cpumask_var(non_isolated_cpus
);
9290 init_sched_rt_class();
9293 void __init
sched_init_smp(void)
9295 sched_init_granularity();
9297 #endif /* CONFIG_SMP */
9299 const_debug
unsigned int sysctl_timer_migration
= 1;
9301 int in_sched_functions(unsigned long addr
)
9303 return in_lock_functions(addr
) ||
9304 (addr
>= (unsigned long)__sched_text_start
9305 && addr
< (unsigned long)__sched_text_end
);
9308 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9310 cfs_rq
->tasks_timeline
= RB_ROOT
;
9311 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9312 #ifdef CONFIG_FAIR_GROUP_SCHED
9315 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9318 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9320 struct rt_prio_array
*array
;
9323 array
= &rt_rq
->active
;
9324 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9325 INIT_LIST_HEAD(array
->queue
+ i
);
9326 __clear_bit(i
, array
->bitmap
);
9328 /* delimiter for bitsearch: */
9329 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9331 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9332 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9334 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9338 rt_rq
->rt_nr_migratory
= 0;
9339 rt_rq
->overloaded
= 0;
9340 plist_head_init(&rt_rq
->pushable_tasks
, &rq
->lock
);
9344 rt_rq
->rt_throttled
= 0;
9345 rt_rq
->rt_runtime
= 0;
9346 spin_lock_init(&rt_rq
->rt_runtime_lock
);
9348 #ifdef CONFIG_RT_GROUP_SCHED
9349 rt_rq
->rt_nr_boosted
= 0;
9354 #ifdef CONFIG_FAIR_GROUP_SCHED
9355 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9356 struct sched_entity
*se
, int cpu
, int add
,
9357 struct sched_entity
*parent
)
9359 struct rq
*rq
= cpu_rq(cpu
);
9360 tg
->cfs_rq
[cpu
] = cfs_rq
;
9361 init_cfs_rq(cfs_rq
, rq
);
9364 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9367 /* se could be NULL for init_task_group */
9372 se
->cfs_rq
= &rq
->cfs
;
9374 se
->cfs_rq
= parent
->my_q
;
9377 se
->load
.weight
= tg
->shares
;
9378 se
->load
.inv_weight
= 0;
9379 se
->parent
= parent
;
9383 #ifdef CONFIG_RT_GROUP_SCHED
9384 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9385 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9386 struct sched_rt_entity
*parent
)
9388 struct rq
*rq
= cpu_rq(cpu
);
9390 tg
->rt_rq
[cpu
] = rt_rq
;
9391 init_rt_rq(rt_rq
, rq
);
9393 rt_rq
->rt_se
= rt_se
;
9394 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9396 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9398 tg
->rt_se
[cpu
] = rt_se
;
9403 rt_se
->rt_rq
= &rq
->rt
;
9405 rt_se
->rt_rq
= parent
->my_q
;
9407 rt_se
->my_q
= rt_rq
;
9408 rt_se
->parent
= parent
;
9409 INIT_LIST_HEAD(&rt_se
->run_list
);
9413 void __init
sched_init(void)
9416 unsigned long alloc_size
= 0, ptr
;
9418 #ifdef CONFIG_FAIR_GROUP_SCHED
9419 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9421 #ifdef CONFIG_RT_GROUP_SCHED
9422 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9424 #ifdef CONFIG_USER_SCHED
9427 #ifdef CONFIG_CPUMASK_OFFSTACK
9428 alloc_size
+= num_possible_cpus() * cpumask_size();
9431 * As sched_init() is called before page_alloc is setup,
9432 * we use alloc_bootmem().
9435 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9437 #ifdef CONFIG_FAIR_GROUP_SCHED
9438 init_task_group
.se
= (struct sched_entity
**)ptr
;
9439 ptr
+= nr_cpu_ids
* sizeof(void **);
9441 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9442 ptr
+= nr_cpu_ids
* sizeof(void **);
9444 #ifdef CONFIG_USER_SCHED
9445 root_task_group
.se
= (struct sched_entity
**)ptr
;
9446 ptr
+= nr_cpu_ids
* sizeof(void **);
9448 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9449 ptr
+= nr_cpu_ids
* sizeof(void **);
9450 #endif /* CONFIG_USER_SCHED */
9451 #endif /* CONFIG_FAIR_GROUP_SCHED */
9452 #ifdef CONFIG_RT_GROUP_SCHED
9453 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9454 ptr
+= nr_cpu_ids
* sizeof(void **);
9456 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9457 ptr
+= nr_cpu_ids
* sizeof(void **);
9459 #ifdef CONFIG_USER_SCHED
9460 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9461 ptr
+= nr_cpu_ids
* sizeof(void **);
9463 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9464 ptr
+= nr_cpu_ids
* sizeof(void **);
9465 #endif /* CONFIG_USER_SCHED */
9466 #endif /* CONFIG_RT_GROUP_SCHED */
9467 #ifdef CONFIG_CPUMASK_OFFSTACK
9468 for_each_possible_cpu(i
) {
9469 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9470 ptr
+= cpumask_size();
9472 #endif /* CONFIG_CPUMASK_OFFSTACK */
9476 init_defrootdomain();
9479 init_rt_bandwidth(&def_rt_bandwidth
,
9480 global_rt_period(), global_rt_runtime());
9482 #ifdef CONFIG_RT_GROUP_SCHED
9483 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9484 global_rt_period(), global_rt_runtime());
9485 #ifdef CONFIG_USER_SCHED
9486 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9487 global_rt_period(), RUNTIME_INF
);
9488 #endif /* CONFIG_USER_SCHED */
9489 #endif /* CONFIG_RT_GROUP_SCHED */
9491 #ifdef CONFIG_GROUP_SCHED
9492 list_add(&init_task_group
.list
, &task_groups
);
9493 INIT_LIST_HEAD(&init_task_group
.children
);
9495 #ifdef CONFIG_USER_SCHED
9496 INIT_LIST_HEAD(&root_task_group
.children
);
9497 init_task_group
.parent
= &root_task_group
;
9498 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9499 #endif /* CONFIG_USER_SCHED */
9500 #endif /* CONFIG_GROUP_SCHED */
9502 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9503 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
9504 __alignof__(unsigned long));
9506 for_each_possible_cpu(i
) {
9510 spin_lock_init(&rq
->lock
);
9512 rq
->calc_load_active
= 0;
9513 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9514 init_cfs_rq(&rq
->cfs
, rq
);
9515 init_rt_rq(&rq
->rt
, rq
);
9516 #ifdef CONFIG_FAIR_GROUP_SCHED
9517 init_task_group
.shares
= init_task_group_load
;
9518 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9519 #ifdef CONFIG_CGROUP_SCHED
9521 * How much cpu bandwidth does init_task_group get?
9523 * In case of task-groups formed thr' the cgroup filesystem, it
9524 * gets 100% of the cpu resources in the system. This overall
9525 * system cpu resource is divided among the tasks of
9526 * init_task_group and its child task-groups in a fair manner,
9527 * based on each entity's (task or task-group's) weight
9528 * (se->load.weight).
9530 * In other words, if init_task_group has 10 tasks of weight
9531 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9532 * then A0's share of the cpu resource is:
9534 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9536 * We achieve this by letting init_task_group's tasks sit
9537 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9539 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9540 #elif defined CONFIG_USER_SCHED
9541 root_task_group
.shares
= NICE_0_LOAD
;
9542 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9544 * In case of task-groups formed thr' the user id of tasks,
9545 * init_task_group represents tasks belonging to root user.
9546 * Hence it forms a sibling of all subsequent groups formed.
9547 * In this case, init_task_group gets only a fraction of overall
9548 * system cpu resource, based on the weight assigned to root
9549 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9550 * by letting tasks of init_task_group sit in a separate cfs_rq
9551 * (init_tg_cfs_rq) and having one entity represent this group of
9552 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9554 init_tg_cfs_entry(&init_task_group
,
9555 &per_cpu(init_tg_cfs_rq
, i
),
9556 &per_cpu(init_sched_entity
, i
), i
, 1,
9557 root_task_group
.se
[i
]);
9560 #endif /* CONFIG_FAIR_GROUP_SCHED */
9562 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9563 #ifdef CONFIG_RT_GROUP_SCHED
9564 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9565 #ifdef CONFIG_CGROUP_SCHED
9566 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9567 #elif defined CONFIG_USER_SCHED
9568 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9569 init_tg_rt_entry(&init_task_group
,
9570 &per_cpu(init_rt_rq
, i
),
9571 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9572 root_task_group
.rt_se
[i
]);
9576 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9577 rq
->cpu_load
[j
] = 0;
9581 rq
->post_schedule
= 0;
9582 rq
->active_balance
= 0;
9583 rq
->next_balance
= jiffies
;
9587 rq
->migration_thread
= NULL
;
9589 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
9590 INIT_LIST_HEAD(&rq
->migration_queue
);
9591 rq_attach_root(rq
, &def_root_domain
);
9594 atomic_set(&rq
->nr_iowait
, 0);
9597 set_load_weight(&init_task
);
9599 #ifdef CONFIG_PREEMPT_NOTIFIERS
9600 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9604 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9607 #ifdef CONFIG_RT_MUTEXES
9608 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9612 * The boot idle thread does lazy MMU switching as well:
9614 atomic_inc(&init_mm
.mm_count
);
9615 enter_lazy_tlb(&init_mm
, current
);
9618 * Make us the idle thread. Technically, schedule() should not be
9619 * called from this thread, however somewhere below it might be,
9620 * but because we are the idle thread, we just pick up running again
9621 * when this runqueue becomes "idle".
9623 init_idle(current
, smp_processor_id());
9625 calc_load_update
= jiffies
+ LOAD_FREQ
;
9628 * During early bootup we pretend to be a normal task:
9630 current
->sched_class
= &fair_sched_class
;
9632 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9633 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9636 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9637 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9639 /* May be allocated at isolcpus cmdline parse time */
9640 if (cpu_isolated_map
== NULL
)
9641 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9646 scheduler_running
= 1;
9649 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9650 static inline int preempt_count_equals(int preempt_offset
)
9652 int nested
= preempt_count() & ~PREEMPT_ACTIVE
;
9654 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
9657 static int __might_sleep_init_called
;
9658 int __init
__might_sleep_init(void)
9660 __might_sleep_init_called
= 1;
9663 early_initcall(__might_sleep_init
);
9665 void __might_sleep(char *file
, int line
, int preempt_offset
)
9668 static unsigned long prev_jiffy
; /* ratelimiting */
9670 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
9673 if (system_state
!= SYSTEM_RUNNING
&&
9674 (!__might_sleep_init_called
|| system_state
!= SYSTEM_BOOTING
))
9676 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9678 prev_jiffy
= jiffies
;
9681 "BUG: sleeping function called from invalid context at %s:%d\n",
9684 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9685 in_atomic(), irqs_disabled(),
9686 current
->pid
, current
->comm
);
9688 debug_show_held_locks(current
);
9689 if (irqs_disabled())
9690 print_irqtrace_events(current
);
9694 EXPORT_SYMBOL(__might_sleep
);
9697 #ifdef CONFIG_MAGIC_SYSRQ
9698 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9702 update_rq_clock(rq
);
9703 on_rq
= p
->se
.on_rq
;
9705 deactivate_task(rq
, p
, 0);
9706 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9708 activate_task(rq
, p
, 0);
9709 resched_task(rq
->curr
);
9713 void normalize_rt_tasks(void)
9715 struct task_struct
*g
, *p
;
9716 unsigned long flags
;
9719 read_lock_irqsave(&tasklist_lock
, flags
);
9720 do_each_thread(g
, p
) {
9722 * Only normalize user tasks:
9727 p
->se
.exec_start
= 0;
9728 #ifdef CONFIG_SCHEDSTATS
9729 p
->se
.wait_start
= 0;
9730 p
->se
.sleep_start
= 0;
9731 p
->se
.block_start
= 0;
9736 * Renice negative nice level userspace
9739 if (TASK_NICE(p
) < 0 && p
->mm
)
9740 set_user_nice(p
, 0);
9744 spin_lock(&p
->pi_lock
);
9745 rq
= __task_rq_lock(p
);
9747 normalize_task(rq
, p
);
9749 __task_rq_unlock(rq
);
9750 spin_unlock(&p
->pi_lock
);
9751 } while_each_thread(g
, p
);
9753 read_unlock_irqrestore(&tasklist_lock
, flags
);
9756 #endif /* CONFIG_MAGIC_SYSRQ */
9760 * These functions are only useful for the IA64 MCA handling.
9762 * They can only be called when the whole system has been
9763 * stopped - every CPU needs to be quiescent, and no scheduling
9764 * activity can take place. Using them for anything else would
9765 * be a serious bug, and as a result, they aren't even visible
9766 * under any other configuration.
9770 * curr_task - return the current task for a given cpu.
9771 * @cpu: the processor in question.
9773 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9775 struct task_struct
*curr_task(int cpu
)
9777 return cpu_curr(cpu
);
9781 * set_curr_task - set the current task for a given cpu.
9782 * @cpu: the processor in question.
9783 * @p: the task pointer to set.
9785 * Description: This function must only be used when non-maskable interrupts
9786 * are serviced on a separate stack. It allows the architecture to switch the
9787 * notion of the current task on a cpu in a non-blocking manner. This function
9788 * must be called with all CPU's synchronized, and interrupts disabled, the
9789 * and caller must save the original value of the current task (see
9790 * curr_task() above) and restore that value before reenabling interrupts and
9791 * re-starting the system.
9793 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9795 void set_curr_task(int cpu
, struct task_struct
*p
)
9802 #ifdef CONFIG_FAIR_GROUP_SCHED
9803 static void free_fair_sched_group(struct task_group
*tg
)
9807 for_each_possible_cpu(i
) {
9809 kfree(tg
->cfs_rq
[i
]);
9819 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9821 struct cfs_rq
*cfs_rq
;
9822 struct sched_entity
*se
;
9826 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9829 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9833 tg
->shares
= NICE_0_LOAD
;
9835 for_each_possible_cpu(i
) {
9838 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9839 GFP_KERNEL
, cpu_to_node(i
));
9843 se
= kzalloc_node(sizeof(struct sched_entity
),
9844 GFP_KERNEL
, cpu_to_node(i
));
9848 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9857 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9859 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9860 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9863 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9865 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9867 #else /* !CONFG_FAIR_GROUP_SCHED */
9868 static inline void free_fair_sched_group(struct task_group
*tg
)
9873 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9878 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9882 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9885 #endif /* CONFIG_FAIR_GROUP_SCHED */
9887 #ifdef CONFIG_RT_GROUP_SCHED
9888 static void free_rt_sched_group(struct task_group
*tg
)
9892 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9894 for_each_possible_cpu(i
) {
9896 kfree(tg
->rt_rq
[i
]);
9898 kfree(tg
->rt_se
[i
]);
9906 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9908 struct rt_rq
*rt_rq
;
9909 struct sched_rt_entity
*rt_se
;
9913 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9916 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9920 init_rt_bandwidth(&tg
->rt_bandwidth
,
9921 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9923 for_each_possible_cpu(i
) {
9926 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9927 GFP_KERNEL
, cpu_to_node(i
));
9931 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9932 GFP_KERNEL
, cpu_to_node(i
));
9936 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9945 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9947 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9948 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9951 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9953 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9955 #else /* !CONFIG_RT_GROUP_SCHED */
9956 static inline void free_rt_sched_group(struct task_group
*tg
)
9961 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9966 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9970 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9973 #endif /* CONFIG_RT_GROUP_SCHED */
9975 #ifdef CONFIG_GROUP_SCHED
9976 static void free_sched_group(struct task_group
*tg
)
9978 free_fair_sched_group(tg
);
9979 free_rt_sched_group(tg
);
9983 /* allocate runqueue etc for a new task group */
9984 struct task_group
*sched_create_group(struct task_group
*parent
)
9986 struct task_group
*tg
;
9987 unsigned long flags
;
9990 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
9992 return ERR_PTR(-ENOMEM
);
9994 if (!alloc_fair_sched_group(tg
, parent
))
9997 if (!alloc_rt_sched_group(tg
, parent
))
10000 spin_lock_irqsave(&task_group_lock
, flags
);
10001 for_each_possible_cpu(i
) {
10002 register_fair_sched_group(tg
, i
);
10003 register_rt_sched_group(tg
, i
);
10005 list_add_rcu(&tg
->list
, &task_groups
);
10007 WARN_ON(!parent
); /* root should already exist */
10009 tg
->parent
= parent
;
10010 INIT_LIST_HEAD(&tg
->children
);
10011 list_add_rcu(&tg
->siblings
, &parent
->children
);
10012 spin_unlock_irqrestore(&task_group_lock
, flags
);
10017 free_sched_group(tg
);
10018 return ERR_PTR(-ENOMEM
);
10021 /* rcu callback to free various structures associated with a task group */
10022 static void free_sched_group_rcu(struct rcu_head
*rhp
)
10024 /* now it should be safe to free those cfs_rqs */
10025 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
10028 /* Destroy runqueue etc associated with a task group */
10029 void sched_destroy_group(struct task_group
*tg
)
10031 unsigned long flags
;
10034 spin_lock_irqsave(&task_group_lock
, flags
);
10035 for_each_possible_cpu(i
) {
10036 unregister_fair_sched_group(tg
, i
);
10037 unregister_rt_sched_group(tg
, i
);
10039 list_del_rcu(&tg
->list
);
10040 list_del_rcu(&tg
->siblings
);
10041 spin_unlock_irqrestore(&task_group_lock
, flags
);
10043 /* wait for possible concurrent references to cfs_rqs complete */
10044 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
10047 /* change task's runqueue when it moves between groups.
10048 * The caller of this function should have put the task in its new group
10049 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10050 * reflect its new group.
10052 void sched_move_task(struct task_struct
*tsk
)
10054 int on_rq
, running
;
10055 unsigned long flags
;
10058 rq
= task_rq_lock(tsk
, &flags
);
10060 update_rq_clock(rq
);
10062 running
= task_current(rq
, tsk
);
10063 on_rq
= tsk
->se
.on_rq
;
10066 dequeue_task(rq
, tsk
, 0);
10067 if (unlikely(running
))
10068 tsk
->sched_class
->put_prev_task(rq
, tsk
);
10070 set_task_rq(tsk
, task_cpu(tsk
));
10072 #ifdef CONFIG_FAIR_GROUP_SCHED
10073 if (tsk
->sched_class
->moved_group
)
10074 tsk
->sched_class
->moved_group(tsk
);
10077 if (unlikely(running
))
10078 tsk
->sched_class
->set_curr_task(rq
);
10080 enqueue_task(rq
, tsk
, 0);
10082 task_rq_unlock(rq
, &flags
);
10084 #endif /* CONFIG_GROUP_SCHED */
10086 #ifdef CONFIG_FAIR_GROUP_SCHED
10087 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10089 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10094 dequeue_entity(cfs_rq
, se
, 0);
10096 se
->load
.weight
= shares
;
10097 se
->load
.inv_weight
= 0;
10100 enqueue_entity(cfs_rq
, se
, 0);
10103 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10105 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10106 struct rq
*rq
= cfs_rq
->rq
;
10107 unsigned long flags
;
10109 spin_lock_irqsave(&rq
->lock
, flags
);
10110 __set_se_shares(se
, shares
);
10111 spin_unlock_irqrestore(&rq
->lock
, flags
);
10114 static DEFINE_MUTEX(shares_mutex
);
10116 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10119 unsigned long flags
;
10122 * We can't change the weight of the root cgroup.
10127 if (shares
< MIN_SHARES
)
10128 shares
= MIN_SHARES
;
10129 else if (shares
> MAX_SHARES
)
10130 shares
= MAX_SHARES
;
10132 mutex_lock(&shares_mutex
);
10133 if (tg
->shares
== shares
)
10136 spin_lock_irqsave(&task_group_lock
, flags
);
10137 for_each_possible_cpu(i
)
10138 unregister_fair_sched_group(tg
, i
);
10139 list_del_rcu(&tg
->siblings
);
10140 spin_unlock_irqrestore(&task_group_lock
, flags
);
10142 /* wait for any ongoing reference to this group to finish */
10143 synchronize_sched();
10146 * Now we are free to modify the group's share on each cpu
10147 * w/o tripping rebalance_share or load_balance_fair.
10149 tg
->shares
= shares
;
10150 for_each_possible_cpu(i
) {
10152 * force a rebalance
10154 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
10155 set_se_shares(tg
->se
[i
], shares
);
10159 * Enable load balance activity on this group, by inserting it back on
10160 * each cpu's rq->leaf_cfs_rq_list.
10162 spin_lock_irqsave(&task_group_lock
, flags
);
10163 for_each_possible_cpu(i
)
10164 register_fair_sched_group(tg
, i
);
10165 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
10166 spin_unlock_irqrestore(&task_group_lock
, flags
);
10168 mutex_unlock(&shares_mutex
);
10172 unsigned long sched_group_shares(struct task_group
*tg
)
10178 #ifdef CONFIG_RT_GROUP_SCHED
10180 * Ensure that the real time constraints are schedulable.
10182 static DEFINE_MUTEX(rt_constraints_mutex
);
10184 static unsigned long to_ratio(u64 period
, u64 runtime
)
10186 if (runtime
== RUNTIME_INF
)
10189 return div64_u64(runtime
<< 20, period
);
10192 /* Must be called with tasklist_lock held */
10193 static inline int tg_has_rt_tasks(struct task_group
*tg
)
10195 struct task_struct
*g
, *p
;
10197 do_each_thread(g
, p
) {
10198 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
10200 } while_each_thread(g
, p
);
10205 struct rt_schedulable_data
{
10206 struct task_group
*tg
;
10211 static int tg_schedulable(struct task_group
*tg
, void *data
)
10213 struct rt_schedulable_data
*d
= data
;
10214 struct task_group
*child
;
10215 unsigned long total
, sum
= 0;
10216 u64 period
, runtime
;
10218 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10219 runtime
= tg
->rt_bandwidth
.rt_runtime
;
10222 period
= d
->rt_period
;
10223 runtime
= d
->rt_runtime
;
10226 #ifdef CONFIG_USER_SCHED
10227 if (tg
== &root_task_group
) {
10228 period
= global_rt_period();
10229 runtime
= global_rt_runtime();
10234 * Cannot have more runtime than the period.
10236 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10240 * Ensure we don't starve existing RT tasks.
10242 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
10245 total
= to_ratio(period
, runtime
);
10248 * Nobody can have more than the global setting allows.
10250 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
10254 * The sum of our children's runtime should not exceed our own.
10256 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
10257 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
10258 runtime
= child
->rt_bandwidth
.rt_runtime
;
10260 if (child
== d
->tg
) {
10261 period
= d
->rt_period
;
10262 runtime
= d
->rt_runtime
;
10265 sum
+= to_ratio(period
, runtime
);
10274 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
10276 struct rt_schedulable_data data
= {
10278 .rt_period
= period
,
10279 .rt_runtime
= runtime
,
10282 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
10285 static int tg_set_bandwidth(struct task_group
*tg
,
10286 u64 rt_period
, u64 rt_runtime
)
10290 mutex_lock(&rt_constraints_mutex
);
10291 read_lock(&tasklist_lock
);
10292 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10296 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10297 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10298 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10300 for_each_possible_cpu(i
) {
10301 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10303 spin_lock(&rt_rq
->rt_runtime_lock
);
10304 rt_rq
->rt_runtime
= rt_runtime
;
10305 spin_unlock(&rt_rq
->rt_runtime_lock
);
10307 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10309 read_unlock(&tasklist_lock
);
10310 mutex_unlock(&rt_constraints_mutex
);
10315 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10317 u64 rt_runtime
, rt_period
;
10319 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10320 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10321 if (rt_runtime_us
< 0)
10322 rt_runtime
= RUNTIME_INF
;
10324 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10327 long sched_group_rt_runtime(struct task_group
*tg
)
10331 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10334 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10335 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10336 return rt_runtime_us
;
10339 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10341 u64 rt_runtime
, rt_period
;
10343 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10344 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10346 if (rt_period
== 0)
10349 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10352 long sched_group_rt_period(struct task_group
*tg
)
10356 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10357 do_div(rt_period_us
, NSEC_PER_USEC
);
10358 return rt_period_us
;
10361 static int sched_rt_global_constraints(void)
10363 u64 runtime
, period
;
10366 if (sysctl_sched_rt_period
<= 0)
10369 runtime
= global_rt_runtime();
10370 period
= global_rt_period();
10373 * Sanity check on the sysctl variables.
10375 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10378 mutex_lock(&rt_constraints_mutex
);
10379 read_lock(&tasklist_lock
);
10380 ret
= __rt_schedulable(NULL
, 0, 0);
10381 read_unlock(&tasklist_lock
);
10382 mutex_unlock(&rt_constraints_mutex
);
10387 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10389 /* Don't accept realtime tasks when there is no way for them to run */
10390 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10396 #else /* !CONFIG_RT_GROUP_SCHED */
10397 static int sched_rt_global_constraints(void)
10399 unsigned long flags
;
10402 if (sysctl_sched_rt_period
<= 0)
10406 * There's always some RT tasks in the root group
10407 * -- migration, kstopmachine etc..
10409 if (sysctl_sched_rt_runtime
== 0)
10412 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10413 for_each_possible_cpu(i
) {
10414 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10416 spin_lock(&rt_rq
->rt_runtime_lock
);
10417 rt_rq
->rt_runtime
= global_rt_runtime();
10418 spin_unlock(&rt_rq
->rt_runtime_lock
);
10420 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10424 #endif /* CONFIG_RT_GROUP_SCHED */
10426 int sched_rt_handler(struct ctl_table
*table
, int write
,
10427 void __user
*buffer
, size_t *lenp
,
10431 int old_period
, old_runtime
;
10432 static DEFINE_MUTEX(mutex
);
10434 mutex_lock(&mutex
);
10435 old_period
= sysctl_sched_rt_period
;
10436 old_runtime
= sysctl_sched_rt_runtime
;
10438 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
10440 if (!ret
&& write
) {
10441 ret
= sched_rt_global_constraints();
10443 sysctl_sched_rt_period
= old_period
;
10444 sysctl_sched_rt_runtime
= old_runtime
;
10446 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10447 def_rt_bandwidth
.rt_period
=
10448 ns_to_ktime(global_rt_period());
10451 mutex_unlock(&mutex
);
10456 #ifdef CONFIG_CGROUP_SCHED
10458 /* return corresponding task_group object of a cgroup */
10459 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10461 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10462 struct task_group
, css
);
10465 static struct cgroup_subsys_state
*
10466 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10468 struct task_group
*tg
, *parent
;
10470 if (!cgrp
->parent
) {
10471 /* This is early initialization for the top cgroup */
10472 return &init_task_group
.css
;
10475 parent
= cgroup_tg(cgrp
->parent
);
10476 tg
= sched_create_group(parent
);
10478 return ERR_PTR(-ENOMEM
);
10484 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10486 struct task_group
*tg
= cgroup_tg(cgrp
);
10488 sched_destroy_group(tg
);
10492 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
10494 if ((current
!= tsk
) && (!capable(CAP_SYS_NICE
))) {
10495 const struct cred
*cred
= current_cred(), *tcred
;
10497 tcred
= __task_cred(tsk
);
10499 if (cred
->euid
!= tcred
->uid
&& cred
->euid
!= tcred
->suid
)
10503 #ifdef CONFIG_RT_GROUP_SCHED
10504 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10507 /* We don't support RT-tasks being in separate groups */
10508 if (tsk
->sched_class
!= &fair_sched_class
)
10515 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10516 struct task_struct
*tsk
, bool threadgroup
)
10518 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
10522 struct task_struct
*c
;
10524 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10525 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
10537 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10538 struct cgroup
*old_cont
, struct task_struct
*tsk
,
10541 sched_move_task(tsk
);
10543 struct task_struct
*c
;
10545 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10546 sched_move_task(c
);
10552 #ifdef CONFIG_FAIR_GROUP_SCHED
10553 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10556 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10559 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10561 struct task_group
*tg
= cgroup_tg(cgrp
);
10563 return (u64
) tg
->shares
;
10565 #endif /* CONFIG_FAIR_GROUP_SCHED */
10567 #ifdef CONFIG_RT_GROUP_SCHED
10568 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10571 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10574 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10576 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10579 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10582 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10585 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10587 return sched_group_rt_period(cgroup_tg(cgrp
));
10589 #endif /* CONFIG_RT_GROUP_SCHED */
10591 static struct cftype cpu_files
[] = {
10592 #ifdef CONFIG_FAIR_GROUP_SCHED
10595 .read_u64
= cpu_shares_read_u64
,
10596 .write_u64
= cpu_shares_write_u64
,
10599 #ifdef CONFIG_RT_GROUP_SCHED
10601 .name
= "rt_runtime_us",
10602 .read_s64
= cpu_rt_runtime_read
,
10603 .write_s64
= cpu_rt_runtime_write
,
10606 .name
= "rt_period_us",
10607 .read_u64
= cpu_rt_period_read_uint
,
10608 .write_u64
= cpu_rt_period_write_uint
,
10613 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10615 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10618 struct cgroup_subsys cpu_cgroup_subsys
= {
10620 .create
= cpu_cgroup_create
,
10621 .destroy
= cpu_cgroup_destroy
,
10622 .can_attach
= cpu_cgroup_can_attach
,
10623 .attach
= cpu_cgroup_attach
,
10624 .populate
= cpu_cgroup_populate
,
10625 .subsys_id
= cpu_cgroup_subsys_id
,
10629 #endif /* CONFIG_CGROUP_SCHED */
10631 #ifdef CONFIG_CGROUP_CPUACCT
10634 * CPU accounting code for task groups.
10636 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10637 * (balbir@in.ibm.com).
10640 /* track cpu usage of a group of tasks and its child groups */
10642 struct cgroup_subsys_state css
;
10643 /* cpuusage holds pointer to a u64-type object on every cpu */
10645 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10646 struct cpuacct
*parent
;
10649 struct cgroup_subsys cpuacct_subsys
;
10651 /* return cpu accounting group corresponding to this container */
10652 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10654 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10655 struct cpuacct
, css
);
10658 /* return cpu accounting group to which this task belongs */
10659 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10661 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10662 struct cpuacct
, css
);
10665 /* create a new cpu accounting group */
10666 static struct cgroup_subsys_state
*cpuacct_create(
10667 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10669 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10675 ca
->cpuusage
= alloc_percpu(u64
);
10679 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10680 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10681 goto out_free_counters
;
10684 ca
->parent
= cgroup_ca(cgrp
->parent
);
10690 percpu_counter_destroy(&ca
->cpustat
[i
]);
10691 free_percpu(ca
->cpuusage
);
10695 return ERR_PTR(-ENOMEM
);
10698 /* destroy an existing cpu accounting group */
10700 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10702 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10705 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10706 percpu_counter_destroy(&ca
->cpustat
[i
]);
10707 free_percpu(ca
->cpuusage
);
10711 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10713 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10716 #ifndef CONFIG_64BIT
10718 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10720 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10722 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10730 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10732 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10734 #ifndef CONFIG_64BIT
10736 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10738 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10740 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10746 /* return total cpu usage (in nanoseconds) of a group */
10747 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10749 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10750 u64 totalcpuusage
= 0;
10753 for_each_present_cpu(i
)
10754 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10756 return totalcpuusage
;
10759 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10762 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10771 for_each_present_cpu(i
)
10772 cpuacct_cpuusage_write(ca
, i
, 0);
10778 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10779 struct seq_file
*m
)
10781 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10785 for_each_present_cpu(i
) {
10786 percpu
= cpuacct_cpuusage_read(ca
, i
);
10787 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10789 seq_printf(m
, "\n");
10793 static const char *cpuacct_stat_desc
[] = {
10794 [CPUACCT_STAT_USER
] = "user",
10795 [CPUACCT_STAT_SYSTEM
] = "system",
10798 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10799 struct cgroup_map_cb
*cb
)
10801 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10804 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10805 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10806 val
= cputime64_to_clock_t(val
);
10807 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10812 static struct cftype files
[] = {
10815 .read_u64
= cpuusage_read
,
10816 .write_u64
= cpuusage_write
,
10819 .name
= "usage_percpu",
10820 .read_seq_string
= cpuacct_percpu_seq_read
,
10824 .read_map
= cpuacct_stats_show
,
10828 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10830 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10834 * charge this task's execution time to its accounting group.
10836 * called with rq->lock held.
10838 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10840 struct cpuacct
*ca
;
10843 if (unlikely(!cpuacct_subsys
.active
))
10846 cpu
= task_cpu(tsk
);
10852 for (; ca
; ca
= ca
->parent
) {
10853 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10854 *cpuusage
+= cputime
;
10861 * Charge the system/user time to the task's accounting group.
10863 static void cpuacct_update_stats(struct task_struct
*tsk
,
10864 enum cpuacct_stat_index idx
, cputime_t val
)
10866 struct cpuacct
*ca
;
10868 if (unlikely(!cpuacct_subsys
.active
))
10875 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10881 struct cgroup_subsys cpuacct_subsys
= {
10883 .create
= cpuacct_create
,
10884 .destroy
= cpuacct_destroy
,
10885 .populate
= cpuacct_populate
,
10886 .subsys_id
= cpuacct_subsys_id
,
10888 #endif /* CONFIG_CGROUP_CPUACCT */
10892 int rcu_expedited_torture_stats(char *page
)
10896 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10898 void synchronize_sched_expedited(void)
10901 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10903 #else /* #ifndef CONFIG_SMP */
10905 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
10906 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
10908 #define RCU_EXPEDITED_STATE_POST -2
10909 #define RCU_EXPEDITED_STATE_IDLE -1
10911 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10913 int rcu_expedited_torture_stats(char *page
)
10918 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
10919 for_each_online_cpu(cpu
) {
10920 cnt
+= sprintf(&page
[cnt
], " %d:%d",
10921 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
10923 cnt
+= sprintf(&page
[cnt
], "\n");
10926 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10928 static long synchronize_sched_expedited_count
;
10931 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10932 * approach to force grace period to end quickly. This consumes
10933 * significant time on all CPUs, and is thus not recommended for
10934 * any sort of common-case code.
10936 * Note that it is illegal to call this function while holding any
10937 * lock that is acquired by a CPU-hotplug notifier. Failing to
10938 * observe this restriction will result in deadlock.
10940 void synchronize_sched_expedited(void)
10943 unsigned long flags
;
10944 bool need_full_sync
= 0;
10946 struct migration_req
*req
;
10950 smp_mb(); /* ensure prior mod happens before capturing snap. */
10951 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
10953 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
10955 if (trycount
++ < 10)
10956 udelay(trycount
* num_online_cpus());
10958 synchronize_sched();
10961 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
10962 smp_mb(); /* ensure test happens before caller kfree */
10967 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
10968 for_each_online_cpu(cpu
) {
10970 req
= &per_cpu(rcu_migration_req
, cpu
);
10971 init_completion(&req
->done
);
10973 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
10974 spin_lock_irqsave(&rq
->lock
, flags
);
10975 list_add(&req
->list
, &rq
->migration_queue
);
10976 spin_unlock_irqrestore(&rq
->lock
, flags
);
10977 wake_up_process(rq
->migration_thread
);
10979 for_each_online_cpu(cpu
) {
10980 rcu_expedited_state
= cpu
;
10981 req
= &per_cpu(rcu_migration_req
, cpu
);
10983 wait_for_completion(&req
->done
);
10984 spin_lock_irqsave(&rq
->lock
, flags
);
10985 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
10986 need_full_sync
= 1;
10987 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
10988 spin_unlock_irqrestore(&rq
->lock
, flags
);
10990 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10991 mutex_unlock(&rcu_sched_expedited_mutex
);
10993 if (need_full_sync
)
10994 synchronize_sched();
10996 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10998 #endif /* #else #ifndef CONFIG_SMP */