htcleo: add Cotulla's fixes for non-android touchscreen!
[htc-linux.git] / kernel / sched_fair.c
blob6bd5ab842f55af19e388049663e2964acddc4448
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 5000000ULL;
38 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
41 * Minimal preemption granularity for CPU-bound tasks:
42 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
44 unsigned int sysctl_sched_min_granularity = 1000000ULL;
45 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
48 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
50 static unsigned int sched_nr_latency = 5;
53 * After fork, child runs first. If set to 0 (default) then
54 * parent will (try to) run first.
56 unsigned int sysctl_sched_child_runs_first __read_mostly;
59 * sys_sched_yield() compat mode
61 * This option switches the agressive yield implementation of the
62 * old scheduler back on.
64 unsigned int __read_mostly sysctl_sched_compat_yield;
67 * SCHED_OTHER wake-up granularity.
68 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
70 * This option delays the preemption effects of decoupled workloads
71 * and reduces their over-scheduling. Synchronous workloads will still
72 * have immediate wakeup/sleep latencies.
74 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
75 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
77 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
79 static const struct sched_class fair_sched_class;
81 /**************************************************************
82 * CFS operations on generic schedulable entities:
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
90 return cfs_rq->rq;
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 static inline struct task_struct *task_of(struct sched_entity *se)
98 #ifdef CONFIG_SCHED_DEBUG
99 WARN_ON_ONCE(!entity_is_task(se));
100 #endif
101 return container_of(se, struct task_struct, se);
104 /* Walk up scheduling entities hierarchy */
105 #define for_each_sched_entity(se) \
106 for (; se; se = se->parent)
108 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
110 return p->se.cfs_rq;
113 /* runqueue on which this entity is (to be) queued */
114 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
116 return se->cfs_rq;
119 /* runqueue "owned" by this group */
120 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
122 return grp->my_q;
125 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
126 * another cpu ('this_cpu')
128 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
130 return cfs_rq->tg->cfs_rq[this_cpu];
133 /* Iterate thr' all leaf cfs_rq's on a runqueue */
134 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
135 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
137 /* Do the two (enqueued) entities belong to the same group ? */
138 static inline int
139 is_same_group(struct sched_entity *se, struct sched_entity *pse)
141 if (se->cfs_rq == pse->cfs_rq)
142 return 1;
144 return 0;
147 static inline struct sched_entity *parent_entity(struct sched_entity *se)
149 return se->parent;
152 /* return depth at which a sched entity is present in the hierarchy */
153 static inline int depth_se(struct sched_entity *se)
155 int depth = 0;
157 for_each_sched_entity(se)
158 depth++;
160 return depth;
163 static void
164 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
166 int se_depth, pse_depth;
169 * preemption test can be made between sibling entities who are in the
170 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
171 * both tasks until we find their ancestors who are siblings of common
172 * parent.
175 /* First walk up until both entities are at same depth */
176 se_depth = depth_se(*se);
177 pse_depth = depth_se(*pse);
179 while (se_depth > pse_depth) {
180 se_depth--;
181 *se = parent_entity(*se);
184 while (pse_depth > se_depth) {
185 pse_depth--;
186 *pse = parent_entity(*pse);
189 while (!is_same_group(*se, *pse)) {
190 *se = parent_entity(*se);
191 *pse = parent_entity(*pse);
195 #else /* !CONFIG_FAIR_GROUP_SCHED */
197 static inline struct task_struct *task_of(struct sched_entity *se)
199 return container_of(se, struct task_struct, se);
202 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
204 return container_of(cfs_rq, struct rq, cfs);
207 #define entity_is_task(se) 1
209 #define for_each_sched_entity(se) \
210 for (; se; se = NULL)
212 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
214 return &task_rq(p)->cfs;
217 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
219 struct task_struct *p = task_of(se);
220 struct rq *rq = task_rq(p);
222 return &rq->cfs;
225 /* runqueue "owned" by this group */
226 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
228 return NULL;
231 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
233 return &cpu_rq(this_cpu)->cfs;
236 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
237 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
239 static inline int
240 is_same_group(struct sched_entity *se, struct sched_entity *pse)
242 return 1;
245 static inline struct sched_entity *parent_entity(struct sched_entity *se)
247 return NULL;
250 static inline void
251 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
255 #endif /* CONFIG_FAIR_GROUP_SCHED */
258 /**************************************************************
259 * Scheduling class tree data structure manipulation methods:
262 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
264 s64 delta = (s64)(vruntime - min_vruntime);
265 if (delta > 0)
266 min_vruntime = vruntime;
268 return min_vruntime;
271 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
273 s64 delta = (s64)(vruntime - min_vruntime);
274 if (delta < 0)
275 min_vruntime = vruntime;
277 return min_vruntime;
280 static inline int entity_before(struct sched_entity *a,
281 struct sched_entity *b)
283 return (s64)(a->vruntime - b->vruntime) < 0;
286 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
288 return se->vruntime - cfs_rq->min_vruntime;
291 static void update_min_vruntime(struct cfs_rq *cfs_rq)
293 u64 vruntime = cfs_rq->min_vruntime;
295 if (cfs_rq->curr)
296 vruntime = cfs_rq->curr->vruntime;
298 if (cfs_rq->rb_leftmost) {
299 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
300 struct sched_entity,
301 run_node);
303 if (!cfs_rq->curr)
304 vruntime = se->vruntime;
305 else
306 vruntime = min_vruntime(vruntime, se->vruntime);
309 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
313 * Enqueue an entity into the rb-tree:
315 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
317 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
318 struct rb_node *parent = NULL;
319 struct sched_entity *entry;
320 s64 key = entity_key(cfs_rq, se);
321 int leftmost = 1;
324 * Find the right place in the rbtree:
326 while (*link) {
327 parent = *link;
328 entry = rb_entry(parent, struct sched_entity, run_node);
330 * We dont care about collisions. Nodes with
331 * the same key stay together.
333 if (key < entity_key(cfs_rq, entry)) {
334 link = &parent->rb_left;
335 } else {
336 link = &parent->rb_right;
337 leftmost = 0;
342 * Maintain a cache of leftmost tree entries (it is frequently
343 * used):
345 if (leftmost)
346 cfs_rq->rb_leftmost = &se->run_node;
348 rb_link_node(&se->run_node, parent, link);
349 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
352 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
354 if (cfs_rq->rb_leftmost == &se->run_node) {
355 struct rb_node *next_node;
357 next_node = rb_next(&se->run_node);
358 cfs_rq->rb_leftmost = next_node;
361 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
364 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
366 struct rb_node *left = cfs_rq->rb_leftmost;
368 if (!left)
369 return NULL;
371 return rb_entry(left, struct sched_entity, run_node);
374 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
376 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
378 if (!last)
379 return NULL;
381 return rb_entry(last, struct sched_entity, run_node);
384 /**************************************************************
385 * Scheduling class statistics methods:
388 #ifdef CONFIG_SCHED_DEBUG
389 int sched_nr_latency_handler(struct ctl_table *table, int write,
390 void __user *buffer, size_t *lenp,
391 loff_t *ppos)
393 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
395 if (ret || !write)
396 return ret;
398 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
399 sysctl_sched_min_granularity);
401 return 0;
403 #endif
406 * delta /= w
408 static inline unsigned long
409 calc_delta_fair(unsigned long delta, struct sched_entity *se)
411 if (unlikely(se->load.weight != NICE_0_LOAD))
412 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
414 return delta;
418 * The idea is to set a period in which each task runs once.
420 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
421 * this period because otherwise the slices get too small.
423 * p = (nr <= nl) ? l : l*nr/nl
425 static u64 __sched_period(unsigned long nr_running)
427 u64 period = sysctl_sched_latency;
428 unsigned long nr_latency = sched_nr_latency;
430 if (unlikely(nr_running > nr_latency)) {
431 period = sysctl_sched_min_granularity;
432 period *= nr_running;
435 return period;
439 * We calculate the wall-time slice from the period by taking a part
440 * proportional to the weight.
442 * s = p*P[w/rw]
444 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
446 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
448 for_each_sched_entity(se) {
449 struct load_weight *load;
450 struct load_weight lw;
452 cfs_rq = cfs_rq_of(se);
453 load = &cfs_rq->load;
455 if (unlikely(!se->on_rq)) {
456 lw = cfs_rq->load;
458 update_load_add(&lw, se->load.weight);
459 load = &lw;
461 slice = calc_delta_mine(slice, se->load.weight, load);
463 return slice;
467 * We calculate the vruntime slice of a to be inserted task
469 * vs = s/w
471 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
473 return calc_delta_fair(sched_slice(cfs_rq, se), se);
477 * Update the current task's runtime statistics. Skip current tasks that
478 * are not in our scheduling class.
480 static inline void
481 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
482 unsigned long delta_exec)
484 unsigned long delta_exec_weighted;
486 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
488 curr->sum_exec_runtime += delta_exec;
489 schedstat_add(cfs_rq, exec_clock, delta_exec);
490 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
491 curr->vruntime += delta_exec_weighted;
492 update_min_vruntime(cfs_rq);
495 static void update_curr(struct cfs_rq *cfs_rq)
497 struct sched_entity *curr = cfs_rq->curr;
498 u64 now = rq_of(cfs_rq)->clock;
499 unsigned long delta_exec;
501 if (unlikely(!curr))
502 return;
505 * Get the amount of time the current task was running
506 * since the last time we changed load (this cannot
507 * overflow on 32 bits):
509 delta_exec = (unsigned long)(now - curr->exec_start);
510 if (!delta_exec)
511 return;
513 __update_curr(cfs_rq, curr, delta_exec);
514 curr->exec_start = now;
516 if (entity_is_task(curr)) {
517 struct task_struct *curtask = task_of(curr);
519 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
520 cpuacct_charge(curtask, delta_exec);
521 account_group_exec_runtime(curtask, delta_exec);
525 static inline void
526 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
532 * Task is being enqueued - update stats:
534 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
537 * Are we enqueueing a waiting task? (for current tasks
538 * a dequeue/enqueue event is a NOP)
540 if (se != cfs_rq->curr)
541 update_stats_wait_start(cfs_rq, se);
544 static void
545 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 schedstat_set(se->wait_max, max(se->wait_max,
548 rq_of(cfs_rq)->clock - se->wait_start));
549 schedstat_set(se->wait_count, se->wait_count + 1);
550 schedstat_set(se->wait_sum, se->wait_sum +
551 rq_of(cfs_rq)->clock - se->wait_start);
552 #ifdef CONFIG_SCHEDSTATS
553 if (entity_is_task(se)) {
554 trace_sched_stat_wait(task_of(se),
555 rq_of(cfs_rq)->clock - se->wait_start);
557 #endif
558 schedstat_set(se->wait_start, 0);
561 static inline void
562 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
565 * Mark the end of the wait period if dequeueing a
566 * waiting task:
568 if (se != cfs_rq->curr)
569 update_stats_wait_end(cfs_rq, se);
573 * We are picking a new current task - update its stats:
575 static inline void
576 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
579 * We are starting a new run period:
581 se->exec_start = rq_of(cfs_rq)->clock;
584 /**************************************************
585 * Scheduling class queueing methods:
588 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
589 static void
590 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
592 cfs_rq->task_weight += weight;
594 #else
595 static inline void
596 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
599 #endif
601 static void
602 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
604 update_load_add(&cfs_rq->load, se->load.weight);
605 if (!parent_entity(se))
606 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
607 if (entity_is_task(se)) {
608 add_cfs_task_weight(cfs_rq, se->load.weight);
609 list_add(&se->group_node, &cfs_rq->tasks);
611 cfs_rq->nr_running++;
612 se->on_rq = 1;
615 static void
616 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
618 update_load_sub(&cfs_rq->load, se->load.weight);
619 if (!parent_entity(se))
620 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
621 if (entity_is_task(se)) {
622 add_cfs_task_weight(cfs_rq, -se->load.weight);
623 list_del_init(&se->group_node);
625 cfs_rq->nr_running--;
626 se->on_rq = 0;
629 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
631 #ifdef CONFIG_SCHEDSTATS
632 struct task_struct *tsk = NULL;
634 if (entity_is_task(se))
635 tsk = task_of(se);
637 if (se->sleep_start) {
638 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
640 if ((s64)delta < 0)
641 delta = 0;
643 if (unlikely(delta > se->sleep_max))
644 se->sleep_max = delta;
646 se->sleep_start = 0;
647 se->sum_sleep_runtime += delta;
649 if (tsk) {
650 account_scheduler_latency(tsk, delta >> 10, 1);
651 trace_sched_stat_sleep(tsk, delta);
654 if (se->block_start) {
655 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
657 if ((s64)delta < 0)
658 delta = 0;
660 if (unlikely(delta > se->block_max))
661 se->block_max = delta;
663 se->block_start = 0;
664 se->sum_sleep_runtime += delta;
666 if (tsk) {
667 if (tsk->in_iowait) {
668 se->iowait_sum += delta;
669 se->iowait_count++;
670 trace_sched_stat_iowait(tsk, delta);
674 * Blocking time is in units of nanosecs, so shift by
675 * 20 to get a milliseconds-range estimation of the
676 * amount of time that the task spent sleeping:
678 if (unlikely(prof_on == SLEEP_PROFILING)) {
679 profile_hits(SLEEP_PROFILING,
680 (void *)get_wchan(tsk),
681 delta >> 20);
683 account_scheduler_latency(tsk, delta >> 10, 0);
686 #endif
689 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
691 #ifdef CONFIG_SCHED_DEBUG
692 s64 d = se->vruntime - cfs_rq->min_vruntime;
694 if (d < 0)
695 d = -d;
697 if (d > 3*sysctl_sched_latency)
698 schedstat_inc(cfs_rq, nr_spread_over);
699 #endif
702 static void
703 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
705 u64 vruntime = cfs_rq->min_vruntime;
708 * The 'current' period is already promised to the current tasks,
709 * however the extra weight of the new task will slow them down a
710 * little, place the new task so that it fits in the slot that
711 * stays open at the end.
713 if (initial && sched_feat(START_DEBIT))
714 vruntime += sched_vslice(cfs_rq, se);
716 /* sleeps up to a single latency don't count. */
717 if (!initial && sched_feat(FAIR_SLEEPERS)) {
718 unsigned long thresh = sysctl_sched_latency;
721 * Convert the sleeper threshold into virtual time.
722 * SCHED_IDLE is a special sub-class. We care about
723 * fairness only relative to other SCHED_IDLE tasks,
724 * all of which have the same weight.
726 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
727 task_of(se)->policy != SCHED_IDLE))
728 thresh = calc_delta_fair(thresh, se);
731 * Halve their sleep time's effect, to allow
732 * for a gentler effect of sleepers:
734 if (sched_feat(GENTLE_FAIR_SLEEPERS))
735 thresh >>= 1;
737 vruntime -= thresh;
740 /* ensure we never gain time by being placed backwards. */
741 vruntime = max_vruntime(se->vruntime, vruntime);
743 se->vruntime = vruntime;
746 static void
747 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
750 * Update run-time statistics of the 'current'.
752 update_curr(cfs_rq);
753 account_entity_enqueue(cfs_rq, se);
755 if (wakeup) {
756 place_entity(cfs_rq, se, 0);
757 enqueue_sleeper(cfs_rq, se);
760 update_stats_enqueue(cfs_rq, se);
761 check_spread(cfs_rq, se);
762 if (se != cfs_rq->curr)
763 __enqueue_entity(cfs_rq, se);
766 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 if (!se || cfs_rq->last == se)
769 cfs_rq->last = NULL;
771 if (!se || cfs_rq->next == se)
772 cfs_rq->next = NULL;
775 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 for_each_sched_entity(se)
778 __clear_buddies(cfs_rq_of(se), se);
781 static void
782 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
785 * Update run-time statistics of the 'current'.
787 update_curr(cfs_rq);
789 update_stats_dequeue(cfs_rq, se);
790 if (sleep) {
791 #ifdef CONFIG_SCHEDSTATS
792 if (entity_is_task(se)) {
793 struct task_struct *tsk = task_of(se);
795 if (tsk->state & TASK_INTERRUPTIBLE)
796 se->sleep_start = rq_of(cfs_rq)->clock;
797 if (tsk->state & TASK_UNINTERRUPTIBLE)
798 se->block_start = rq_of(cfs_rq)->clock;
800 #endif
803 clear_buddies(cfs_rq, se);
805 if (se != cfs_rq->curr)
806 __dequeue_entity(cfs_rq, se);
807 account_entity_dequeue(cfs_rq, se);
808 update_min_vruntime(cfs_rq);
812 * Preempt the current task with a newly woken task if needed:
814 static void
815 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
817 unsigned long ideal_runtime, delta_exec;
819 ideal_runtime = sched_slice(cfs_rq, curr);
820 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
821 if (delta_exec > ideal_runtime) {
822 resched_task(rq_of(cfs_rq)->curr);
824 * The current task ran long enough, ensure it doesn't get
825 * re-elected due to buddy favours.
827 clear_buddies(cfs_rq, curr);
828 return;
832 * Ensure that a task that missed wakeup preemption by a
833 * narrow margin doesn't have to wait for a full slice.
834 * This also mitigates buddy induced latencies under load.
836 if (!sched_feat(WAKEUP_PREEMPT))
837 return;
839 if (delta_exec < sysctl_sched_min_granularity)
840 return;
842 if (cfs_rq->nr_running > 1) {
843 struct sched_entity *se = __pick_next_entity(cfs_rq);
844 s64 delta = curr->vruntime - se->vruntime;
846 if (delta > ideal_runtime)
847 resched_task(rq_of(cfs_rq)->curr);
851 static void
852 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
854 /* 'current' is not kept within the tree. */
855 if (se->on_rq) {
857 * Any task has to be enqueued before it get to execute on
858 * a CPU. So account for the time it spent waiting on the
859 * runqueue.
861 update_stats_wait_end(cfs_rq, se);
862 __dequeue_entity(cfs_rq, se);
865 update_stats_curr_start(cfs_rq, se);
866 cfs_rq->curr = se;
867 #ifdef CONFIG_SCHEDSTATS
869 * Track our maximum slice length, if the CPU's load is at
870 * least twice that of our own weight (i.e. dont track it
871 * when there are only lesser-weight tasks around):
873 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
874 se->slice_max = max(se->slice_max,
875 se->sum_exec_runtime - se->prev_sum_exec_runtime);
877 #endif
878 se->prev_sum_exec_runtime = se->sum_exec_runtime;
881 static int
882 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
884 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
886 struct sched_entity *se = __pick_next_entity(cfs_rq);
887 struct sched_entity *left = se;
889 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
890 se = cfs_rq->next;
893 * Prefer last buddy, try to return the CPU to a preempted task.
895 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
896 se = cfs_rq->last;
898 clear_buddies(cfs_rq, se);
900 return se;
903 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
906 * If still on the runqueue then deactivate_task()
907 * was not called and update_curr() has to be done:
909 if (prev->on_rq)
910 update_curr(cfs_rq);
912 check_spread(cfs_rq, prev);
913 if (prev->on_rq) {
914 update_stats_wait_start(cfs_rq, prev);
915 /* Put 'current' back into the tree. */
916 __enqueue_entity(cfs_rq, prev);
918 cfs_rq->curr = NULL;
921 static void
922 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
925 * Update run-time statistics of the 'current'.
927 update_curr(cfs_rq);
929 #ifdef CONFIG_SCHED_HRTICK
931 * queued ticks are scheduled to match the slice, so don't bother
932 * validating it and just reschedule.
934 if (queued) {
935 resched_task(rq_of(cfs_rq)->curr);
936 return;
939 * don't let the period tick interfere with the hrtick preemption
941 if (!sched_feat(DOUBLE_TICK) &&
942 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
943 return;
944 #endif
946 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
947 check_preempt_tick(cfs_rq, curr);
950 /**************************************************
951 * CFS operations on tasks:
954 #ifdef CONFIG_SCHED_HRTICK
955 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
957 struct sched_entity *se = &p->se;
958 struct cfs_rq *cfs_rq = cfs_rq_of(se);
960 WARN_ON(task_rq(p) != rq);
962 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
963 u64 slice = sched_slice(cfs_rq, se);
964 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
965 s64 delta = slice - ran;
967 if (delta < 0) {
968 if (rq->curr == p)
969 resched_task(p);
970 return;
974 * Don't schedule slices shorter than 10000ns, that just
975 * doesn't make sense. Rely on vruntime for fairness.
977 if (rq->curr != p)
978 delta = max_t(s64, 10000LL, delta);
980 hrtick_start(rq, delta);
985 * called from enqueue/dequeue and updates the hrtick when the
986 * current task is from our class and nr_running is low enough
987 * to matter.
989 static void hrtick_update(struct rq *rq)
991 struct task_struct *curr = rq->curr;
993 if (curr->sched_class != &fair_sched_class)
994 return;
996 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
997 hrtick_start_fair(rq, curr);
999 #else /* !CONFIG_SCHED_HRTICK */
1000 static inline void
1001 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1005 static inline void hrtick_update(struct rq *rq)
1008 #endif
1011 * The enqueue_task method is called before nr_running is
1012 * increased. Here we update the fair scheduling stats and
1013 * then put the task into the rbtree:
1015 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1017 struct cfs_rq *cfs_rq;
1018 struct sched_entity *se = &p->se;
1020 for_each_sched_entity(se) {
1021 if (se->on_rq)
1022 break;
1023 cfs_rq = cfs_rq_of(se);
1024 enqueue_entity(cfs_rq, se, wakeup);
1025 wakeup = 1;
1028 hrtick_update(rq);
1032 * The dequeue_task method is called before nr_running is
1033 * decreased. We remove the task from the rbtree and
1034 * update the fair scheduling stats:
1036 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1038 struct cfs_rq *cfs_rq;
1039 struct sched_entity *se = &p->se;
1041 for_each_sched_entity(se) {
1042 cfs_rq = cfs_rq_of(se);
1043 dequeue_entity(cfs_rq, se, sleep);
1044 /* Don't dequeue parent if it has other entities besides us */
1045 if (cfs_rq->load.weight)
1046 break;
1047 sleep = 1;
1050 hrtick_update(rq);
1054 * sched_yield() support is very simple - we dequeue and enqueue.
1056 * If compat_yield is turned on then we requeue to the end of the tree.
1058 static void yield_task_fair(struct rq *rq)
1060 struct task_struct *curr = rq->curr;
1061 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1062 struct sched_entity *rightmost, *se = &curr->se;
1065 * Are we the only task in the tree?
1067 if (unlikely(cfs_rq->nr_running == 1))
1068 return;
1070 clear_buddies(cfs_rq, se);
1072 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1073 update_rq_clock(rq);
1075 * Update run-time statistics of the 'current'.
1077 update_curr(cfs_rq);
1079 return;
1082 * Find the rightmost entry in the rbtree:
1084 rightmost = __pick_last_entity(cfs_rq);
1086 * Already in the rightmost position?
1088 if (unlikely(!rightmost || entity_before(rightmost, se)))
1089 return;
1092 * Minimally necessary key value to be last in the tree:
1093 * Upon rescheduling, sched_class::put_prev_task() will place
1094 * 'current' within the tree based on its new key value.
1096 se->vruntime = rightmost->vruntime + 1;
1099 #ifdef CONFIG_SMP
1101 #ifdef CONFIG_FAIR_GROUP_SCHED
1103 * effective_load() calculates the load change as seen from the root_task_group
1105 * Adding load to a group doesn't make a group heavier, but can cause movement
1106 * of group shares between cpus. Assuming the shares were perfectly aligned one
1107 * can calculate the shift in shares.
1109 * The problem is that perfectly aligning the shares is rather expensive, hence
1110 * we try to avoid doing that too often - see update_shares(), which ratelimits
1111 * this change.
1113 * We compensate this by not only taking the current delta into account, but
1114 * also considering the delta between when the shares were last adjusted and
1115 * now.
1117 * We still saw a performance dip, some tracing learned us that between
1118 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1119 * significantly. Therefore try to bias the error in direction of failing
1120 * the affine wakeup.
1123 static long effective_load(struct task_group *tg, int cpu,
1124 long wl, long wg)
1126 struct sched_entity *se = tg->se[cpu];
1128 if (!tg->parent)
1129 return wl;
1132 * By not taking the decrease of shares on the other cpu into
1133 * account our error leans towards reducing the affine wakeups.
1135 if (!wl && sched_feat(ASYM_EFF_LOAD))
1136 return wl;
1138 for_each_sched_entity(se) {
1139 long S, rw, s, a, b;
1140 long more_w;
1143 * Instead of using this increment, also add the difference
1144 * between when the shares were last updated and now.
1146 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1147 wl += more_w;
1148 wg += more_w;
1150 S = se->my_q->tg->shares;
1151 s = se->my_q->shares;
1152 rw = se->my_q->rq_weight;
1154 a = S*(rw + wl);
1155 b = S*rw + s*wg;
1157 wl = s*(a-b);
1159 if (likely(b))
1160 wl /= b;
1163 * Assume the group is already running and will
1164 * thus already be accounted for in the weight.
1166 * That is, moving shares between CPUs, does not
1167 * alter the group weight.
1169 wg = 0;
1172 return wl;
1175 #else
1177 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1178 unsigned long wl, unsigned long wg)
1180 return wl;
1183 #endif
1185 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1187 struct task_struct *curr = current;
1188 unsigned long this_load, load;
1189 int idx, this_cpu, prev_cpu;
1190 unsigned long tl_per_task;
1191 unsigned int imbalance;
1192 struct task_group *tg;
1193 unsigned long weight;
1194 int balanced;
1196 idx = sd->wake_idx;
1197 this_cpu = smp_processor_id();
1198 prev_cpu = task_cpu(p);
1199 load = source_load(prev_cpu, idx);
1200 this_load = target_load(this_cpu, idx);
1202 if (sync) {
1203 if (sched_feat(SYNC_LESS) &&
1204 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1205 p->se.avg_overlap > sysctl_sched_migration_cost))
1206 sync = 0;
1207 } else {
1208 if (sched_feat(SYNC_MORE) &&
1209 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1210 p->se.avg_overlap < sysctl_sched_migration_cost))
1211 sync = 1;
1215 * If sync wakeup then subtract the (maximum possible)
1216 * effect of the currently running task from the load
1217 * of the current CPU:
1219 if (sync) {
1220 tg = task_group(current);
1221 weight = current->se.load.weight;
1223 this_load += effective_load(tg, this_cpu, -weight, -weight);
1224 load += effective_load(tg, prev_cpu, 0, -weight);
1227 tg = task_group(p);
1228 weight = p->se.load.weight;
1230 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1233 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1234 * due to the sync cause above having dropped this_load to 0, we'll
1235 * always have an imbalance, but there's really nothing you can do
1236 * about that, so that's good too.
1238 * Otherwise check if either cpus are near enough in load to allow this
1239 * task to be woken on this_cpu.
1241 balanced = !this_load ||
1242 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1243 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1246 * If the currently running task will sleep within
1247 * a reasonable amount of time then attract this newly
1248 * woken task:
1250 if (sync && balanced)
1251 return 1;
1253 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1254 tl_per_task = cpu_avg_load_per_task(this_cpu);
1256 if (balanced ||
1257 (this_load <= load &&
1258 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1260 * This domain has SD_WAKE_AFFINE and
1261 * p is cache cold in this domain, and
1262 * there is no bad imbalance.
1264 schedstat_inc(sd, ttwu_move_affine);
1265 schedstat_inc(p, se.nr_wakeups_affine);
1267 return 1;
1269 return 0;
1273 * find_idlest_group finds and returns the least busy CPU group within the
1274 * domain.
1276 static struct sched_group *
1277 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1278 int this_cpu, int load_idx)
1280 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1281 unsigned long min_load = ULONG_MAX, this_load = 0;
1282 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1284 do {
1285 unsigned long load, avg_load;
1286 int local_group;
1287 int i;
1289 /* Skip over this group if it has no CPUs allowed */
1290 if (!cpumask_intersects(sched_group_cpus(group),
1291 &p->cpus_allowed))
1292 continue;
1294 local_group = cpumask_test_cpu(this_cpu,
1295 sched_group_cpus(group));
1297 /* Tally up the load of all CPUs in the group */
1298 avg_load = 0;
1300 for_each_cpu(i, sched_group_cpus(group)) {
1301 /* Bias balancing toward cpus of our domain */
1302 if (local_group)
1303 load = source_load(i, load_idx);
1304 else
1305 load = target_load(i, load_idx);
1307 avg_load += load;
1310 /* Adjust by relative CPU power of the group */
1311 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1313 if (local_group) {
1314 this_load = avg_load;
1315 this = group;
1316 } else if (avg_load < min_load) {
1317 min_load = avg_load;
1318 idlest = group;
1320 } while (group = group->next, group != sd->groups);
1322 if (!idlest || 100*this_load < imbalance*min_load)
1323 return NULL;
1324 return idlest;
1328 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1330 static int
1331 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1333 unsigned long load, min_load = ULONG_MAX;
1334 int idlest = -1;
1335 int i;
1337 /* Traverse only the allowed CPUs */
1338 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1339 load = weighted_cpuload(i);
1341 if (load < min_load || (load == min_load && i == this_cpu)) {
1342 min_load = load;
1343 idlest = i;
1347 return idlest;
1351 * sched_balance_self: balance the current task (running on cpu) in domains
1352 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1353 * SD_BALANCE_EXEC.
1355 * Balance, ie. select the least loaded group.
1357 * Returns the target CPU number, or the same CPU if no balancing is needed.
1359 * preempt must be disabled.
1361 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1363 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1364 int cpu = smp_processor_id();
1365 int prev_cpu = task_cpu(p);
1366 int new_cpu = cpu;
1367 int want_affine = 0;
1368 int want_sd = 1;
1369 int sync = wake_flags & WF_SYNC;
1371 if (sd_flag & SD_BALANCE_WAKE) {
1372 if (sched_feat(AFFINE_WAKEUPS) &&
1373 cpumask_test_cpu(cpu, &p->cpus_allowed))
1374 want_affine = 1;
1375 new_cpu = prev_cpu;
1378 rcu_read_lock();
1379 for_each_domain(cpu, tmp) {
1380 if (!(tmp->flags & SD_LOAD_BALANCE))
1381 continue;
1384 * If power savings logic is enabled for a domain, see if we
1385 * are not overloaded, if so, don't balance wider.
1387 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1388 unsigned long power = 0;
1389 unsigned long nr_running = 0;
1390 unsigned long capacity;
1391 int i;
1393 for_each_cpu(i, sched_domain_span(tmp)) {
1394 power += power_of(i);
1395 nr_running += cpu_rq(i)->cfs.nr_running;
1398 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1400 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1401 nr_running /= 2;
1403 if (nr_running < capacity)
1404 want_sd = 0;
1407 if (want_affine && (tmp->flags & SD_WAKE_AFFINE)) {
1408 int candidate = -1, i;
1410 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1411 candidate = cpu;
1414 * Check for an idle shared cache.
1416 if (tmp->flags & SD_PREFER_SIBLING) {
1417 if (candidate == cpu) {
1418 if (!cpu_rq(prev_cpu)->cfs.nr_running)
1419 candidate = prev_cpu;
1422 if (candidate == -1 || candidate == cpu) {
1423 for_each_cpu(i, sched_domain_span(tmp)) {
1424 if (!cpumask_test_cpu(i, &p->cpus_allowed))
1425 continue;
1426 if (!cpu_rq(i)->cfs.nr_running) {
1427 candidate = i;
1428 break;
1434 if (candidate >= 0) {
1435 affine_sd = tmp;
1436 want_affine = 0;
1437 cpu = candidate;
1441 if (!want_sd && !want_affine)
1442 break;
1444 if (!(tmp->flags & sd_flag))
1445 continue;
1447 if (want_sd)
1448 sd = tmp;
1451 if (sched_feat(LB_SHARES_UPDATE)) {
1453 * Pick the largest domain to update shares over
1455 tmp = sd;
1456 if (affine_sd && (!tmp ||
1457 cpumask_weight(sched_domain_span(affine_sd)) >
1458 cpumask_weight(sched_domain_span(sd))))
1459 tmp = affine_sd;
1461 if (tmp)
1462 update_shares(tmp);
1465 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1466 new_cpu = cpu;
1467 goto out;
1470 while (sd) {
1471 int load_idx = sd->forkexec_idx;
1472 struct sched_group *group;
1473 int weight;
1475 if (!(sd->flags & sd_flag)) {
1476 sd = sd->child;
1477 continue;
1480 if (sd_flag & SD_BALANCE_WAKE)
1481 load_idx = sd->wake_idx;
1483 group = find_idlest_group(sd, p, cpu, load_idx);
1484 if (!group) {
1485 sd = sd->child;
1486 continue;
1489 new_cpu = find_idlest_cpu(group, p, cpu);
1490 if (new_cpu == -1 || new_cpu == cpu) {
1491 /* Now try balancing at a lower domain level of cpu */
1492 sd = sd->child;
1493 continue;
1496 /* Now try balancing at a lower domain level of new_cpu */
1497 cpu = new_cpu;
1498 weight = cpumask_weight(sched_domain_span(sd));
1499 sd = NULL;
1500 for_each_domain(cpu, tmp) {
1501 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1502 break;
1503 if (tmp->flags & sd_flag)
1504 sd = tmp;
1506 /* while loop will break here if sd == NULL */
1509 out:
1510 rcu_read_unlock();
1511 return new_cpu;
1513 #endif /* CONFIG_SMP */
1516 * Adaptive granularity
1518 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1519 * with the limit of wakeup_gran -- when it never does a wakeup.
1521 * So the smaller avg_wakeup is the faster we want this task to preempt,
1522 * but we don't want to treat the preemptee unfairly and therefore allow it
1523 * to run for at least the amount of time we'd like to run.
1525 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1527 * NOTE: we use *nr_running to scale with load, this nicely matches the
1528 * degrading latency on load.
1530 static unsigned long
1531 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1533 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1534 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1535 u64 gran = 0;
1537 if (this_run < expected_wakeup)
1538 gran = expected_wakeup - this_run;
1540 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1543 static unsigned long
1544 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1546 unsigned long gran = sysctl_sched_wakeup_granularity;
1548 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1549 gran = adaptive_gran(curr, se);
1552 * Since its curr running now, convert the gran from real-time
1553 * to virtual-time in his units.
1555 if (sched_feat(ASYM_GRAN)) {
1557 * By using 'se' instead of 'curr' we penalize light tasks, so
1558 * they get preempted easier. That is, if 'se' < 'curr' then
1559 * the resulting gran will be larger, therefore penalizing the
1560 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1561 * be smaller, again penalizing the lighter task.
1563 * This is especially important for buddies when the leftmost
1564 * task is higher priority than the buddy.
1566 if (unlikely(se->load.weight != NICE_0_LOAD))
1567 gran = calc_delta_fair(gran, se);
1568 } else {
1569 if (unlikely(curr->load.weight != NICE_0_LOAD))
1570 gran = calc_delta_fair(gran, curr);
1573 return gran;
1577 * Should 'se' preempt 'curr'.
1579 * |s1
1580 * |s2
1581 * |s3
1583 * |<--->|c
1585 * w(c, s1) = -1
1586 * w(c, s2) = 0
1587 * w(c, s3) = 1
1590 static int
1591 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1593 s64 gran, vdiff = curr->vruntime - se->vruntime;
1595 if (vdiff <= 0)
1596 return -1;
1598 gran = wakeup_gran(curr, se);
1599 if (vdiff > gran)
1600 return 1;
1602 return 0;
1605 static void set_last_buddy(struct sched_entity *se)
1607 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1608 for_each_sched_entity(se)
1609 cfs_rq_of(se)->last = se;
1613 static void set_next_buddy(struct sched_entity *se)
1615 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1616 for_each_sched_entity(se)
1617 cfs_rq_of(se)->next = se;
1622 * Preempt the current task with a newly woken task if needed:
1624 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1626 struct task_struct *curr = rq->curr;
1627 struct sched_entity *se = &curr->se, *pse = &p->se;
1628 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1629 int sync = wake_flags & WF_SYNC;
1630 int scale = cfs_rq->nr_running >= sched_nr_latency;
1632 update_curr(cfs_rq);
1634 if (unlikely(rt_prio(p->prio))) {
1635 resched_task(curr);
1636 return;
1639 if (unlikely(p->sched_class != &fair_sched_class))
1640 return;
1642 if (unlikely(se == pse))
1643 return;
1645 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1646 set_next_buddy(pse);
1649 * We can come here with TIF_NEED_RESCHED already set from new task
1650 * wake up path.
1652 if (test_tsk_need_resched(curr))
1653 return;
1656 * Batch and idle tasks do not preempt (their preemption is driven by
1657 * the tick):
1659 if (unlikely(p->policy != SCHED_NORMAL))
1660 return;
1662 /* Idle tasks are by definition preempted by everybody. */
1663 if (unlikely(curr->policy == SCHED_IDLE)) {
1664 resched_task(curr);
1665 return;
1668 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1669 (sched_feat(WAKEUP_OVERLAP) &&
1670 (se->avg_overlap < sysctl_sched_migration_cost &&
1671 pse->avg_overlap < sysctl_sched_migration_cost))) {
1672 resched_task(curr);
1673 return;
1676 if (sched_feat(WAKEUP_RUNNING)) {
1677 if (pse->avg_running < se->avg_running) {
1678 set_next_buddy(pse);
1679 resched_task(curr);
1680 return;
1684 if (!sched_feat(WAKEUP_PREEMPT))
1685 return;
1687 find_matching_se(&se, &pse);
1689 BUG_ON(!pse);
1691 if (wakeup_preempt_entity(se, pse) == 1) {
1692 resched_task(curr);
1694 * Only set the backward buddy when the current task is still
1695 * on the rq. This can happen when a wakeup gets interleaved
1696 * with schedule on the ->pre_schedule() or idle_balance()
1697 * point, either of which can * drop the rq lock.
1699 * Also, during early boot the idle thread is in the fair class,
1700 * for obvious reasons its a bad idea to schedule back to it.
1702 if (unlikely(!se->on_rq || curr == rq->idle))
1703 return;
1704 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1705 set_last_buddy(se);
1709 static struct task_struct *pick_next_task_fair(struct rq *rq)
1711 struct task_struct *p;
1712 struct cfs_rq *cfs_rq = &rq->cfs;
1713 struct sched_entity *se;
1715 if (unlikely(!cfs_rq->nr_running))
1716 return NULL;
1718 do {
1719 se = pick_next_entity(cfs_rq);
1720 set_next_entity(cfs_rq, se);
1721 cfs_rq = group_cfs_rq(se);
1722 } while (cfs_rq);
1724 p = task_of(se);
1725 hrtick_start_fair(rq, p);
1727 return p;
1731 * Account for a descheduled task:
1733 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1735 struct sched_entity *se = &prev->se;
1736 struct cfs_rq *cfs_rq;
1738 for_each_sched_entity(se) {
1739 cfs_rq = cfs_rq_of(se);
1740 put_prev_entity(cfs_rq, se);
1744 #ifdef CONFIG_SMP
1745 /**************************************************
1746 * Fair scheduling class load-balancing methods:
1750 * Load-balancing iterator. Note: while the runqueue stays locked
1751 * during the whole iteration, the current task might be
1752 * dequeued so the iterator has to be dequeue-safe. Here we
1753 * achieve that by always pre-iterating before returning
1754 * the current task:
1756 static struct task_struct *
1757 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1759 struct task_struct *p = NULL;
1760 struct sched_entity *se;
1762 if (next == &cfs_rq->tasks)
1763 return NULL;
1765 se = list_entry(next, struct sched_entity, group_node);
1766 p = task_of(se);
1767 cfs_rq->balance_iterator = next->next;
1769 return p;
1772 static struct task_struct *load_balance_start_fair(void *arg)
1774 struct cfs_rq *cfs_rq = arg;
1776 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1779 static struct task_struct *load_balance_next_fair(void *arg)
1781 struct cfs_rq *cfs_rq = arg;
1783 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1786 static unsigned long
1787 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1788 unsigned long max_load_move, struct sched_domain *sd,
1789 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1790 struct cfs_rq *cfs_rq)
1792 struct rq_iterator cfs_rq_iterator;
1794 cfs_rq_iterator.start = load_balance_start_fair;
1795 cfs_rq_iterator.next = load_balance_next_fair;
1796 cfs_rq_iterator.arg = cfs_rq;
1798 return balance_tasks(this_rq, this_cpu, busiest,
1799 max_load_move, sd, idle, all_pinned,
1800 this_best_prio, &cfs_rq_iterator);
1803 #ifdef CONFIG_FAIR_GROUP_SCHED
1804 static unsigned long
1805 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1806 unsigned long max_load_move,
1807 struct sched_domain *sd, enum cpu_idle_type idle,
1808 int *all_pinned, int *this_best_prio)
1810 long rem_load_move = max_load_move;
1811 int busiest_cpu = cpu_of(busiest);
1812 struct task_group *tg;
1814 rcu_read_lock();
1815 update_h_load(busiest_cpu);
1817 list_for_each_entry_rcu(tg, &task_groups, list) {
1818 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1819 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1820 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1821 u64 rem_load, moved_load;
1824 * empty group
1826 if (!busiest_cfs_rq->task_weight)
1827 continue;
1829 rem_load = (u64)rem_load_move * busiest_weight;
1830 rem_load = div_u64(rem_load, busiest_h_load + 1);
1832 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1833 rem_load, sd, idle, all_pinned, this_best_prio,
1834 tg->cfs_rq[busiest_cpu]);
1836 if (!moved_load)
1837 continue;
1839 moved_load *= busiest_h_load;
1840 moved_load = div_u64(moved_load, busiest_weight + 1);
1842 rem_load_move -= moved_load;
1843 if (rem_load_move < 0)
1844 break;
1846 rcu_read_unlock();
1848 return max_load_move - rem_load_move;
1850 #else
1851 static unsigned long
1852 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1853 unsigned long max_load_move,
1854 struct sched_domain *sd, enum cpu_idle_type idle,
1855 int *all_pinned, int *this_best_prio)
1857 return __load_balance_fair(this_rq, this_cpu, busiest,
1858 max_load_move, sd, idle, all_pinned,
1859 this_best_prio, &busiest->cfs);
1861 #endif
1863 static int
1864 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1865 struct sched_domain *sd, enum cpu_idle_type idle)
1867 struct cfs_rq *busy_cfs_rq;
1868 struct rq_iterator cfs_rq_iterator;
1870 cfs_rq_iterator.start = load_balance_start_fair;
1871 cfs_rq_iterator.next = load_balance_next_fair;
1873 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1875 * pass busy_cfs_rq argument into
1876 * load_balance_[start|next]_fair iterators
1878 cfs_rq_iterator.arg = busy_cfs_rq;
1879 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1880 &cfs_rq_iterator))
1881 return 1;
1884 return 0;
1887 static void rq_online_fair(struct rq *rq)
1889 update_sysctl();
1892 static void rq_offline_fair(struct rq *rq)
1894 update_sysctl();
1897 #endif /* CONFIG_SMP */
1900 * scheduler tick hitting a task of our scheduling class:
1902 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1904 struct cfs_rq *cfs_rq;
1905 struct sched_entity *se = &curr->se;
1907 for_each_sched_entity(se) {
1908 cfs_rq = cfs_rq_of(se);
1909 entity_tick(cfs_rq, se, queued);
1914 * Share the fairness runtime between parent and child, thus the
1915 * total amount of pressure for CPU stays equal - new tasks
1916 * get a chance to run but frequent forkers are not allowed to
1917 * monopolize the CPU. Note: the parent runqueue is locked,
1918 * the child is not running yet.
1920 static void task_new_fair(struct rq *rq, struct task_struct *p)
1922 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1923 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1924 int this_cpu = smp_processor_id();
1926 sched_info_queued(p);
1928 update_curr(cfs_rq);
1929 if (curr)
1930 se->vruntime = curr->vruntime;
1931 place_entity(cfs_rq, se, 1);
1933 /* 'curr' will be NULL if the child belongs to a different group */
1934 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1935 curr && entity_before(curr, se)) {
1937 * Upon rescheduling, sched_class::put_prev_task() will place
1938 * 'current' within the tree based on its new key value.
1940 swap(curr->vruntime, se->vruntime);
1941 resched_task(rq->curr);
1944 enqueue_task_fair(rq, p, 0);
1948 * Priority of the task has changed. Check to see if we preempt
1949 * the current task.
1951 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1952 int oldprio, int running)
1955 * Reschedule if we are currently running on this runqueue and
1956 * our priority decreased, or if we are not currently running on
1957 * this runqueue and our priority is higher than the current's
1959 if (running) {
1960 if (p->prio > oldprio)
1961 resched_task(rq->curr);
1962 } else
1963 check_preempt_curr(rq, p, 0);
1967 * We switched to the sched_fair class.
1969 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1970 int running)
1973 * We were most likely switched from sched_rt, so
1974 * kick off the schedule if running, otherwise just see
1975 * if we can still preempt the current task.
1977 if (running)
1978 resched_task(rq->curr);
1979 else
1980 check_preempt_curr(rq, p, 0);
1983 /* Account for a task changing its policy or group.
1985 * This routine is mostly called to set cfs_rq->curr field when a task
1986 * migrates between groups/classes.
1988 static void set_curr_task_fair(struct rq *rq)
1990 struct sched_entity *se = &rq->curr->se;
1992 for_each_sched_entity(se)
1993 set_next_entity(cfs_rq_of(se), se);
1996 #ifdef CONFIG_FAIR_GROUP_SCHED
1997 static void moved_group_fair(struct task_struct *p)
1999 struct cfs_rq *cfs_rq = task_cfs_rq(p);
2000 s64 delta;
2002 update_curr(cfs_rq);
2003 delta = (s64) (p->se.vruntime - cfs_rq->min_vruntime);
2004 if(delta > 0)
2005 p->se.vruntime = cfs_rq->min_vruntime;
2006 place_entity(cfs_rq, &p->se, 1);
2008 #endif
2010 unsigned int get_rr_interval_fair(struct task_struct *task)
2012 struct sched_entity *se = &task->se;
2013 unsigned long flags;
2014 struct rq *rq;
2015 unsigned int rr_interval = 0;
2018 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2019 * idle runqueue:
2021 rq = task_rq_lock(task, &flags);
2022 if (rq->cfs.load.weight)
2023 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2024 task_rq_unlock(rq, &flags);
2026 return rr_interval;
2030 * All the scheduling class methods:
2032 static const struct sched_class fair_sched_class = {
2033 .next = &idle_sched_class,
2034 .enqueue_task = enqueue_task_fair,
2035 .dequeue_task = dequeue_task_fair,
2036 .yield_task = yield_task_fair,
2038 .check_preempt_curr = check_preempt_wakeup,
2040 .pick_next_task = pick_next_task_fair,
2041 .put_prev_task = put_prev_task_fair,
2043 #ifdef CONFIG_SMP
2044 .select_task_rq = select_task_rq_fair,
2046 .load_balance = load_balance_fair,
2047 .move_one_task = move_one_task_fair,
2048 .rq_online = rq_online_fair,
2049 .rq_offline = rq_offline_fair,
2050 #endif
2052 .set_curr_task = set_curr_task_fair,
2053 .task_tick = task_tick_fair,
2054 .task_new = task_new_fair,
2056 .prio_changed = prio_changed_fair,
2057 .switched_to = switched_to_fair,
2059 .get_rr_interval = get_rr_interval_fair,
2061 #ifdef CONFIG_FAIR_GROUP_SCHED
2062 .moved_group = moved_group_fair,
2063 #endif
2066 #ifdef CONFIG_SCHED_DEBUG
2067 static void print_cfs_stats(struct seq_file *m, int cpu)
2069 struct cfs_rq *cfs_rq;
2071 rcu_read_lock();
2072 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2073 print_cfs_rq(m, cpu, cfs_rq);
2074 rcu_read_unlock();
2076 #endif