Merge commit 'refs/merge-requests/1' of git://gitorious.org/linux-on-wince-htc/linux_...
[htc-linux.git] / fs / ext4 / inode.c
blobe233879ebbcb0595651ced91b3ecafc8fc492685
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 struct buffer_head *bh, ext4_fsblk_t blocknr)
88 int err;
90 might_sleep();
92 BUFFER_TRACE(bh, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 "data mode %x\n",
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
106 if (bh) {
107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle, bh);
110 return 0;
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
118 if (err)
119 ext4_abort(inode->i_sb, __func__,
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode *inode)
131 ext4_lblk_t needed;
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t *start_transaction(struct inode *inode)
164 handle_t *result;
166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 if (!IS_ERR(result))
168 return result;
170 ext4_std_error(inode->i_sb, PTR_ERR(result));
171 return result;
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 return 0;
186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 return 0;
188 return 1;
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 int nblocks)
199 int ret;
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 jbd_debug(2, "restarting handle %p\n", handle);
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
212 ext4_discard_preallocations(inode);
214 return ret;
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode *inode)
222 handle_t *handle;
223 int err;
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
230 goto no_delete;
232 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233 if (IS_ERR(handle)) {
234 ext4_std_error(inode->i_sb, PTR_ERR(handle));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
238 * cleaned up.
240 ext4_orphan_del(NULL, inode);
241 goto no_delete;
244 if (IS_SYNC(inode))
245 ext4_handle_sync(handle);
246 inode->i_size = 0;
247 err = ext4_mark_inode_dirty(handle, inode);
248 if (err) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't mark inode dirty (err %d)", err);
251 goto stop_handle;
253 if (inode->i_blocks)
254 ext4_truncate(inode);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle, 3)) {
263 err = ext4_journal_extend(handle, 3);
264 if (err > 0)
265 err = ext4_journal_restart(handle, 3);
266 if (err != 0) {
267 ext4_warning(inode->i_sb, __func__,
268 "couldn't extend journal (err %d)", err);
269 stop_handle:
270 ext4_journal_stop(handle);
271 goto no_delete;
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle, inode);
284 EXT4_I(inode)->i_dtime = get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
291 * fails.
293 if (ext4_mark_inode_dirty(handle, inode))
294 /* If that failed, just do the required in-core inode clear. */
295 clear_inode(inode);
296 else
297 ext4_free_inode(handle, inode);
298 ext4_journal_stop(handle);
299 return;
300 no_delete:
301 clear_inode(inode); /* We must guarantee clearing of inode... */
304 typedef struct {
305 __le32 *p;
306 __le32 key;
307 struct buffer_head *bh;
308 } Indirect;
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
312 p->key = *(p->p = v);
313 p->bh = bh;
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
334 * inode->i_sb).
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
344 * get there at all.
347 static int ext4_block_to_path(struct inode *inode,
348 ext4_lblk_t i_block,
349 ext4_lblk_t offsets[4], int *boundary)
351 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 const long direct_blocks = EXT4_NDIR_BLOCKS,
354 indirect_blocks = ptrs,
355 double_blocks = (1 << (ptrs_bits * 2));
356 int n = 0;
357 int final = 0;
359 if (i_block < direct_blocks) {
360 offsets[n++] = i_block;
361 final = direct_blocks;
362 } else if ((i_block -= direct_blocks) < indirect_blocks) {
363 offsets[n++] = EXT4_IND_BLOCK;
364 offsets[n++] = i_block;
365 final = ptrs;
366 } else if ((i_block -= indirect_blocks) < double_blocks) {
367 offsets[n++] = EXT4_DIND_BLOCK;
368 offsets[n++] = i_block >> ptrs_bits;
369 offsets[n++] = i_block & (ptrs - 1);
370 final = ptrs;
371 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372 offsets[n++] = EXT4_TIND_BLOCK;
373 offsets[n++] = i_block >> (ptrs_bits * 2);
374 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 offsets[n++] = i_block & (ptrs - 1);
376 final = ptrs;
377 } else {
378 ext4_warning(inode->i_sb, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block + direct_blocks +
381 indirect_blocks + double_blocks, inode->i_ino);
383 if (boundary)
384 *boundary = final - 1 - (i_block & (ptrs - 1));
385 return n;
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389 __le32 *p, unsigned int max)
391 __le32 *bref = p;
392 unsigned int blk;
394 while (bref < p+max) {
395 blk = le32_to_cpu(*bref++);
396 if (blk &&
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398 blk, 1))) {
399 ext4_error(inode->i_sb, function,
400 "invalid block reference %u "
401 "in inode #%lu", blk, inode->i_ino);
402 return -EIO;
405 return 0;
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
415 EXT4_NDIR_BLOCKS)
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
435 * numbers.
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 ext4_lblk_t *offsets,
449 Indirect chain[4], int *err)
451 struct super_block *sb = inode->i_sb;
452 Indirect *p = chain;
453 struct buffer_head *bh;
455 *err = 0;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458 if (!p->key)
459 goto no_block;
460 while (--depth) {
461 bh = sb_getblk(sb, le32_to_cpu(p->key));
462 if (unlikely(!bh))
463 goto failure;
465 if (!bh_uptodate_or_lock(bh)) {
466 if (bh_submit_read(bh) < 0) {
467 put_bh(bh);
468 goto failure;
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode, bh)) {
472 put_bh(bh);
473 goto failure;
477 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478 /* Reader: end */
479 if (!p->key)
480 goto no_block;
482 return NULL;
484 failure:
485 *err = -EIO;
486 no_block:
487 return p;
491 * ext4_find_near - find a place for allocation with sufficient locality
492 * @inode: owner
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
497 * Rules are:
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
501 * cylinder group.
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
512 struct ext4_inode_info *ei = EXT4_I(inode);
513 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514 __le32 *p;
515 ext4_fsblk_t bg_start;
516 ext4_fsblk_t last_block;
517 ext4_grpblk_t colour;
518 ext4_group_t block_group;
519 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
521 /* Try to find previous block */
522 for (p = ind->p - 1; p >= start; p--) {
523 if (*p)
524 return le32_to_cpu(*p);
527 /* No such thing, so let's try location of indirect block */
528 if (ind->bh)
529 return ind->bh->b_blocknr;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group = ei->i_block_group;
536 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 block_group &= ~(flex_size-1);
538 if (S_ISREG(inode->i_mode))
539 block_group++;
541 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode->i_sb, DELALLOC))
549 return bg_start;
551 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 colour = (current->pid % 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554 else
555 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556 return bg_start + colour;
560 * ext4_find_goal - find a preferred place for allocation.
561 * @inode: owner
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
566 * returns it.
567 * Because this is only used for non-extent files, we limit the block nr
568 * to 32 bits.
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571 Indirect *partial)
573 ext4_fsblk_t goal;
576 * XXX need to get goal block from mballoc's data structures
579 goal = ext4_find_near(inode, partial);
580 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 return goal;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597 int blocks_to_boundary)
599 unsigned int count = 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
605 if (k > 0) {
606 /* right now we don't handle cross boundary allocation */
607 if (blks < blocks_to_boundary + 1)
608 count += blks;
609 else
610 count += blocks_to_boundary + 1;
611 return count;
614 count++;
615 while (count < blks && count <= blocks_to_boundary &&
616 le32_to_cpu(*(branch[0].p + count)) == 0) {
617 count++;
619 return count;
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
625 * blocks
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
630 * direct blocks
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633 ext4_lblk_t iblock, ext4_fsblk_t goal,
634 int indirect_blks, int blks,
635 ext4_fsblk_t new_blocks[4], int *err)
637 struct ext4_allocation_request ar;
638 int target, i;
639 unsigned long count = 0, blk_allocated = 0;
640 int index = 0;
641 ext4_fsblk_t current_block = 0;
642 int ret = 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target = indirect_blks;
654 while (target > 0) {
655 count = target;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block = ext4_new_meta_blocks(handle, inode,
658 goal, &count, err);
659 if (*err)
660 goto failed_out;
662 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
664 target -= count;
665 /* allocate blocks for indirect blocks */
666 while (index < indirect_blks && count) {
667 new_blocks[index++] = current_block++;
668 count--;
670 if (count > 0) {
672 * save the new block number
673 * for the first direct block
675 new_blocks[index] = current_block;
676 printk(KERN_INFO "%s returned more blocks than "
677 "requested\n", __func__);
678 WARN_ON(1);
679 break;
683 target = blks - count ;
684 blk_allocated = count;
685 if (!target)
686 goto allocated;
687 /* Now allocate data blocks */
688 memset(&ar, 0, sizeof(ar));
689 ar.inode = inode;
690 ar.goal = goal;
691 ar.len = target;
692 ar.logical = iblock;
693 if (S_ISREG(inode->i_mode))
694 /* enable in-core preallocation only for regular files */
695 ar.flags = EXT4_MB_HINT_DATA;
697 current_block = ext4_mb_new_blocks(handle, &ar, err);
698 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
700 if (*err && (target == blks)) {
702 * if the allocation failed and we didn't allocate
703 * any blocks before
705 goto failed_out;
707 if (!*err) {
708 if (target == blks) {
710 * save the new block number
711 * for the first direct block
713 new_blocks[index] = current_block;
715 blk_allocated += ar.len;
717 allocated:
718 /* total number of blocks allocated for direct blocks */
719 ret = blk_allocated;
720 *err = 0;
721 return ret;
722 failed_out:
723 for (i = 0; i < index; i++)
724 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725 return ret;
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 ext4_lblk_t iblock, int indirect_blks,
755 int *blks, ext4_fsblk_t goal,
756 ext4_lblk_t *offsets, Indirect *branch)
758 int blocksize = inode->i_sb->s_blocksize;
759 int i, n = 0;
760 int err = 0;
761 struct buffer_head *bh;
762 int num;
763 ext4_fsblk_t new_blocks[4];
764 ext4_fsblk_t current_block;
766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 *blks, new_blocks, &err);
768 if (err)
769 return err;
771 branch[0].key = cpu_to_le32(new_blocks[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n = 1; n <= indirect_blks; n++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
779 * parent to disk.
781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 branch[n].bh = bh;
783 lock_buffer(bh);
784 BUFFER_TRACE(bh, "call get_create_access");
785 err = ext4_journal_get_create_access(handle, bh);
786 if (err) {
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
789 unlock_buffer(bh);
790 goto failed;
793 memset(bh->b_data, 0, blocksize);
794 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 branch[n].key = cpu_to_le32(new_blocks[n]);
796 *branch[n].p = branch[n].key;
797 if (n == indirect_blks) {
798 current_block = new_blocks[n];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i = 1; i < num; i++)
805 *(branch[n].p + i) = cpu_to_le32(++current_block);
807 BUFFER_TRACE(bh, "marking uptodate");
808 set_buffer_uptodate(bh);
809 unlock_buffer(bh);
811 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, bh);
813 if (err)
814 goto failed;
816 *blks = num;
817 return err;
818 failed:
819 /* Allocation failed, free what we already allocated */
820 for (i = 1; i <= n ; i++) {
821 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822 ext4_journal_forget(handle, branch[i].bh);
824 for (i = 0; i < indirect_blks; i++)
825 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
827 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
829 return err;
833 * ext4_splice_branch - splice the allocated branch onto inode.
834 * @inode: owner
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
837 * ext4_alloc_branch)
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847 ext4_lblk_t block, Indirect *where, int num,
848 int blks)
850 int i;
851 int err = 0;
852 ext4_fsblk_t current_block;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
857 * before the splice.
859 if (where->bh) {
860 BUFFER_TRACE(where->bh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, where->bh);
862 if (err)
863 goto err_out;
865 /* That's it */
867 *where->p = where->key;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num == 0 && blks > 1) {
874 current_block = le32_to_cpu(where->key) + 1;
875 for (i = 1; i < blks; i++)
876 *(where->p + i) = cpu_to_le32(current_block++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
881 if (where->bh) {
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893 if (err)
894 goto err_out;
895 } else {
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle, inode);
900 jbd_debug(5, "splicing direct\n");
902 return err;
904 err_out:
905 for (i = 1; i <= num; i++) {
906 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907 ext4_journal_forget(handle, where[i].bh);
908 ext4_free_blocks(handle, inode,
909 le32_to_cpu(where[i-1].key), 1, 0);
911 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
913 return err;
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 * blocks.
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945 ext4_lblk_t iblock, unsigned int maxblocks,
946 struct buffer_head *bh_result,
947 int flags)
949 int err = -EIO;
950 ext4_lblk_t offsets[4];
951 Indirect chain[4];
952 Indirect *partial;
953 ext4_fsblk_t goal;
954 int indirect_blks;
955 int blocks_to_boundary = 0;
956 int depth;
957 int count = 0;
958 ext4_fsblk_t first_block = 0;
960 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962 depth = ext4_block_to_path(inode, iblock, offsets,
963 &blocks_to_boundary);
965 if (depth == 0)
966 goto out;
968 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
970 /* Simplest case - block found, no allocation needed */
971 if (!partial) {
972 first_block = le32_to_cpu(chain[depth - 1].key);
973 clear_buffer_new(bh_result);
974 count++;
975 /*map more blocks*/
976 while (count < maxblocks && count <= blocks_to_boundary) {
977 ext4_fsblk_t blk;
979 blk = le32_to_cpu(*(chain[depth-1].p + count));
981 if (blk == first_block + count)
982 count++;
983 else
984 break;
986 goto got_it;
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991 goto cleanup;
994 * Okay, we need to do block allocation.
996 goal = ext4_find_goal(inode, iblock, partial);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks = (chain + depth) - partial - 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count = ext4_blks_to_allocate(partial, indirect_blks,
1006 maxblocks, blocks_to_boundary);
1008 * Block out ext4_truncate while we alter the tree
1010 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011 &count, goal,
1012 offsets + (partial - chain), partial);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1021 if (!err)
1022 err = ext4_splice_branch(handle, inode, iblock,
1023 partial, indirect_blks, count);
1024 if (err)
1025 goto cleanup;
1027 set_buffer_new(bh_result);
1029 ext4_update_inode_fsync_trans(handle, inode, 1);
1030 got_it:
1031 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1032 if (count > blocks_to_boundary)
1033 set_buffer_boundary(bh_result);
1034 err = count;
1035 /* Clean up and exit */
1036 partial = chain + depth - 1; /* the whole chain */
1037 cleanup:
1038 while (partial > chain) {
1039 BUFFER_TRACE(partial->bh, "call brelse");
1040 brelse(partial->bh);
1041 partial--;
1043 BUFFER_TRACE(bh_result, "returned");
1044 out:
1045 return err;
1048 #ifdef CONFIG_QUOTA
1049 qsize_t *ext4_get_reserved_space(struct inode *inode)
1051 return &EXT4_I(inode)->i_reserved_quota;
1053 #endif
1055 * Calculate the number of metadata blocks need to reserve
1056 * to allocate @blocks for non extent file based file
1058 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1060 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1061 int ind_blks, dind_blks, tind_blks;
1063 /* number of new indirect blocks needed */
1064 ind_blks = (blocks + icap - 1) / icap;
1066 dind_blks = (ind_blks + icap - 1) / icap;
1068 tind_blks = 1;
1070 return ind_blks + dind_blks + tind_blks;
1074 * Calculate the number of metadata blocks need to reserve
1075 * to allocate given number of blocks
1077 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1079 if (!blocks)
1080 return 0;
1082 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1083 return ext4_ext_calc_metadata_amount(inode, blocks);
1085 return ext4_indirect_calc_metadata_amount(inode, blocks);
1088 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1090 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1091 int total, mdb, mdb_free;
1093 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1094 /* recalculate the number of metablocks still need to be reserved */
1095 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1096 mdb = ext4_calc_metadata_amount(inode, total);
1098 /* figure out how many metablocks to release */
1099 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1100 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1102 if (mdb_free) {
1103 /* Account for allocated meta_blocks */
1104 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1106 /* update fs dirty blocks counter */
1107 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1108 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1109 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1112 /* update per-inode reservations */
1113 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1114 EXT4_I(inode)->i_reserved_data_blocks -= used;
1115 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1118 * free those over-booking quota for metadata blocks
1120 if (mdb_free)
1121 vfs_dq_release_reservation_block(inode, mdb_free);
1124 * If we have done all the pending block allocations and if
1125 * there aren't any writers on the inode, we can discard the
1126 * inode's preallocations.
1128 if (!total && (atomic_read(&inode->i_writecount) == 0))
1129 ext4_discard_preallocations(inode);
1132 static int check_block_validity(struct inode *inode, const char *msg,
1133 sector_t logical, sector_t phys, int len)
1135 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1136 ext4_error(inode->i_sb, msg,
1137 "inode #%lu logical block %llu mapped to %llu "
1138 "(size %d)", inode->i_ino,
1139 (unsigned long long) logical,
1140 (unsigned long long) phys, len);
1141 return -EIO;
1143 return 0;
1147 * Return the number of contiguous dirty pages in a given inode
1148 * starting at page frame idx.
1150 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1151 unsigned int max_pages)
1153 struct address_space *mapping = inode->i_mapping;
1154 pgoff_t index;
1155 struct pagevec pvec;
1156 pgoff_t num = 0;
1157 int i, nr_pages, done = 0;
1159 if (max_pages == 0)
1160 return 0;
1161 pagevec_init(&pvec, 0);
1162 while (!done) {
1163 index = idx;
1164 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1165 PAGECACHE_TAG_DIRTY,
1166 (pgoff_t)PAGEVEC_SIZE);
1167 if (nr_pages == 0)
1168 break;
1169 for (i = 0; i < nr_pages; i++) {
1170 struct page *page = pvec.pages[i];
1171 struct buffer_head *bh, *head;
1173 lock_page(page);
1174 if (unlikely(page->mapping != mapping) ||
1175 !PageDirty(page) ||
1176 PageWriteback(page) ||
1177 page->index != idx) {
1178 done = 1;
1179 unlock_page(page);
1180 break;
1182 if (page_has_buffers(page)) {
1183 bh = head = page_buffers(page);
1184 do {
1185 if (!buffer_delay(bh) &&
1186 !buffer_unwritten(bh))
1187 done = 1;
1188 bh = bh->b_this_page;
1189 } while (!done && (bh != head));
1191 unlock_page(page);
1192 if (done)
1193 break;
1194 idx++;
1195 num++;
1196 if (num >= max_pages)
1197 break;
1199 pagevec_release(&pvec);
1201 return num;
1205 * The ext4_get_blocks() function tries to look up the requested blocks,
1206 * and returns if the blocks are already mapped.
1208 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1209 * and store the allocated blocks in the result buffer head and mark it
1210 * mapped.
1212 * If file type is extents based, it will call ext4_ext_get_blocks(),
1213 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1214 * based files
1216 * On success, it returns the number of blocks being mapped or allocate.
1217 * if create==0 and the blocks are pre-allocated and uninitialized block,
1218 * the result buffer head is unmapped. If the create ==1, it will make sure
1219 * the buffer head is mapped.
1221 * It returns 0 if plain look up failed (blocks have not been allocated), in
1222 * that casem, buffer head is unmapped
1224 * It returns the error in case of allocation failure.
1226 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1227 unsigned int max_blocks, struct buffer_head *bh,
1228 int flags)
1230 int retval;
1232 clear_buffer_mapped(bh);
1233 clear_buffer_unwritten(bh);
1235 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1236 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1237 (unsigned long)block);
1239 * Try to see if we can get the block without requesting a new
1240 * file system block.
1242 down_read((&EXT4_I(inode)->i_data_sem));
1243 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1244 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1245 bh, 0);
1246 } else {
1247 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1248 bh, 0);
1250 up_read((&EXT4_I(inode)->i_data_sem));
1252 if (retval > 0 && buffer_mapped(bh)) {
1253 int ret = check_block_validity(inode, "file system corruption",
1254 block, bh->b_blocknr, retval);
1255 if (ret != 0)
1256 return ret;
1259 /* If it is only a block(s) look up */
1260 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1261 return retval;
1264 * Returns if the blocks have already allocated
1266 * Note that if blocks have been preallocated
1267 * ext4_ext_get_block() returns th create = 0
1268 * with buffer head unmapped.
1270 if (retval > 0 && buffer_mapped(bh))
1271 return retval;
1274 * When we call get_blocks without the create flag, the
1275 * BH_Unwritten flag could have gotten set if the blocks
1276 * requested were part of a uninitialized extent. We need to
1277 * clear this flag now that we are committed to convert all or
1278 * part of the uninitialized extent to be an initialized
1279 * extent. This is because we need to avoid the combination
1280 * of BH_Unwritten and BH_Mapped flags being simultaneously
1281 * set on the buffer_head.
1283 clear_buffer_unwritten(bh);
1286 * New blocks allocate and/or writing to uninitialized extent
1287 * will possibly result in updating i_data, so we take
1288 * the write lock of i_data_sem, and call get_blocks()
1289 * with create == 1 flag.
1291 down_write((&EXT4_I(inode)->i_data_sem));
1294 * if the caller is from delayed allocation writeout path
1295 * we have already reserved fs blocks for allocation
1296 * let the underlying get_block() function know to
1297 * avoid double accounting
1299 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1300 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1302 * We need to check for EXT4 here because migrate
1303 * could have changed the inode type in between
1305 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1306 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1307 bh, flags);
1308 } else {
1309 retval = ext4_ind_get_blocks(handle, inode, block,
1310 max_blocks, bh, flags);
1312 if (retval > 0 && buffer_new(bh)) {
1314 * We allocated new blocks which will result in
1315 * i_data's format changing. Force the migrate
1316 * to fail by clearing migrate flags
1318 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326 * Update reserved blocks/metadata blocks after successful
1327 * block allocation which had been deferred till now.
1329 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1330 ext4_da_update_reserve_space(inode, retval);
1332 up_write((&EXT4_I(inode)->i_data_sem));
1333 if (retval > 0 && buffer_mapped(bh)) {
1334 int ret = check_block_validity(inode, "file system "
1335 "corruption after allocation",
1336 block, bh->b_blocknr, retval);
1337 if (ret != 0)
1338 return ret;
1340 return retval;
1343 /* Maximum number of blocks we map for direct IO at once. */
1344 #define DIO_MAX_BLOCKS 4096
1346 int ext4_get_block(struct inode *inode, sector_t iblock,
1347 struct buffer_head *bh_result, int create)
1349 handle_t *handle = ext4_journal_current_handle();
1350 int ret = 0, started = 0;
1351 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1352 int dio_credits;
1354 if (create && !handle) {
1355 /* Direct IO write... */
1356 if (max_blocks > DIO_MAX_BLOCKS)
1357 max_blocks = DIO_MAX_BLOCKS;
1358 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1359 handle = ext4_journal_start(inode, dio_credits);
1360 if (IS_ERR(handle)) {
1361 ret = PTR_ERR(handle);
1362 goto out;
1364 started = 1;
1367 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1368 create ? EXT4_GET_BLOCKS_CREATE : 0);
1369 if (ret > 0) {
1370 bh_result->b_size = (ret << inode->i_blkbits);
1371 ret = 0;
1373 if (started)
1374 ext4_journal_stop(handle);
1375 out:
1376 return ret;
1380 * `handle' can be NULL if create is zero
1382 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1383 ext4_lblk_t block, int create, int *errp)
1385 struct buffer_head dummy;
1386 int fatal = 0, err;
1387 int flags = 0;
1389 J_ASSERT(handle != NULL || create == 0);
1391 dummy.b_state = 0;
1392 dummy.b_blocknr = -1000;
1393 buffer_trace_init(&dummy.b_history);
1394 if (create)
1395 flags |= EXT4_GET_BLOCKS_CREATE;
1396 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1398 * ext4_get_blocks() returns number of blocks mapped. 0 in
1399 * case of a HOLE.
1401 if (err > 0) {
1402 if (err > 1)
1403 WARN_ON(1);
1404 err = 0;
1406 *errp = err;
1407 if (!err && buffer_mapped(&dummy)) {
1408 struct buffer_head *bh;
1409 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1410 if (!bh) {
1411 *errp = -EIO;
1412 goto err;
1414 if (buffer_new(&dummy)) {
1415 J_ASSERT(create != 0);
1416 J_ASSERT(handle != NULL);
1419 * Now that we do not always journal data, we should
1420 * keep in mind whether this should always journal the
1421 * new buffer as metadata. For now, regular file
1422 * writes use ext4_get_block instead, so it's not a
1423 * problem.
1425 lock_buffer(bh);
1426 BUFFER_TRACE(bh, "call get_create_access");
1427 fatal = ext4_journal_get_create_access(handle, bh);
1428 if (!fatal && !buffer_uptodate(bh)) {
1429 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1430 set_buffer_uptodate(bh);
1432 unlock_buffer(bh);
1433 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1434 err = ext4_handle_dirty_metadata(handle, inode, bh);
1435 if (!fatal)
1436 fatal = err;
1437 } else {
1438 BUFFER_TRACE(bh, "not a new buffer");
1440 if (fatal) {
1441 *errp = fatal;
1442 brelse(bh);
1443 bh = NULL;
1445 return bh;
1447 err:
1448 return NULL;
1451 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1452 ext4_lblk_t block, int create, int *err)
1454 struct buffer_head *bh;
1456 bh = ext4_getblk(handle, inode, block, create, err);
1457 if (!bh)
1458 return bh;
1459 if (buffer_uptodate(bh))
1460 return bh;
1461 ll_rw_block(READ_META, 1, &bh);
1462 wait_on_buffer(bh);
1463 if (buffer_uptodate(bh))
1464 return bh;
1465 put_bh(bh);
1466 *err = -EIO;
1467 return NULL;
1470 static int walk_page_buffers(handle_t *handle,
1471 struct buffer_head *head,
1472 unsigned from,
1473 unsigned to,
1474 int *partial,
1475 int (*fn)(handle_t *handle,
1476 struct buffer_head *bh))
1478 struct buffer_head *bh;
1479 unsigned block_start, block_end;
1480 unsigned blocksize = head->b_size;
1481 int err, ret = 0;
1482 struct buffer_head *next;
1484 for (bh = head, block_start = 0;
1485 ret == 0 && (bh != head || !block_start);
1486 block_start = block_end, bh = next) {
1487 next = bh->b_this_page;
1488 block_end = block_start + blocksize;
1489 if (block_end <= from || block_start >= to) {
1490 if (partial && !buffer_uptodate(bh))
1491 *partial = 1;
1492 continue;
1494 err = (*fn)(handle, bh);
1495 if (!ret)
1496 ret = err;
1498 return ret;
1502 * To preserve ordering, it is essential that the hole instantiation and
1503 * the data write be encapsulated in a single transaction. We cannot
1504 * close off a transaction and start a new one between the ext4_get_block()
1505 * and the commit_write(). So doing the jbd2_journal_start at the start of
1506 * prepare_write() is the right place.
1508 * Also, this function can nest inside ext4_writepage() ->
1509 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1510 * has generated enough buffer credits to do the whole page. So we won't
1511 * block on the journal in that case, which is good, because the caller may
1512 * be PF_MEMALLOC.
1514 * By accident, ext4 can be reentered when a transaction is open via
1515 * quota file writes. If we were to commit the transaction while thus
1516 * reentered, there can be a deadlock - we would be holding a quota
1517 * lock, and the commit would never complete if another thread had a
1518 * transaction open and was blocking on the quota lock - a ranking
1519 * violation.
1521 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1522 * will _not_ run commit under these circumstances because handle->h_ref
1523 * is elevated. We'll still have enough credits for the tiny quotafile
1524 * write.
1526 static int do_journal_get_write_access(handle_t *handle,
1527 struct buffer_head *bh)
1529 if (!buffer_mapped(bh) || buffer_freed(bh))
1530 return 0;
1531 return ext4_journal_get_write_access(handle, bh);
1535 * Truncate blocks that were not used by write. We have to truncate the
1536 * pagecache as well so that corresponding buffers get properly unmapped.
1538 static void ext4_truncate_failed_write(struct inode *inode)
1540 truncate_inode_pages(inode->i_mapping, inode->i_size);
1541 ext4_truncate(inode);
1544 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1545 loff_t pos, unsigned len, unsigned flags,
1546 struct page **pagep, void **fsdata)
1548 struct inode *inode = mapping->host;
1549 int ret, needed_blocks;
1550 handle_t *handle;
1551 int retries = 0;
1552 struct page *page;
1553 pgoff_t index;
1554 unsigned from, to;
1556 trace_ext4_write_begin(inode, pos, len, flags);
1558 * Reserve one block more for addition to orphan list in case
1559 * we allocate blocks but write fails for some reason
1561 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1562 index = pos >> PAGE_CACHE_SHIFT;
1563 from = pos & (PAGE_CACHE_SIZE - 1);
1564 to = from + len;
1566 retry:
1567 handle = ext4_journal_start(inode, needed_blocks);
1568 if (IS_ERR(handle)) {
1569 ret = PTR_ERR(handle);
1570 goto out;
1573 /* We cannot recurse into the filesystem as the transaction is already
1574 * started */
1575 flags |= AOP_FLAG_NOFS;
1577 page = grab_cache_page_write_begin(mapping, index, flags);
1578 if (!page) {
1579 ext4_journal_stop(handle);
1580 ret = -ENOMEM;
1581 goto out;
1583 *pagep = page;
1585 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1586 ext4_get_block);
1588 if (!ret && ext4_should_journal_data(inode)) {
1589 ret = walk_page_buffers(handle, page_buffers(page),
1590 from, to, NULL, do_journal_get_write_access);
1593 if (ret) {
1594 unlock_page(page);
1595 page_cache_release(page);
1597 * block_write_begin may have instantiated a few blocks
1598 * outside i_size. Trim these off again. Don't need
1599 * i_size_read because we hold i_mutex.
1601 * Add inode to orphan list in case we crash before
1602 * truncate finishes
1604 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1605 ext4_orphan_add(handle, inode);
1607 ext4_journal_stop(handle);
1608 if (pos + len > inode->i_size) {
1609 ext4_truncate_failed_write(inode);
1611 * If truncate failed early the inode might
1612 * still be on the orphan list; we need to
1613 * make sure the inode is removed from the
1614 * orphan list in that case.
1616 if (inode->i_nlink)
1617 ext4_orphan_del(NULL, inode);
1621 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1622 goto retry;
1623 out:
1624 return ret;
1627 /* For write_end() in data=journal mode */
1628 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1630 if (!buffer_mapped(bh) || buffer_freed(bh))
1631 return 0;
1632 set_buffer_uptodate(bh);
1633 return ext4_handle_dirty_metadata(handle, NULL, bh);
1636 static int ext4_generic_write_end(struct file *file,
1637 struct address_space *mapping,
1638 loff_t pos, unsigned len, unsigned copied,
1639 struct page *page, void *fsdata)
1641 int i_size_changed = 0;
1642 struct inode *inode = mapping->host;
1643 handle_t *handle = ext4_journal_current_handle();
1645 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1648 * No need to use i_size_read() here, the i_size
1649 * cannot change under us because we hold i_mutex.
1651 * But it's important to update i_size while still holding page lock:
1652 * page writeout could otherwise come in and zero beyond i_size.
1654 if (pos + copied > inode->i_size) {
1655 i_size_write(inode, pos + copied);
1656 i_size_changed = 1;
1659 if (pos + copied > EXT4_I(inode)->i_disksize) {
1660 /* We need to mark inode dirty even if
1661 * new_i_size is less that inode->i_size
1662 * bu greater than i_disksize.(hint delalloc)
1664 ext4_update_i_disksize(inode, (pos + copied));
1665 i_size_changed = 1;
1667 unlock_page(page);
1668 page_cache_release(page);
1671 * Don't mark the inode dirty under page lock. First, it unnecessarily
1672 * makes the holding time of page lock longer. Second, it forces lock
1673 * ordering of page lock and transaction start for journaling
1674 * filesystems.
1676 if (i_size_changed)
1677 ext4_mark_inode_dirty(handle, inode);
1679 return copied;
1683 * We need to pick up the new inode size which generic_commit_write gave us
1684 * `file' can be NULL - eg, when called from page_symlink().
1686 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1687 * buffers are managed internally.
1689 static int ext4_ordered_write_end(struct file *file,
1690 struct address_space *mapping,
1691 loff_t pos, unsigned len, unsigned copied,
1692 struct page *page, void *fsdata)
1694 handle_t *handle = ext4_journal_current_handle();
1695 struct inode *inode = mapping->host;
1696 int ret = 0, ret2;
1698 trace_ext4_ordered_write_end(inode, pos, len, copied);
1699 ret = ext4_jbd2_file_inode(handle, inode);
1701 if (ret == 0) {
1702 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1703 page, fsdata);
1704 copied = ret2;
1705 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1706 /* if we have allocated more blocks and copied
1707 * less. We will have blocks allocated outside
1708 * inode->i_size. So truncate them
1710 ext4_orphan_add(handle, inode);
1711 if (ret2 < 0)
1712 ret = ret2;
1714 ret2 = ext4_journal_stop(handle);
1715 if (!ret)
1716 ret = ret2;
1718 if (pos + len > inode->i_size) {
1719 ext4_truncate_failed_write(inode);
1721 * If truncate failed early the inode might still be
1722 * on the orphan list; we need to make sure the inode
1723 * is removed from the orphan list in that case.
1725 if (inode->i_nlink)
1726 ext4_orphan_del(NULL, inode);
1730 return ret ? ret : copied;
1733 static int ext4_writeback_write_end(struct file *file,
1734 struct address_space *mapping,
1735 loff_t pos, unsigned len, unsigned copied,
1736 struct page *page, void *fsdata)
1738 handle_t *handle = ext4_journal_current_handle();
1739 struct inode *inode = mapping->host;
1740 int ret = 0, ret2;
1742 trace_ext4_writeback_write_end(inode, pos, len, copied);
1743 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1744 page, fsdata);
1745 copied = ret2;
1746 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747 /* if we have allocated more blocks and copied
1748 * less. We will have blocks allocated outside
1749 * inode->i_size. So truncate them
1751 ext4_orphan_add(handle, inode);
1753 if (ret2 < 0)
1754 ret = ret2;
1756 ret2 = ext4_journal_stop(handle);
1757 if (!ret)
1758 ret = ret2;
1760 if (pos + len > inode->i_size) {
1761 ext4_truncate_failed_write(inode);
1763 * If truncate failed early the inode might still be
1764 * on the orphan list; we need to make sure the inode
1765 * is removed from the orphan list in that case.
1767 if (inode->i_nlink)
1768 ext4_orphan_del(NULL, inode);
1771 return ret ? ret : copied;
1774 static int ext4_journalled_write_end(struct file *file,
1775 struct address_space *mapping,
1776 loff_t pos, unsigned len, unsigned copied,
1777 struct page *page, void *fsdata)
1779 handle_t *handle = ext4_journal_current_handle();
1780 struct inode *inode = mapping->host;
1781 int ret = 0, ret2;
1782 int partial = 0;
1783 unsigned from, to;
1784 loff_t new_i_size;
1786 trace_ext4_journalled_write_end(inode, pos, len, copied);
1787 from = pos & (PAGE_CACHE_SIZE - 1);
1788 to = from + len;
1790 if (copied < len) {
1791 if (!PageUptodate(page))
1792 copied = 0;
1793 page_zero_new_buffers(page, from+copied, to);
1796 ret = walk_page_buffers(handle, page_buffers(page), from,
1797 to, &partial, write_end_fn);
1798 if (!partial)
1799 SetPageUptodate(page);
1800 new_i_size = pos + copied;
1801 if (new_i_size > inode->i_size)
1802 i_size_write(inode, pos+copied);
1803 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1804 if (new_i_size > EXT4_I(inode)->i_disksize) {
1805 ext4_update_i_disksize(inode, new_i_size);
1806 ret2 = ext4_mark_inode_dirty(handle, inode);
1807 if (!ret)
1808 ret = ret2;
1811 unlock_page(page);
1812 page_cache_release(page);
1813 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1814 /* if we have allocated more blocks and copied
1815 * less. We will have blocks allocated outside
1816 * inode->i_size. So truncate them
1818 ext4_orphan_add(handle, inode);
1820 ret2 = ext4_journal_stop(handle);
1821 if (!ret)
1822 ret = ret2;
1823 if (pos + len > inode->i_size) {
1824 ext4_truncate_failed_write(inode);
1826 * If truncate failed early the inode might still be
1827 * on the orphan list; we need to make sure the inode
1828 * is removed from the orphan list in that case.
1830 if (inode->i_nlink)
1831 ext4_orphan_del(NULL, inode);
1834 return ret ? ret : copied;
1837 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1839 int retries = 0;
1840 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1841 unsigned long md_needed, mdblocks, total = 0;
1844 * recalculate the amount of metadata blocks to reserve
1845 * in order to allocate nrblocks
1846 * worse case is one extent per block
1848 repeat:
1849 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1850 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1851 mdblocks = ext4_calc_metadata_amount(inode, total);
1852 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1854 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1855 total = md_needed + nrblocks;
1856 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1859 * Make quota reservation here to prevent quota overflow
1860 * later. Real quota accounting is done at pages writeout
1861 * time.
1863 if (vfs_dq_reserve_block(inode, total))
1864 return -EDQUOT;
1866 if (ext4_claim_free_blocks(sbi, total)) {
1867 vfs_dq_release_reservation_block(inode, total);
1868 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1869 yield();
1870 goto repeat;
1872 return -ENOSPC;
1874 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1875 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1876 EXT4_I(inode)->i_reserved_meta_blocks += md_needed;
1877 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1879 return 0; /* success */
1882 static void ext4_da_release_space(struct inode *inode, int to_free)
1884 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1885 int total, mdb, mdb_free, release;
1887 if (!to_free)
1888 return; /* Nothing to release, exit */
1890 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1892 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1894 * if there is no reserved blocks, but we try to free some
1895 * then the counter is messed up somewhere.
1896 * but since this function is called from invalidate
1897 * page, it's harmless to return without any action
1899 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1900 "blocks for inode %lu, but there is no reserved "
1901 "data blocks\n", to_free, inode->i_ino);
1902 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1903 return;
1906 /* recalculate the number of metablocks still need to be reserved */
1907 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1908 mdb = ext4_calc_metadata_amount(inode, total);
1910 /* figure out how many metablocks to release */
1911 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1912 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1914 release = to_free + mdb_free;
1916 /* update fs dirty blocks counter for truncate case */
1917 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1919 /* update per-inode reservations */
1920 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1921 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1923 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1924 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1925 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1927 vfs_dq_release_reservation_block(inode, release);
1930 static void ext4_da_page_release_reservation(struct page *page,
1931 unsigned long offset)
1933 int to_release = 0;
1934 struct buffer_head *head, *bh;
1935 unsigned int curr_off = 0;
1937 head = page_buffers(page);
1938 bh = head;
1939 do {
1940 unsigned int next_off = curr_off + bh->b_size;
1942 if ((offset <= curr_off) && (buffer_delay(bh))) {
1943 to_release++;
1944 clear_buffer_delay(bh);
1946 curr_off = next_off;
1947 } while ((bh = bh->b_this_page) != head);
1948 ext4_da_release_space(page->mapping->host, to_release);
1952 * Delayed allocation stuff
1956 * mpage_da_submit_io - walks through extent of pages and try to write
1957 * them with writepage() call back
1959 * @mpd->inode: inode
1960 * @mpd->first_page: first page of the extent
1961 * @mpd->next_page: page after the last page of the extent
1963 * By the time mpage_da_submit_io() is called we expect all blocks
1964 * to be allocated. this may be wrong if allocation failed.
1966 * As pages are already locked by write_cache_pages(), we can't use it
1968 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1970 long pages_skipped;
1971 struct pagevec pvec;
1972 unsigned long index, end;
1973 int ret = 0, err, nr_pages, i;
1974 struct inode *inode = mpd->inode;
1975 struct address_space *mapping = inode->i_mapping;
1977 BUG_ON(mpd->next_page <= mpd->first_page);
1979 * We need to start from the first_page to the next_page - 1
1980 * to make sure we also write the mapped dirty buffer_heads.
1981 * If we look at mpd->b_blocknr we would only be looking
1982 * at the currently mapped buffer_heads.
1984 index = mpd->first_page;
1985 end = mpd->next_page - 1;
1987 pagevec_init(&pvec, 0);
1988 while (index <= end) {
1989 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1990 if (nr_pages == 0)
1991 break;
1992 for (i = 0; i < nr_pages; i++) {
1993 struct page *page = pvec.pages[i];
1995 index = page->index;
1996 if (index > end)
1997 break;
1998 index++;
2000 BUG_ON(!PageLocked(page));
2001 BUG_ON(PageWriteback(page));
2003 pages_skipped = mpd->wbc->pages_skipped;
2004 err = mapping->a_ops->writepage(page, mpd->wbc);
2005 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2007 * have successfully written the page
2008 * without skipping the same
2010 mpd->pages_written++;
2012 * In error case, we have to continue because
2013 * remaining pages are still locked
2014 * XXX: unlock and re-dirty them?
2016 if (ret == 0)
2017 ret = err;
2019 pagevec_release(&pvec);
2021 return ret;
2025 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2027 * @mpd->inode - inode to walk through
2028 * @exbh->b_blocknr - first block on a disk
2029 * @exbh->b_size - amount of space in bytes
2030 * @logical - first logical block to start assignment with
2032 * the function goes through all passed space and put actual disk
2033 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2035 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2036 struct buffer_head *exbh)
2038 struct inode *inode = mpd->inode;
2039 struct address_space *mapping = inode->i_mapping;
2040 int blocks = exbh->b_size >> inode->i_blkbits;
2041 sector_t pblock = exbh->b_blocknr, cur_logical;
2042 struct buffer_head *head, *bh;
2043 pgoff_t index, end;
2044 struct pagevec pvec;
2045 int nr_pages, i;
2047 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2048 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2049 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2051 pagevec_init(&pvec, 0);
2053 while (index <= end) {
2054 /* XXX: optimize tail */
2055 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2056 if (nr_pages == 0)
2057 break;
2058 for (i = 0; i < nr_pages; i++) {
2059 struct page *page = pvec.pages[i];
2061 index = page->index;
2062 if (index > end)
2063 break;
2064 index++;
2066 BUG_ON(!PageLocked(page));
2067 BUG_ON(PageWriteback(page));
2068 BUG_ON(!page_has_buffers(page));
2070 bh = page_buffers(page);
2071 head = bh;
2073 /* skip blocks out of the range */
2074 do {
2075 if (cur_logical >= logical)
2076 break;
2077 cur_logical++;
2078 } while ((bh = bh->b_this_page) != head);
2080 do {
2081 if (cur_logical >= logical + blocks)
2082 break;
2084 if (buffer_delay(bh) ||
2085 buffer_unwritten(bh)) {
2087 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2089 if (buffer_delay(bh)) {
2090 clear_buffer_delay(bh);
2091 bh->b_blocknr = pblock;
2092 } else {
2094 * unwritten already should have
2095 * blocknr assigned. Verify that
2097 clear_buffer_unwritten(bh);
2098 BUG_ON(bh->b_blocknr != pblock);
2101 } else if (buffer_mapped(bh))
2102 BUG_ON(bh->b_blocknr != pblock);
2104 cur_logical++;
2105 pblock++;
2106 } while ((bh = bh->b_this_page) != head);
2108 pagevec_release(&pvec);
2114 * __unmap_underlying_blocks - just a helper function to unmap
2115 * set of blocks described by @bh
2117 static inline void __unmap_underlying_blocks(struct inode *inode,
2118 struct buffer_head *bh)
2120 struct block_device *bdev = inode->i_sb->s_bdev;
2121 int blocks, i;
2123 blocks = bh->b_size >> inode->i_blkbits;
2124 for (i = 0; i < blocks; i++)
2125 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2128 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2129 sector_t logical, long blk_cnt)
2131 int nr_pages, i;
2132 pgoff_t index, end;
2133 struct pagevec pvec;
2134 struct inode *inode = mpd->inode;
2135 struct address_space *mapping = inode->i_mapping;
2137 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2138 end = (logical + blk_cnt - 1) >>
2139 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2140 while (index <= end) {
2141 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2142 if (nr_pages == 0)
2143 break;
2144 for (i = 0; i < nr_pages; i++) {
2145 struct page *page = pvec.pages[i];
2146 index = page->index;
2147 if (index > end)
2148 break;
2149 index++;
2151 BUG_ON(!PageLocked(page));
2152 BUG_ON(PageWriteback(page));
2153 block_invalidatepage(page, 0);
2154 ClearPageUptodate(page);
2155 unlock_page(page);
2158 return;
2161 static void ext4_print_free_blocks(struct inode *inode)
2163 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2164 printk(KERN_CRIT "Total free blocks count %lld\n",
2165 ext4_count_free_blocks(inode->i_sb));
2166 printk(KERN_CRIT "Free/Dirty block details\n");
2167 printk(KERN_CRIT "free_blocks=%lld\n",
2168 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2169 printk(KERN_CRIT "dirty_blocks=%lld\n",
2170 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2171 printk(KERN_CRIT "Block reservation details\n");
2172 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2173 EXT4_I(inode)->i_reserved_data_blocks);
2174 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2175 EXT4_I(inode)->i_reserved_meta_blocks);
2176 return;
2180 * mpage_da_map_blocks - go through given space
2182 * @mpd - bh describing space
2184 * The function skips space we know is already mapped to disk blocks.
2187 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2189 int err, blks, get_blocks_flags;
2190 struct buffer_head new;
2191 sector_t next = mpd->b_blocknr;
2192 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2193 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2194 handle_t *handle = NULL;
2197 * We consider only non-mapped and non-allocated blocks
2199 if ((mpd->b_state & (1 << BH_Mapped)) &&
2200 !(mpd->b_state & (1 << BH_Delay)) &&
2201 !(mpd->b_state & (1 << BH_Unwritten)))
2202 return 0;
2205 * If we didn't accumulate anything to write simply return
2207 if (!mpd->b_size)
2208 return 0;
2210 handle = ext4_journal_current_handle();
2211 BUG_ON(!handle);
2214 * Call ext4_get_blocks() to allocate any delayed allocation
2215 * blocks, or to convert an uninitialized extent to be
2216 * initialized (in the case where we have written into
2217 * one or more preallocated blocks).
2219 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2220 * indicate that we are on the delayed allocation path. This
2221 * affects functions in many different parts of the allocation
2222 * call path. This flag exists primarily because we don't
2223 * want to change *many* call functions, so ext4_get_blocks()
2224 * will set the magic i_delalloc_reserved_flag once the
2225 * inode's allocation semaphore is taken.
2227 * If the blocks in questions were delalloc blocks, set
2228 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2229 * variables are updated after the blocks have been allocated.
2231 new.b_state = 0;
2232 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2233 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2234 if (mpd->b_state & (1 << BH_Delay))
2235 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2236 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2237 &new, get_blocks_flags);
2238 if (blks < 0) {
2239 err = blks;
2241 * If get block returns with error we simply
2242 * return. Later writepage will redirty the page and
2243 * writepages will find the dirty page again
2245 if (err == -EAGAIN)
2246 return 0;
2248 if (err == -ENOSPC &&
2249 ext4_count_free_blocks(mpd->inode->i_sb)) {
2250 mpd->retval = err;
2251 return 0;
2255 * get block failure will cause us to loop in
2256 * writepages, because a_ops->writepage won't be able
2257 * to make progress. The page will be redirtied by
2258 * writepage and writepages will again try to write
2259 * the same.
2261 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2262 "delayed block allocation failed for inode %lu at "
2263 "logical offset %llu with max blocks %zd with "
2264 "error %d\n", mpd->inode->i_ino,
2265 (unsigned long long) next,
2266 mpd->b_size >> mpd->inode->i_blkbits, err);
2267 printk(KERN_CRIT "This should not happen!! "
2268 "Data will be lost\n");
2269 if (err == -ENOSPC) {
2270 ext4_print_free_blocks(mpd->inode);
2272 /* invalidate all the pages */
2273 ext4_da_block_invalidatepages(mpd, next,
2274 mpd->b_size >> mpd->inode->i_blkbits);
2275 return err;
2277 BUG_ON(blks == 0);
2279 new.b_size = (blks << mpd->inode->i_blkbits);
2281 if (buffer_new(&new))
2282 __unmap_underlying_blocks(mpd->inode, &new);
2285 * If blocks are delayed marked, we need to
2286 * put actual blocknr and drop delayed bit
2288 if ((mpd->b_state & (1 << BH_Delay)) ||
2289 (mpd->b_state & (1 << BH_Unwritten)))
2290 mpage_put_bnr_to_bhs(mpd, next, &new);
2292 if (ext4_should_order_data(mpd->inode)) {
2293 err = ext4_jbd2_file_inode(handle, mpd->inode);
2294 if (err)
2295 return err;
2299 * Update on-disk size along with block allocation.
2301 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2302 if (disksize > i_size_read(mpd->inode))
2303 disksize = i_size_read(mpd->inode);
2304 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2305 ext4_update_i_disksize(mpd->inode, disksize);
2306 return ext4_mark_inode_dirty(handle, mpd->inode);
2309 return 0;
2312 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2313 (1 << BH_Delay) | (1 << BH_Unwritten))
2316 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2318 * @mpd->lbh - extent of blocks
2319 * @logical - logical number of the block in the file
2320 * @bh - bh of the block (used to access block's state)
2322 * the function is used to collect contig. blocks in same state
2324 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2325 sector_t logical, size_t b_size,
2326 unsigned long b_state)
2328 sector_t next;
2329 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2331 /* check if thereserved journal credits might overflow */
2332 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2333 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2335 * With non-extent format we are limited by the journal
2336 * credit available. Total credit needed to insert
2337 * nrblocks contiguous blocks is dependent on the
2338 * nrblocks. So limit nrblocks.
2340 goto flush_it;
2341 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2342 EXT4_MAX_TRANS_DATA) {
2344 * Adding the new buffer_head would make it cross the
2345 * allowed limit for which we have journal credit
2346 * reserved. So limit the new bh->b_size
2348 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2349 mpd->inode->i_blkbits;
2350 /* we will do mpage_da_submit_io in the next loop */
2354 * First block in the extent
2356 if (mpd->b_size == 0) {
2357 mpd->b_blocknr = logical;
2358 mpd->b_size = b_size;
2359 mpd->b_state = b_state & BH_FLAGS;
2360 return;
2363 next = mpd->b_blocknr + nrblocks;
2365 * Can we merge the block to our big extent?
2367 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2368 mpd->b_size += b_size;
2369 return;
2372 flush_it:
2374 * We couldn't merge the block to our extent, so we
2375 * need to flush current extent and start new one
2377 if (mpage_da_map_blocks(mpd) == 0)
2378 mpage_da_submit_io(mpd);
2379 mpd->io_done = 1;
2380 return;
2383 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2385 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2389 * __mpage_da_writepage - finds extent of pages and blocks
2391 * @page: page to consider
2392 * @wbc: not used, we just follow rules
2393 * @data: context
2395 * The function finds extents of pages and scan them for all blocks.
2397 static int __mpage_da_writepage(struct page *page,
2398 struct writeback_control *wbc, void *data)
2400 struct mpage_da_data *mpd = data;
2401 struct inode *inode = mpd->inode;
2402 struct buffer_head *bh, *head;
2403 sector_t logical;
2405 if (mpd->io_done) {
2407 * Rest of the page in the page_vec
2408 * redirty then and skip then. We will
2409 * try to write them again after
2410 * starting a new transaction
2412 redirty_page_for_writepage(wbc, page);
2413 unlock_page(page);
2414 return MPAGE_DA_EXTENT_TAIL;
2417 * Can we merge this page to current extent?
2419 if (mpd->next_page != page->index) {
2421 * Nope, we can't. So, we map non-allocated blocks
2422 * and start IO on them using writepage()
2424 if (mpd->next_page != mpd->first_page) {
2425 if (mpage_da_map_blocks(mpd) == 0)
2426 mpage_da_submit_io(mpd);
2428 * skip rest of the page in the page_vec
2430 mpd->io_done = 1;
2431 redirty_page_for_writepage(wbc, page);
2432 unlock_page(page);
2433 return MPAGE_DA_EXTENT_TAIL;
2437 * Start next extent of pages ...
2439 mpd->first_page = page->index;
2442 * ... and blocks
2444 mpd->b_size = 0;
2445 mpd->b_state = 0;
2446 mpd->b_blocknr = 0;
2449 mpd->next_page = page->index + 1;
2450 logical = (sector_t) page->index <<
2451 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2453 if (!page_has_buffers(page)) {
2454 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2455 (1 << BH_Dirty) | (1 << BH_Uptodate));
2456 if (mpd->io_done)
2457 return MPAGE_DA_EXTENT_TAIL;
2458 } else {
2460 * Page with regular buffer heads, just add all dirty ones
2462 head = page_buffers(page);
2463 bh = head;
2464 do {
2465 BUG_ON(buffer_locked(bh));
2467 * We need to try to allocate
2468 * unmapped blocks in the same page.
2469 * Otherwise we won't make progress
2470 * with the page in ext4_writepage
2472 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2473 mpage_add_bh_to_extent(mpd, logical,
2474 bh->b_size,
2475 bh->b_state);
2476 if (mpd->io_done)
2477 return MPAGE_DA_EXTENT_TAIL;
2478 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2480 * mapped dirty buffer. We need to update
2481 * the b_state because we look at
2482 * b_state in mpage_da_map_blocks. We don't
2483 * update b_size because if we find an
2484 * unmapped buffer_head later we need to
2485 * use the b_state flag of that buffer_head.
2487 if (mpd->b_size == 0)
2488 mpd->b_state = bh->b_state & BH_FLAGS;
2490 logical++;
2491 } while ((bh = bh->b_this_page) != head);
2494 return 0;
2498 * This is a special get_blocks_t callback which is used by
2499 * ext4_da_write_begin(). It will either return mapped block or
2500 * reserve space for a single block.
2502 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2503 * We also have b_blocknr = -1 and b_bdev initialized properly
2505 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2506 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2507 * initialized properly.
2509 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2510 struct buffer_head *bh_result, int create)
2512 int ret = 0;
2513 sector_t invalid_block = ~((sector_t) 0xffff);
2515 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2516 invalid_block = ~0;
2518 BUG_ON(create == 0);
2519 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2522 * first, we need to know whether the block is allocated already
2523 * preallocated blocks are unmapped but should treated
2524 * the same as allocated blocks.
2526 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2527 if ((ret == 0) && !buffer_delay(bh_result)) {
2528 /* the block isn't (pre)allocated yet, let's reserve space */
2530 * XXX: __block_prepare_write() unmaps passed block,
2531 * is it OK?
2533 ret = ext4_da_reserve_space(inode, 1);
2534 if (ret)
2535 /* not enough space to reserve */
2536 return ret;
2538 map_bh(bh_result, inode->i_sb, invalid_block);
2539 set_buffer_new(bh_result);
2540 set_buffer_delay(bh_result);
2541 } else if (ret > 0) {
2542 bh_result->b_size = (ret << inode->i_blkbits);
2543 if (buffer_unwritten(bh_result)) {
2544 /* A delayed write to unwritten bh should
2545 * be marked new and mapped. Mapped ensures
2546 * that we don't do get_block multiple times
2547 * when we write to the same offset and new
2548 * ensures that we do proper zero out for
2549 * partial write.
2551 set_buffer_new(bh_result);
2552 set_buffer_mapped(bh_result);
2554 ret = 0;
2557 return ret;
2561 * This function is used as a standard get_block_t calback function
2562 * when there is no desire to allocate any blocks. It is used as a
2563 * callback function for block_prepare_write(), nobh_writepage(), and
2564 * block_write_full_page(). These functions should only try to map a
2565 * single block at a time.
2567 * Since this function doesn't do block allocations even if the caller
2568 * requests it by passing in create=1, it is critically important that
2569 * any caller checks to make sure that any buffer heads are returned
2570 * by this function are either all already mapped or marked for
2571 * delayed allocation before calling nobh_writepage() or
2572 * block_write_full_page(). Otherwise, b_blocknr could be left
2573 * unitialized, and the page write functions will be taken by
2574 * surprise.
2576 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2577 struct buffer_head *bh_result, int create)
2579 int ret = 0;
2580 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2582 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2585 * we don't want to do block allocation in writepage
2586 * so call get_block_wrap with create = 0
2588 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2589 if (ret > 0) {
2590 bh_result->b_size = (ret << inode->i_blkbits);
2591 ret = 0;
2593 return ret;
2596 static int bget_one(handle_t *handle, struct buffer_head *bh)
2598 get_bh(bh);
2599 return 0;
2602 static int bput_one(handle_t *handle, struct buffer_head *bh)
2604 put_bh(bh);
2605 return 0;
2608 static int __ext4_journalled_writepage(struct page *page,
2609 struct writeback_control *wbc,
2610 unsigned int len)
2612 struct address_space *mapping = page->mapping;
2613 struct inode *inode = mapping->host;
2614 struct buffer_head *page_bufs;
2615 handle_t *handle = NULL;
2616 int ret = 0;
2617 int err;
2619 page_bufs = page_buffers(page);
2620 BUG_ON(!page_bufs);
2621 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2622 /* As soon as we unlock the page, it can go away, but we have
2623 * references to buffers so we are safe */
2624 unlock_page(page);
2626 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2627 if (IS_ERR(handle)) {
2628 ret = PTR_ERR(handle);
2629 goto out;
2632 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2633 do_journal_get_write_access);
2635 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2636 write_end_fn);
2637 if (ret == 0)
2638 ret = err;
2639 err = ext4_journal_stop(handle);
2640 if (!ret)
2641 ret = err;
2643 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2644 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2645 out:
2646 return ret;
2650 * Note that we don't need to start a transaction unless we're journaling data
2651 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2652 * need to file the inode to the transaction's list in ordered mode because if
2653 * we are writing back data added by write(), the inode is already there and if
2654 * we are writing back data modified via mmap(), noone guarantees in which
2655 * transaction the data will hit the disk. In case we are journaling data, we
2656 * cannot start transaction directly because transaction start ranks above page
2657 * lock so we have to do some magic.
2659 * This function can get called via...
2660 * - ext4_da_writepages after taking page lock (have journal handle)
2661 * - journal_submit_inode_data_buffers (no journal handle)
2662 * - shrink_page_list via pdflush (no journal handle)
2663 * - grab_page_cache when doing write_begin (have journal handle)
2665 * We don't do any block allocation in this function. If we have page with
2666 * multiple blocks we need to write those buffer_heads that are mapped. This
2667 * is important for mmaped based write. So if we do with blocksize 1K
2668 * truncate(f, 1024);
2669 * a = mmap(f, 0, 4096);
2670 * a[0] = 'a';
2671 * truncate(f, 4096);
2672 * we have in the page first buffer_head mapped via page_mkwrite call back
2673 * but other bufer_heads would be unmapped but dirty(dirty done via the
2674 * do_wp_page). So writepage should write the first block. If we modify
2675 * the mmap area beyond 1024 we will again get a page_fault and the
2676 * page_mkwrite callback will do the block allocation and mark the
2677 * buffer_heads mapped.
2679 * We redirty the page if we have any buffer_heads that is either delay or
2680 * unwritten in the page.
2682 * We can get recursively called as show below.
2684 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2685 * ext4_writepage()
2687 * But since we don't do any block allocation we should not deadlock.
2688 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2690 static int ext4_writepage(struct page *page,
2691 struct writeback_control *wbc)
2693 int ret = 0;
2694 loff_t size;
2695 unsigned int len;
2696 struct buffer_head *page_bufs;
2697 struct inode *inode = page->mapping->host;
2699 trace_ext4_writepage(inode, page);
2700 size = i_size_read(inode);
2701 if (page->index == size >> PAGE_CACHE_SHIFT)
2702 len = size & ~PAGE_CACHE_MASK;
2703 else
2704 len = PAGE_CACHE_SIZE;
2706 if (page_has_buffers(page)) {
2707 page_bufs = page_buffers(page);
2708 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2709 ext4_bh_delay_or_unwritten)) {
2711 * We don't want to do block allocation
2712 * So redirty the page and return
2713 * We may reach here when we do a journal commit
2714 * via journal_submit_inode_data_buffers.
2715 * If we don't have mapping block we just ignore
2716 * them. We can also reach here via shrink_page_list
2718 redirty_page_for_writepage(wbc, page);
2719 unlock_page(page);
2720 return 0;
2722 } else {
2724 * The test for page_has_buffers() is subtle:
2725 * We know the page is dirty but it lost buffers. That means
2726 * that at some moment in time after write_begin()/write_end()
2727 * has been called all buffers have been clean and thus they
2728 * must have been written at least once. So they are all
2729 * mapped and we can happily proceed with mapping them
2730 * and writing the page.
2732 * Try to initialize the buffer_heads and check whether
2733 * all are mapped and non delay. We don't want to
2734 * do block allocation here.
2736 ret = block_prepare_write(page, 0, len,
2737 noalloc_get_block_write);
2738 if (!ret) {
2739 page_bufs = page_buffers(page);
2740 /* check whether all are mapped and non delay */
2741 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2742 ext4_bh_delay_or_unwritten)) {
2743 redirty_page_for_writepage(wbc, page);
2744 unlock_page(page);
2745 return 0;
2747 } else {
2749 * We can't do block allocation here
2750 * so just redity the page and unlock
2751 * and return
2753 redirty_page_for_writepage(wbc, page);
2754 unlock_page(page);
2755 return 0;
2757 /* now mark the buffer_heads as dirty and uptodate */
2758 block_commit_write(page, 0, len);
2761 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2763 * It's mmapped pagecache. Add buffers and journal it. There
2764 * doesn't seem much point in redirtying the page here.
2766 ClearPageChecked(page);
2767 return __ext4_journalled_writepage(page, wbc, len);
2770 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2771 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2772 else
2773 ret = block_write_full_page(page, noalloc_get_block_write,
2774 wbc);
2776 return ret;
2780 * This is called via ext4_da_writepages() to
2781 * calulate the total number of credits to reserve to fit
2782 * a single extent allocation into a single transaction,
2783 * ext4_da_writpeages() will loop calling this before
2784 * the block allocation.
2787 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2789 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2792 * With non-extent format the journal credit needed to
2793 * insert nrblocks contiguous block is dependent on
2794 * number of contiguous block. So we will limit
2795 * number of contiguous block to a sane value
2797 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2798 (max_blocks > EXT4_MAX_TRANS_DATA))
2799 max_blocks = EXT4_MAX_TRANS_DATA;
2801 return ext4_chunk_trans_blocks(inode, max_blocks);
2804 static int ext4_da_writepages(struct address_space *mapping,
2805 struct writeback_control *wbc)
2807 pgoff_t index;
2808 int range_whole = 0;
2809 handle_t *handle = NULL;
2810 struct mpage_da_data mpd;
2811 struct inode *inode = mapping->host;
2812 int no_nrwrite_index_update;
2813 int pages_written = 0;
2814 long pages_skipped;
2815 unsigned int max_pages;
2816 int range_cyclic, cycled = 1, io_done = 0;
2817 int needed_blocks, ret = 0;
2818 long desired_nr_to_write, nr_to_writebump = 0;
2819 loff_t range_start = wbc->range_start;
2820 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2822 trace_ext4_da_writepages(inode, wbc);
2825 * No pages to write? This is mainly a kludge to avoid starting
2826 * a transaction for special inodes like journal inode on last iput()
2827 * because that could violate lock ordering on umount
2829 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2830 return 0;
2833 * If the filesystem has aborted, it is read-only, so return
2834 * right away instead of dumping stack traces later on that
2835 * will obscure the real source of the problem. We test
2836 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2837 * the latter could be true if the filesystem is mounted
2838 * read-only, and in that case, ext4_da_writepages should
2839 * *never* be called, so if that ever happens, we would want
2840 * the stack trace.
2842 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2843 return -EROFS;
2845 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2846 range_whole = 1;
2848 range_cyclic = wbc->range_cyclic;
2849 if (wbc->range_cyclic) {
2850 index = mapping->writeback_index;
2851 if (index)
2852 cycled = 0;
2853 wbc->range_start = index << PAGE_CACHE_SHIFT;
2854 wbc->range_end = LLONG_MAX;
2855 wbc->range_cyclic = 0;
2856 } else
2857 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2860 * This works around two forms of stupidity. The first is in
2861 * the writeback code, which caps the maximum number of pages
2862 * written to be 1024 pages. This is wrong on multiple
2863 * levels; different architectues have a different page size,
2864 * which changes the maximum amount of data which gets
2865 * written. Secondly, 4 megabytes is way too small. XFS
2866 * forces this value to be 16 megabytes by multiplying
2867 * nr_to_write parameter by four, and then relies on its
2868 * allocator to allocate larger extents to make them
2869 * contiguous. Unfortunately this brings us to the second
2870 * stupidity, which is that ext4's mballoc code only allocates
2871 * at most 2048 blocks. So we force contiguous writes up to
2872 * the number of dirty blocks in the inode, or
2873 * sbi->max_writeback_mb_bump whichever is smaller.
2875 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2876 if (!range_cyclic && range_whole)
2877 desired_nr_to_write = wbc->nr_to_write * 8;
2878 else
2879 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2880 max_pages);
2881 if (desired_nr_to_write > max_pages)
2882 desired_nr_to_write = max_pages;
2884 if (wbc->nr_to_write < desired_nr_to_write) {
2885 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2886 wbc->nr_to_write = desired_nr_to_write;
2889 mpd.wbc = wbc;
2890 mpd.inode = mapping->host;
2893 * we don't want write_cache_pages to update
2894 * nr_to_write and writeback_index
2896 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2897 wbc->no_nrwrite_index_update = 1;
2898 pages_skipped = wbc->pages_skipped;
2900 retry:
2901 while (!ret && wbc->nr_to_write > 0) {
2904 * we insert one extent at a time. So we need
2905 * credit needed for single extent allocation.
2906 * journalled mode is currently not supported
2907 * by delalloc
2909 BUG_ON(ext4_should_journal_data(inode));
2910 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2912 /* start a new transaction*/
2913 handle = ext4_journal_start(inode, needed_blocks);
2914 if (IS_ERR(handle)) {
2915 ret = PTR_ERR(handle);
2916 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2917 "%ld pages, ino %lu; err %d\n", __func__,
2918 wbc->nr_to_write, inode->i_ino, ret);
2919 goto out_writepages;
2923 * Now call __mpage_da_writepage to find the next
2924 * contiguous region of logical blocks that need
2925 * blocks to be allocated by ext4. We don't actually
2926 * submit the blocks for I/O here, even though
2927 * write_cache_pages thinks it will, and will set the
2928 * pages as clean for write before calling
2929 * __mpage_da_writepage().
2931 mpd.b_size = 0;
2932 mpd.b_state = 0;
2933 mpd.b_blocknr = 0;
2934 mpd.first_page = 0;
2935 mpd.next_page = 0;
2936 mpd.io_done = 0;
2937 mpd.pages_written = 0;
2938 mpd.retval = 0;
2939 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2940 &mpd);
2942 * If we have a contigous extent of pages and we
2943 * haven't done the I/O yet, map the blocks and submit
2944 * them for I/O.
2946 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2947 if (mpage_da_map_blocks(&mpd) == 0)
2948 mpage_da_submit_io(&mpd);
2949 mpd.io_done = 1;
2950 ret = MPAGE_DA_EXTENT_TAIL;
2952 trace_ext4_da_write_pages(inode, &mpd);
2953 wbc->nr_to_write -= mpd.pages_written;
2955 ext4_journal_stop(handle);
2957 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2958 /* commit the transaction which would
2959 * free blocks released in the transaction
2960 * and try again
2962 jbd2_journal_force_commit_nested(sbi->s_journal);
2963 wbc->pages_skipped = pages_skipped;
2964 ret = 0;
2965 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2967 * got one extent now try with
2968 * rest of the pages
2970 pages_written += mpd.pages_written;
2971 wbc->pages_skipped = pages_skipped;
2972 ret = 0;
2973 io_done = 1;
2974 } else if (wbc->nr_to_write)
2976 * There is no more writeout needed
2977 * or we requested for a noblocking writeout
2978 * and we found the device congested
2980 break;
2982 if (!io_done && !cycled) {
2983 cycled = 1;
2984 index = 0;
2985 wbc->range_start = index << PAGE_CACHE_SHIFT;
2986 wbc->range_end = mapping->writeback_index - 1;
2987 goto retry;
2989 if (pages_skipped != wbc->pages_skipped)
2990 ext4_msg(inode->i_sb, KERN_CRIT,
2991 "This should not happen leaving %s "
2992 "with nr_to_write = %ld ret = %d\n",
2993 __func__, wbc->nr_to_write, ret);
2995 /* Update index */
2996 index += pages_written;
2997 wbc->range_cyclic = range_cyclic;
2998 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3000 * set the writeback_index so that range_cyclic
3001 * mode will write it back later
3003 mapping->writeback_index = index;
3005 out_writepages:
3006 if (!no_nrwrite_index_update)
3007 wbc->no_nrwrite_index_update = 0;
3008 if (wbc->nr_to_write > nr_to_writebump)
3009 wbc->nr_to_write -= nr_to_writebump;
3010 wbc->range_start = range_start;
3011 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3012 return ret;
3015 #define FALL_BACK_TO_NONDELALLOC 1
3016 static int ext4_nonda_switch(struct super_block *sb)
3018 s64 free_blocks, dirty_blocks;
3019 struct ext4_sb_info *sbi = EXT4_SB(sb);
3022 * switch to non delalloc mode if we are running low
3023 * on free block. The free block accounting via percpu
3024 * counters can get slightly wrong with percpu_counter_batch getting
3025 * accumulated on each CPU without updating global counters
3026 * Delalloc need an accurate free block accounting. So switch
3027 * to non delalloc when we are near to error range.
3029 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3030 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3031 if (2 * free_blocks < 3 * dirty_blocks ||
3032 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3034 * free block count is less that 150% of dirty blocks
3035 * or free blocks is less that watermark
3037 return 1;
3039 return 0;
3042 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3043 loff_t pos, unsigned len, unsigned flags,
3044 struct page **pagep, void **fsdata)
3046 int ret, retries = 0;
3047 struct page *page;
3048 pgoff_t index;
3049 unsigned from, to;
3050 struct inode *inode = mapping->host;
3051 handle_t *handle;
3053 index = pos >> PAGE_CACHE_SHIFT;
3054 from = pos & (PAGE_CACHE_SIZE - 1);
3055 to = from + len;
3057 if (ext4_nonda_switch(inode->i_sb)) {
3058 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3059 return ext4_write_begin(file, mapping, pos,
3060 len, flags, pagep, fsdata);
3062 *fsdata = (void *)0;
3063 trace_ext4_da_write_begin(inode, pos, len, flags);
3064 retry:
3066 * With delayed allocation, we don't log the i_disksize update
3067 * if there is delayed block allocation. But we still need
3068 * to journalling the i_disksize update if writes to the end
3069 * of file which has an already mapped buffer.
3071 handle = ext4_journal_start(inode, 1);
3072 if (IS_ERR(handle)) {
3073 ret = PTR_ERR(handle);
3074 goto out;
3076 /* We cannot recurse into the filesystem as the transaction is already
3077 * started */
3078 flags |= AOP_FLAG_NOFS;
3080 page = grab_cache_page_write_begin(mapping, index, flags);
3081 if (!page) {
3082 ext4_journal_stop(handle);
3083 ret = -ENOMEM;
3084 goto out;
3086 *pagep = page;
3088 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3089 ext4_da_get_block_prep);
3090 if (ret < 0) {
3091 unlock_page(page);
3092 ext4_journal_stop(handle);
3093 page_cache_release(page);
3095 * block_write_begin may have instantiated a few blocks
3096 * outside i_size. Trim these off again. Don't need
3097 * i_size_read because we hold i_mutex.
3099 if (pos + len > inode->i_size)
3100 ext4_truncate_failed_write(inode);
3103 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3104 goto retry;
3105 out:
3106 return ret;
3110 * Check if we should update i_disksize
3111 * when write to the end of file but not require block allocation
3113 static int ext4_da_should_update_i_disksize(struct page *page,
3114 unsigned long offset)
3116 struct buffer_head *bh;
3117 struct inode *inode = page->mapping->host;
3118 unsigned int idx;
3119 int i;
3121 bh = page_buffers(page);
3122 idx = offset >> inode->i_blkbits;
3124 for (i = 0; i < idx; i++)
3125 bh = bh->b_this_page;
3127 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3128 return 0;
3129 return 1;
3132 static int ext4_da_write_end(struct file *file,
3133 struct address_space *mapping,
3134 loff_t pos, unsigned len, unsigned copied,
3135 struct page *page, void *fsdata)
3137 struct inode *inode = mapping->host;
3138 int ret = 0, ret2;
3139 handle_t *handle = ext4_journal_current_handle();
3140 loff_t new_i_size;
3141 unsigned long start, end;
3142 int write_mode = (int)(unsigned long)fsdata;
3144 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3145 if (ext4_should_order_data(inode)) {
3146 return ext4_ordered_write_end(file, mapping, pos,
3147 len, copied, page, fsdata);
3148 } else if (ext4_should_writeback_data(inode)) {
3149 return ext4_writeback_write_end(file, mapping, pos,
3150 len, copied, page, fsdata);
3151 } else {
3152 BUG();
3156 trace_ext4_da_write_end(inode, pos, len, copied);
3157 start = pos & (PAGE_CACHE_SIZE - 1);
3158 end = start + copied - 1;
3161 * generic_write_end() will run mark_inode_dirty() if i_size
3162 * changes. So let's piggyback the i_disksize mark_inode_dirty
3163 * into that.
3166 new_i_size = pos + copied;
3167 if (new_i_size > EXT4_I(inode)->i_disksize) {
3168 if (ext4_da_should_update_i_disksize(page, end)) {
3169 down_write(&EXT4_I(inode)->i_data_sem);
3170 if (new_i_size > EXT4_I(inode)->i_disksize) {
3172 * Updating i_disksize when extending file
3173 * without needing block allocation
3175 if (ext4_should_order_data(inode))
3176 ret = ext4_jbd2_file_inode(handle,
3177 inode);
3179 EXT4_I(inode)->i_disksize = new_i_size;
3181 up_write(&EXT4_I(inode)->i_data_sem);
3182 /* We need to mark inode dirty even if
3183 * new_i_size is less that inode->i_size
3184 * bu greater than i_disksize.(hint delalloc)
3186 ext4_mark_inode_dirty(handle, inode);
3189 ret2 = generic_write_end(file, mapping, pos, len, copied,
3190 page, fsdata);
3191 copied = ret2;
3192 if (ret2 < 0)
3193 ret = ret2;
3194 ret2 = ext4_journal_stop(handle);
3195 if (!ret)
3196 ret = ret2;
3198 return ret ? ret : copied;
3201 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3204 * Drop reserved blocks
3206 BUG_ON(!PageLocked(page));
3207 if (!page_has_buffers(page))
3208 goto out;
3210 ext4_da_page_release_reservation(page, offset);
3212 out:
3213 ext4_invalidatepage(page, offset);
3215 return;
3219 * Force all delayed allocation blocks to be allocated for a given inode.
3221 int ext4_alloc_da_blocks(struct inode *inode)
3223 trace_ext4_alloc_da_blocks(inode);
3225 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3226 !EXT4_I(inode)->i_reserved_meta_blocks)
3227 return 0;
3230 * We do something simple for now. The filemap_flush() will
3231 * also start triggering a write of the data blocks, which is
3232 * not strictly speaking necessary (and for users of
3233 * laptop_mode, not even desirable). However, to do otherwise
3234 * would require replicating code paths in:
3236 * ext4_da_writepages() ->
3237 * write_cache_pages() ---> (via passed in callback function)
3238 * __mpage_da_writepage() -->
3239 * mpage_add_bh_to_extent()
3240 * mpage_da_map_blocks()
3242 * The problem is that write_cache_pages(), located in
3243 * mm/page-writeback.c, marks pages clean in preparation for
3244 * doing I/O, which is not desirable if we're not planning on
3245 * doing I/O at all.
3247 * We could call write_cache_pages(), and then redirty all of
3248 * the pages by calling redirty_page_for_writeback() but that
3249 * would be ugly in the extreme. So instead we would need to
3250 * replicate parts of the code in the above functions,
3251 * simplifying them becuase we wouldn't actually intend to
3252 * write out the pages, but rather only collect contiguous
3253 * logical block extents, call the multi-block allocator, and
3254 * then update the buffer heads with the block allocations.
3256 * For now, though, we'll cheat by calling filemap_flush(),
3257 * which will map the blocks, and start the I/O, but not
3258 * actually wait for the I/O to complete.
3260 return filemap_flush(inode->i_mapping);
3264 * bmap() is special. It gets used by applications such as lilo and by
3265 * the swapper to find the on-disk block of a specific piece of data.
3267 * Naturally, this is dangerous if the block concerned is still in the
3268 * journal. If somebody makes a swapfile on an ext4 data-journaling
3269 * filesystem and enables swap, then they may get a nasty shock when the
3270 * data getting swapped to that swapfile suddenly gets overwritten by
3271 * the original zero's written out previously to the journal and
3272 * awaiting writeback in the kernel's buffer cache.
3274 * So, if we see any bmap calls here on a modified, data-journaled file,
3275 * take extra steps to flush any blocks which might be in the cache.
3277 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3279 struct inode *inode = mapping->host;
3280 journal_t *journal;
3281 int err;
3283 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3284 test_opt(inode->i_sb, DELALLOC)) {
3286 * With delalloc we want to sync the file
3287 * so that we can make sure we allocate
3288 * blocks for file
3290 filemap_write_and_wait(mapping);
3293 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3295 * This is a REALLY heavyweight approach, but the use of
3296 * bmap on dirty files is expected to be extremely rare:
3297 * only if we run lilo or swapon on a freshly made file
3298 * do we expect this to happen.
3300 * (bmap requires CAP_SYS_RAWIO so this does not
3301 * represent an unprivileged user DOS attack --- we'd be
3302 * in trouble if mortal users could trigger this path at
3303 * will.)
3305 * NB. EXT4_STATE_JDATA is not set on files other than
3306 * regular files. If somebody wants to bmap a directory
3307 * or symlink and gets confused because the buffer
3308 * hasn't yet been flushed to disk, they deserve
3309 * everything they get.
3312 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3313 journal = EXT4_JOURNAL(inode);
3314 jbd2_journal_lock_updates(journal);
3315 err = jbd2_journal_flush(journal);
3316 jbd2_journal_unlock_updates(journal);
3318 if (err)
3319 return 0;
3322 return generic_block_bmap(mapping, block, ext4_get_block);
3325 static int ext4_readpage(struct file *file, struct page *page)
3327 return mpage_readpage(page, ext4_get_block);
3330 static int
3331 ext4_readpages(struct file *file, struct address_space *mapping,
3332 struct list_head *pages, unsigned nr_pages)
3334 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3337 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3339 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3342 * If it's a full truncate we just forget about the pending dirtying
3344 if (offset == 0)
3345 ClearPageChecked(page);
3347 if (journal)
3348 jbd2_journal_invalidatepage(journal, page, offset);
3349 else
3350 block_invalidatepage(page, offset);
3353 static int ext4_releasepage(struct page *page, gfp_t wait)
3355 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3357 WARN_ON(PageChecked(page));
3358 if (!page_has_buffers(page))
3359 return 0;
3360 if (journal)
3361 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3362 else
3363 return try_to_free_buffers(page);
3367 * O_DIRECT for ext3 (or indirect map) based files
3369 * If the O_DIRECT write will extend the file then add this inode to the
3370 * orphan list. So recovery will truncate it back to the original size
3371 * if the machine crashes during the write.
3373 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3374 * crashes then stale disk data _may_ be exposed inside the file. But current
3375 * VFS code falls back into buffered path in that case so we are safe.
3377 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3378 const struct iovec *iov, loff_t offset,
3379 unsigned long nr_segs)
3381 struct file *file = iocb->ki_filp;
3382 struct inode *inode = file->f_mapping->host;
3383 struct ext4_inode_info *ei = EXT4_I(inode);
3384 handle_t *handle;
3385 ssize_t ret;
3386 int orphan = 0;
3387 size_t count = iov_length(iov, nr_segs);
3388 int retries = 0;
3390 if (rw == WRITE) {
3391 loff_t final_size = offset + count;
3393 if (final_size > inode->i_size) {
3394 /* Credits for sb + inode write */
3395 handle = ext4_journal_start(inode, 2);
3396 if (IS_ERR(handle)) {
3397 ret = PTR_ERR(handle);
3398 goto out;
3400 ret = ext4_orphan_add(handle, inode);
3401 if (ret) {
3402 ext4_journal_stop(handle);
3403 goto out;
3405 orphan = 1;
3406 ei->i_disksize = inode->i_size;
3407 ext4_journal_stop(handle);
3411 retry:
3412 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3413 offset, nr_segs,
3414 ext4_get_block, NULL);
3415 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3416 goto retry;
3418 if (orphan) {
3419 int err;
3421 /* Credits for sb + inode write */
3422 handle = ext4_journal_start(inode, 2);
3423 if (IS_ERR(handle)) {
3424 /* This is really bad luck. We've written the data
3425 * but cannot extend i_size. Bail out and pretend
3426 * the write failed... */
3427 ret = PTR_ERR(handle);
3428 goto out;
3430 if (inode->i_nlink)
3431 ext4_orphan_del(handle, inode);
3432 if (ret > 0) {
3433 loff_t end = offset + ret;
3434 if (end > inode->i_size) {
3435 ei->i_disksize = end;
3436 i_size_write(inode, end);
3438 * We're going to return a positive `ret'
3439 * here due to non-zero-length I/O, so there's
3440 * no way of reporting error returns from
3441 * ext4_mark_inode_dirty() to userspace. So
3442 * ignore it.
3444 ext4_mark_inode_dirty(handle, inode);
3447 err = ext4_journal_stop(handle);
3448 if (ret == 0)
3449 ret = err;
3451 out:
3452 return ret;
3455 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3456 struct buffer_head *bh_result, int create)
3458 handle_t *handle = NULL;
3459 int ret = 0;
3460 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3461 int dio_credits;
3463 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3464 inode->i_ino, create);
3466 * DIO VFS code passes create = 0 flag for write to
3467 * the middle of file. It does this to avoid block
3468 * allocation for holes, to prevent expose stale data
3469 * out when there is parallel buffered read (which does
3470 * not hold the i_mutex lock) while direct IO write has
3471 * not completed. DIO request on holes finally falls back
3472 * to buffered IO for this reason.
3474 * For ext4 extent based file, since we support fallocate,
3475 * new allocated extent as uninitialized, for holes, we
3476 * could fallocate blocks for holes, thus parallel
3477 * buffered IO read will zero out the page when read on
3478 * a hole while parallel DIO write to the hole has not completed.
3480 * when we come here, we know it's a direct IO write to
3481 * to the middle of file (<i_size)
3482 * so it's safe to override the create flag from VFS.
3484 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3486 if (max_blocks > DIO_MAX_BLOCKS)
3487 max_blocks = DIO_MAX_BLOCKS;
3488 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3489 handle = ext4_journal_start(inode, dio_credits);
3490 if (IS_ERR(handle)) {
3491 ret = PTR_ERR(handle);
3492 goto out;
3494 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3495 create);
3496 if (ret > 0) {
3497 bh_result->b_size = (ret << inode->i_blkbits);
3498 ret = 0;
3500 ext4_journal_stop(handle);
3501 out:
3502 return ret;
3505 static void ext4_free_io_end(ext4_io_end_t *io)
3507 BUG_ON(!io);
3508 iput(io->inode);
3509 kfree(io);
3511 static void dump_aio_dio_list(struct inode * inode)
3513 #ifdef EXT4_DEBUG
3514 struct list_head *cur, *before, *after;
3515 ext4_io_end_t *io, *io0, *io1;
3517 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3518 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3519 return;
3522 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3523 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3524 cur = &io->list;
3525 before = cur->prev;
3526 io0 = container_of(before, ext4_io_end_t, list);
3527 after = cur->next;
3528 io1 = container_of(after, ext4_io_end_t, list);
3530 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3531 io, inode->i_ino, io0, io1);
3533 #endif
3537 * check a range of space and convert unwritten extents to written.
3539 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3541 struct inode *inode = io->inode;
3542 loff_t offset = io->offset;
3543 size_t size = io->size;
3544 int ret = 0;
3546 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3547 "list->prev 0x%p\n",
3548 io, inode->i_ino, io->list.next, io->list.prev);
3550 if (list_empty(&io->list))
3551 return ret;
3553 if (io->flag != DIO_AIO_UNWRITTEN)
3554 return ret;
3556 if (offset + size <= i_size_read(inode))
3557 ret = ext4_convert_unwritten_extents(inode, offset, size);
3559 if (ret < 0) {
3560 printk(KERN_EMERG "%s: failed to convert unwritten"
3561 "extents to written extents, error is %d"
3562 " io is still on inode %lu aio dio list\n",
3563 __func__, ret, inode->i_ino);
3564 return ret;
3567 /* clear the DIO AIO unwritten flag */
3568 io->flag = 0;
3569 return ret;
3572 * work on completed aio dio IO, to convert unwritten extents to extents
3574 static void ext4_end_aio_dio_work(struct work_struct *work)
3576 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3577 struct inode *inode = io->inode;
3578 int ret = 0;
3580 mutex_lock(&inode->i_mutex);
3581 ret = ext4_end_aio_dio_nolock(io);
3582 if (ret >= 0) {
3583 if (!list_empty(&io->list))
3584 list_del_init(&io->list);
3585 ext4_free_io_end(io);
3587 mutex_unlock(&inode->i_mutex);
3590 * This function is called from ext4_sync_file().
3592 * When AIO DIO IO is completed, the work to convert unwritten
3593 * extents to written is queued on workqueue but may not get immediately
3594 * scheduled. When fsync is called, we need to ensure the
3595 * conversion is complete before fsync returns.
3596 * The inode keeps track of a list of completed AIO from DIO path
3597 * that might needs to do the conversion. This function walks through
3598 * the list and convert the related unwritten extents to written.
3600 int flush_aio_dio_completed_IO(struct inode *inode)
3602 ext4_io_end_t *io;
3603 int ret = 0;
3604 int ret2 = 0;
3606 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3607 return ret;
3609 dump_aio_dio_list(inode);
3610 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3611 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3612 ext4_io_end_t, list);
3614 * Calling ext4_end_aio_dio_nolock() to convert completed
3615 * IO to written.
3617 * When ext4_sync_file() is called, run_queue() may already
3618 * about to flush the work corresponding to this io structure.
3619 * It will be upset if it founds the io structure related
3620 * to the work-to-be schedule is freed.
3622 * Thus we need to keep the io structure still valid here after
3623 * convertion finished. The io structure has a flag to
3624 * avoid double converting from both fsync and background work
3625 * queue work.
3627 ret = ext4_end_aio_dio_nolock(io);
3628 if (ret < 0)
3629 ret2 = ret;
3630 else
3631 list_del_init(&io->list);
3633 return (ret2 < 0) ? ret2 : 0;
3636 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3638 ext4_io_end_t *io = NULL;
3640 io = kmalloc(sizeof(*io), GFP_NOFS);
3642 if (io) {
3643 igrab(inode);
3644 io->inode = inode;
3645 io->flag = 0;
3646 io->offset = 0;
3647 io->size = 0;
3648 io->error = 0;
3649 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3650 INIT_LIST_HEAD(&io->list);
3653 return io;
3656 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3657 ssize_t size, void *private)
3659 ext4_io_end_t *io_end = iocb->private;
3660 struct workqueue_struct *wq;
3662 /* if not async direct IO or dio with 0 bytes write, just return */
3663 if (!io_end || !size)
3664 return;
3666 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3667 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3668 iocb->private, io_end->inode->i_ino, iocb, offset,
3669 size);
3671 /* if not aio dio with unwritten extents, just free io and return */
3672 if (io_end->flag != DIO_AIO_UNWRITTEN){
3673 ext4_free_io_end(io_end);
3674 iocb->private = NULL;
3675 return;
3678 io_end->offset = offset;
3679 io_end->size = size;
3680 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3682 /* queue the work to convert unwritten extents to written */
3683 queue_work(wq, &io_end->work);
3685 /* Add the io_end to per-inode completed aio dio list*/
3686 list_add_tail(&io_end->list,
3687 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3688 iocb->private = NULL;
3691 * For ext4 extent files, ext4 will do direct-io write to holes,
3692 * preallocated extents, and those write extend the file, no need to
3693 * fall back to buffered IO.
3695 * For holes, we fallocate those blocks, mark them as unintialized
3696 * If those blocks were preallocated, we mark sure they are splited, but
3697 * still keep the range to write as unintialized.
3699 * The unwrritten extents will be converted to written when DIO is completed.
3700 * For async direct IO, since the IO may still pending when return, we
3701 * set up an end_io call back function, which will do the convertion
3702 * when async direct IO completed.
3704 * If the O_DIRECT write will extend the file then add this inode to the
3705 * orphan list. So recovery will truncate it back to the original size
3706 * if the machine crashes during the write.
3709 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3710 const struct iovec *iov, loff_t offset,
3711 unsigned long nr_segs)
3713 struct file *file = iocb->ki_filp;
3714 struct inode *inode = file->f_mapping->host;
3715 ssize_t ret;
3716 size_t count = iov_length(iov, nr_segs);
3718 loff_t final_size = offset + count;
3719 if (rw == WRITE && final_size <= inode->i_size) {
3721 * We could direct write to holes and fallocate.
3723 * Allocated blocks to fill the hole are marked as uninitialized
3724 * to prevent paralel buffered read to expose the stale data
3725 * before DIO complete the data IO.
3727 * As to previously fallocated extents, ext4 get_block
3728 * will just simply mark the buffer mapped but still
3729 * keep the extents uninitialized.
3731 * for non AIO case, we will convert those unwritten extents
3732 * to written after return back from blockdev_direct_IO.
3734 * for async DIO, the conversion needs to be defered when
3735 * the IO is completed. The ext4 end_io callback function
3736 * will be called to take care of the conversion work.
3737 * Here for async case, we allocate an io_end structure to
3738 * hook to the iocb.
3740 iocb->private = NULL;
3741 EXT4_I(inode)->cur_aio_dio = NULL;
3742 if (!is_sync_kiocb(iocb)) {
3743 iocb->private = ext4_init_io_end(inode);
3744 if (!iocb->private)
3745 return -ENOMEM;
3747 * we save the io structure for current async
3748 * direct IO, so that later ext4_get_blocks()
3749 * could flag the io structure whether there
3750 * is a unwritten extents needs to be converted
3751 * when IO is completed.
3753 EXT4_I(inode)->cur_aio_dio = iocb->private;
3756 ret = blockdev_direct_IO(rw, iocb, inode,
3757 inode->i_sb->s_bdev, iov,
3758 offset, nr_segs,
3759 ext4_get_block_dio_write,
3760 ext4_end_io_dio);
3761 if (iocb->private)
3762 EXT4_I(inode)->cur_aio_dio = NULL;
3764 * The io_end structure takes a reference to the inode,
3765 * that structure needs to be destroyed and the
3766 * reference to the inode need to be dropped, when IO is
3767 * complete, even with 0 byte write, or failed.
3769 * In the successful AIO DIO case, the io_end structure will be
3770 * desctroyed and the reference to the inode will be dropped
3771 * after the end_io call back function is called.
3773 * In the case there is 0 byte write, or error case, since
3774 * VFS direct IO won't invoke the end_io call back function,
3775 * we need to free the end_io structure here.
3777 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3778 ext4_free_io_end(iocb->private);
3779 iocb->private = NULL;
3780 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3781 EXT4_STATE_DIO_UNWRITTEN)) {
3782 int err;
3784 * for non AIO case, since the IO is already
3785 * completed, we could do the convertion right here
3787 err = ext4_convert_unwritten_extents(inode,
3788 offset, ret);
3789 if (err < 0)
3790 ret = err;
3791 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3793 return ret;
3796 /* for write the the end of file case, we fall back to old way */
3797 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3800 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3801 const struct iovec *iov, loff_t offset,
3802 unsigned long nr_segs)
3804 struct file *file = iocb->ki_filp;
3805 struct inode *inode = file->f_mapping->host;
3807 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3808 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3810 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3814 * Pages can be marked dirty completely asynchronously from ext4's journalling
3815 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3816 * much here because ->set_page_dirty is called under VFS locks. The page is
3817 * not necessarily locked.
3819 * We cannot just dirty the page and leave attached buffers clean, because the
3820 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3821 * or jbddirty because all the journalling code will explode.
3823 * So what we do is to mark the page "pending dirty" and next time writepage
3824 * is called, propagate that into the buffers appropriately.
3826 static int ext4_journalled_set_page_dirty(struct page *page)
3828 SetPageChecked(page);
3829 return __set_page_dirty_nobuffers(page);
3832 static const struct address_space_operations ext4_ordered_aops = {
3833 .readpage = ext4_readpage,
3834 .readpages = ext4_readpages,
3835 .writepage = ext4_writepage,
3836 .sync_page = block_sync_page,
3837 .write_begin = ext4_write_begin,
3838 .write_end = ext4_ordered_write_end,
3839 .bmap = ext4_bmap,
3840 .invalidatepage = ext4_invalidatepage,
3841 .releasepage = ext4_releasepage,
3842 .direct_IO = ext4_direct_IO,
3843 .migratepage = buffer_migrate_page,
3844 .is_partially_uptodate = block_is_partially_uptodate,
3845 .error_remove_page = generic_error_remove_page,
3848 static const struct address_space_operations ext4_writeback_aops = {
3849 .readpage = ext4_readpage,
3850 .readpages = ext4_readpages,
3851 .writepage = ext4_writepage,
3852 .sync_page = block_sync_page,
3853 .write_begin = ext4_write_begin,
3854 .write_end = ext4_writeback_write_end,
3855 .bmap = ext4_bmap,
3856 .invalidatepage = ext4_invalidatepage,
3857 .releasepage = ext4_releasepage,
3858 .direct_IO = ext4_direct_IO,
3859 .migratepage = buffer_migrate_page,
3860 .is_partially_uptodate = block_is_partially_uptodate,
3861 .error_remove_page = generic_error_remove_page,
3864 static const struct address_space_operations ext4_journalled_aops = {
3865 .readpage = ext4_readpage,
3866 .readpages = ext4_readpages,
3867 .writepage = ext4_writepage,
3868 .sync_page = block_sync_page,
3869 .write_begin = ext4_write_begin,
3870 .write_end = ext4_journalled_write_end,
3871 .set_page_dirty = ext4_journalled_set_page_dirty,
3872 .bmap = ext4_bmap,
3873 .invalidatepage = ext4_invalidatepage,
3874 .releasepage = ext4_releasepage,
3875 .is_partially_uptodate = block_is_partially_uptodate,
3876 .error_remove_page = generic_error_remove_page,
3879 static const struct address_space_operations ext4_da_aops = {
3880 .readpage = ext4_readpage,
3881 .readpages = ext4_readpages,
3882 .writepage = ext4_writepage,
3883 .writepages = ext4_da_writepages,
3884 .sync_page = block_sync_page,
3885 .write_begin = ext4_da_write_begin,
3886 .write_end = ext4_da_write_end,
3887 .bmap = ext4_bmap,
3888 .invalidatepage = ext4_da_invalidatepage,
3889 .releasepage = ext4_releasepage,
3890 .direct_IO = ext4_direct_IO,
3891 .migratepage = buffer_migrate_page,
3892 .is_partially_uptodate = block_is_partially_uptodate,
3893 .error_remove_page = generic_error_remove_page,
3896 void ext4_set_aops(struct inode *inode)
3898 if (ext4_should_order_data(inode) &&
3899 test_opt(inode->i_sb, DELALLOC))
3900 inode->i_mapping->a_ops = &ext4_da_aops;
3901 else if (ext4_should_order_data(inode))
3902 inode->i_mapping->a_ops = &ext4_ordered_aops;
3903 else if (ext4_should_writeback_data(inode) &&
3904 test_opt(inode->i_sb, DELALLOC))
3905 inode->i_mapping->a_ops = &ext4_da_aops;
3906 else if (ext4_should_writeback_data(inode))
3907 inode->i_mapping->a_ops = &ext4_writeback_aops;
3908 else
3909 inode->i_mapping->a_ops = &ext4_journalled_aops;
3913 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3914 * up to the end of the block which corresponds to `from'.
3915 * This required during truncate. We need to physically zero the tail end
3916 * of that block so it doesn't yield old data if the file is later grown.
3918 int ext4_block_truncate_page(handle_t *handle,
3919 struct address_space *mapping, loff_t from)
3921 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3922 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3923 unsigned blocksize, length, pos;
3924 ext4_lblk_t iblock;
3925 struct inode *inode = mapping->host;
3926 struct buffer_head *bh;
3927 struct page *page;
3928 int err = 0;
3930 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3931 mapping_gfp_mask(mapping) & ~__GFP_FS);
3932 if (!page)
3933 return -EINVAL;
3935 blocksize = inode->i_sb->s_blocksize;
3936 length = blocksize - (offset & (blocksize - 1));
3937 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3940 * For "nobh" option, we can only work if we don't need to
3941 * read-in the page - otherwise we create buffers to do the IO.
3943 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3944 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3945 zero_user(page, offset, length);
3946 set_page_dirty(page);
3947 goto unlock;
3950 if (!page_has_buffers(page))
3951 create_empty_buffers(page, blocksize, 0);
3953 /* Find the buffer that contains "offset" */
3954 bh = page_buffers(page);
3955 pos = blocksize;
3956 while (offset >= pos) {
3957 bh = bh->b_this_page;
3958 iblock++;
3959 pos += blocksize;
3962 err = 0;
3963 if (buffer_freed(bh)) {
3964 BUFFER_TRACE(bh, "freed: skip");
3965 goto unlock;
3968 if (!buffer_mapped(bh)) {
3969 BUFFER_TRACE(bh, "unmapped");
3970 ext4_get_block(inode, iblock, bh, 0);
3971 /* unmapped? It's a hole - nothing to do */
3972 if (!buffer_mapped(bh)) {
3973 BUFFER_TRACE(bh, "still unmapped");
3974 goto unlock;
3978 /* Ok, it's mapped. Make sure it's up-to-date */
3979 if (PageUptodate(page))
3980 set_buffer_uptodate(bh);
3982 if (!buffer_uptodate(bh)) {
3983 err = -EIO;
3984 ll_rw_block(READ, 1, &bh);
3985 wait_on_buffer(bh);
3986 /* Uhhuh. Read error. Complain and punt. */
3987 if (!buffer_uptodate(bh))
3988 goto unlock;
3991 if (ext4_should_journal_data(inode)) {
3992 BUFFER_TRACE(bh, "get write access");
3993 err = ext4_journal_get_write_access(handle, bh);
3994 if (err)
3995 goto unlock;
3998 zero_user(page, offset, length);
4000 BUFFER_TRACE(bh, "zeroed end of block");
4002 err = 0;
4003 if (ext4_should_journal_data(inode)) {
4004 err = ext4_handle_dirty_metadata(handle, inode, bh);
4005 } else {
4006 if (ext4_should_order_data(inode))
4007 err = ext4_jbd2_file_inode(handle, inode);
4008 mark_buffer_dirty(bh);
4011 unlock:
4012 unlock_page(page);
4013 page_cache_release(page);
4014 return err;
4018 * Probably it should be a library function... search for first non-zero word
4019 * or memcmp with zero_page, whatever is better for particular architecture.
4020 * Linus?
4022 static inline int all_zeroes(__le32 *p, __le32 *q)
4024 while (p < q)
4025 if (*p++)
4026 return 0;
4027 return 1;
4031 * ext4_find_shared - find the indirect blocks for partial truncation.
4032 * @inode: inode in question
4033 * @depth: depth of the affected branch
4034 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4035 * @chain: place to store the pointers to partial indirect blocks
4036 * @top: place to the (detached) top of branch
4038 * This is a helper function used by ext4_truncate().
4040 * When we do truncate() we may have to clean the ends of several
4041 * indirect blocks but leave the blocks themselves alive. Block is
4042 * partially truncated if some data below the new i_size is refered
4043 * from it (and it is on the path to the first completely truncated
4044 * data block, indeed). We have to free the top of that path along
4045 * with everything to the right of the path. Since no allocation
4046 * past the truncation point is possible until ext4_truncate()
4047 * finishes, we may safely do the latter, but top of branch may
4048 * require special attention - pageout below the truncation point
4049 * might try to populate it.
4051 * We atomically detach the top of branch from the tree, store the
4052 * block number of its root in *@top, pointers to buffer_heads of
4053 * partially truncated blocks - in @chain[].bh and pointers to
4054 * their last elements that should not be removed - in
4055 * @chain[].p. Return value is the pointer to last filled element
4056 * of @chain.
4058 * The work left to caller to do the actual freeing of subtrees:
4059 * a) free the subtree starting from *@top
4060 * b) free the subtrees whose roots are stored in
4061 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4062 * c) free the subtrees growing from the inode past the @chain[0].
4063 * (no partially truncated stuff there). */
4065 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4066 ext4_lblk_t offsets[4], Indirect chain[4],
4067 __le32 *top)
4069 Indirect *partial, *p;
4070 int k, err;
4072 *top = 0;
4073 /* Make k index the deepest non-null offest + 1 */
4074 for (k = depth; k > 1 && !offsets[k-1]; k--)
4076 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4077 /* Writer: pointers */
4078 if (!partial)
4079 partial = chain + k-1;
4081 * If the branch acquired continuation since we've looked at it -
4082 * fine, it should all survive and (new) top doesn't belong to us.
4084 if (!partial->key && *partial->p)
4085 /* Writer: end */
4086 goto no_top;
4087 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4090 * OK, we've found the last block that must survive. The rest of our
4091 * branch should be detached before unlocking. However, if that rest
4092 * of branch is all ours and does not grow immediately from the inode
4093 * it's easier to cheat and just decrement partial->p.
4095 if (p == chain + k - 1 && p > chain) {
4096 p->p--;
4097 } else {
4098 *top = *p->p;
4099 /* Nope, don't do this in ext4. Must leave the tree intact */
4100 #if 0
4101 *p->p = 0;
4102 #endif
4104 /* Writer: end */
4106 while (partial > p) {
4107 brelse(partial->bh);
4108 partial--;
4110 no_top:
4111 return partial;
4115 * Zero a number of block pointers in either an inode or an indirect block.
4116 * If we restart the transaction we must again get write access to the
4117 * indirect block for further modification.
4119 * We release `count' blocks on disk, but (last - first) may be greater
4120 * than `count' because there can be holes in there.
4122 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4123 struct buffer_head *bh,
4124 ext4_fsblk_t block_to_free,
4125 unsigned long count, __le32 *first,
4126 __le32 *last)
4128 __le32 *p;
4129 int is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4131 if (try_to_extend_transaction(handle, inode)) {
4132 if (bh) {
4133 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4134 ext4_handle_dirty_metadata(handle, inode, bh);
4136 ext4_mark_inode_dirty(handle, inode);
4137 ext4_truncate_restart_trans(handle, inode,
4138 blocks_for_truncate(inode));
4139 if (bh) {
4140 BUFFER_TRACE(bh, "retaking write access");
4141 ext4_journal_get_write_access(handle, bh);
4146 * Any buffers which are on the journal will be in memory. We
4147 * find them on the hash table so jbd2_journal_revoke() will
4148 * run jbd2_journal_forget() on them. We've already detached
4149 * each block from the file, so bforget() in
4150 * jbd2_journal_forget() should be safe.
4152 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4154 for (p = first; p < last; p++) {
4155 u32 nr = le32_to_cpu(*p);
4156 if (nr) {
4157 struct buffer_head *tbh;
4159 *p = 0;
4160 tbh = sb_find_get_block(inode->i_sb, nr);
4161 ext4_forget(handle, is_metadata, inode, tbh, nr);
4165 ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4169 * ext4_free_data - free a list of data blocks
4170 * @handle: handle for this transaction
4171 * @inode: inode we are dealing with
4172 * @this_bh: indirect buffer_head which contains *@first and *@last
4173 * @first: array of block numbers
4174 * @last: points immediately past the end of array
4176 * We are freeing all blocks refered from that array (numbers are stored as
4177 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4179 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4180 * blocks are contiguous then releasing them at one time will only affect one
4181 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4182 * actually use a lot of journal space.
4184 * @this_bh will be %NULL if @first and @last point into the inode's direct
4185 * block pointers.
4187 static void ext4_free_data(handle_t *handle, struct inode *inode,
4188 struct buffer_head *this_bh,
4189 __le32 *first, __le32 *last)
4191 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4192 unsigned long count = 0; /* Number of blocks in the run */
4193 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4194 corresponding to
4195 block_to_free */
4196 ext4_fsblk_t nr; /* Current block # */
4197 __le32 *p; /* Pointer into inode/ind
4198 for current block */
4199 int err;
4201 if (this_bh) { /* For indirect block */
4202 BUFFER_TRACE(this_bh, "get_write_access");
4203 err = ext4_journal_get_write_access(handle, this_bh);
4204 /* Important: if we can't update the indirect pointers
4205 * to the blocks, we can't free them. */
4206 if (err)
4207 return;
4210 for (p = first; p < last; p++) {
4211 nr = le32_to_cpu(*p);
4212 if (nr) {
4213 /* accumulate blocks to free if they're contiguous */
4214 if (count == 0) {
4215 block_to_free = nr;
4216 block_to_free_p = p;
4217 count = 1;
4218 } else if (nr == block_to_free + count) {
4219 count++;
4220 } else {
4221 ext4_clear_blocks(handle, inode, this_bh,
4222 block_to_free,
4223 count, block_to_free_p, p);
4224 block_to_free = nr;
4225 block_to_free_p = p;
4226 count = 1;
4231 if (count > 0)
4232 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4233 count, block_to_free_p, p);
4235 if (this_bh) {
4236 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4239 * The buffer head should have an attached journal head at this
4240 * point. However, if the data is corrupted and an indirect
4241 * block pointed to itself, it would have been detached when
4242 * the block was cleared. Check for this instead of OOPSing.
4244 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4245 ext4_handle_dirty_metadata(handle, inode, this_bh);
4246 else
4247 ext4_error(inode->i_sb, __func__,
4248 "circular indirect block detected, "
4249 "inode=%lu, block=%llu",
4250 inode->i_ino,
4251 (unsigned long long) this_bh->b_blocknr);
4256 * ext4_free_branches - free an array of branches
4257 * @handle: JBD handle for this transaction
4258 * @inode: inode we are dealing with
4259 * @parent_bh: the buffer_head which contains *@first and *@last
4260 * @first: array of block numbers
4261 * @last: pointer immediately past the end of array
4262 * @depth: depth of the branches to free
4264 * We are freeing all blocks refered from these branches (numbers are
4265 * stored as little-endian 32-bit) and updating @inode->i_blocks
4266 * appropriately.
4268 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4269 struct buffer_head *parent_bh,
4270 __le32 *first, __le32 *last, int depth)
4272 ext4_fsblk_t nr;
4273 __le32 *p;
4275 if (ext4_handle_is_aborted(handle))
4276 return;
4278 if (depth--) {
4279 struct buffer_head *bh;
4280 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4281 p = last;
4282 while (--p >= first) {
4283 nr = le32_to_cpu(*p);
4284 if (!nr)
4285 continue; /* A hole */
4287 /* Go read the buffer for the next level down */
4288 bh = sb_bread(inode->i_sb, nr);
4291 * A read failure? Report error and clear slot
4292 * (should be rare).
4294 if (!bh) {
4295 ext4_error(inode->i_sb, "ext4_free_branches",
4296 "Read failure, inode=%lu, block=%llu",
4297 inode->i_ino, nr);
4298 continue;
4301 /* This zaps the entire block. Bottom up. */
4302 BUFFER_TRACE(bh, "free child branches");
4303 ext4_free_branches(handle, inode, bh,
4304 (__le32 *) bh->b_data,
4305 (__le32 *) bh->b_data + addr_per_block,
4306 depth);
4309 * We've probably journalled the indirect block several
4310 * times during the truncate. But it's no longer
4311 * needed and we now drop it from the transaction via
4312 * jbd2_journal_revoke().
4314 * That's easy if it's exclusively part of this
4315 * transaction. But if it's part of the committing
4316 * transaction then jbd2_journal_forget() will simply
4317 * brelse() it. That means that if the underlying
4318 * block is reallocated in ext4_get_block(),
4319 * unmap_underlying_metadata() will find this block
4320 * and will try to get rid of it. damn, damn.
4322 * If this block has already been committed to the
4323 * journal, a revoke record will be written. And
4324 * revoke records must be emitted *before* clearing
4325 * this block's bit in the bitmaps.
4327 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4330 * Everything below this this pointer has been
4331 * released. Now let this top-of-subtree go.
4333 * We want the freeing of this indirect block to be
4334 * atomic in the journal with the updating of the
4335 * bitmap block which owns it. So make some room in
4336 * the journal.
4338 * We zero the parent pointer *after* freeing its
4339 * pointee in the bitmaps, so if extend_transaction()
4340 * for some reason fails to put the bitmap changes and
4341 * the release into the same transaction, recovery
4342 * will merely complain about releasing a free block,
4343 * rather than leaking blocks.
4345 if (ext4_handle_is_aborted(handle))
4346 return;
4347 if (try_to_extend_transaction(handle, inode)) {
4348 ext4_mark_inode_dirty(handle, inode);
4349 ext4_truncate_restart_trans(handle, inode,
4350 blocks_for_truncate(inode));
4353 ext4_free_blocks(handle, inode, nr, 1, 1);
4355 if (parent_bh) {
4357 * The block which we have just freed is
4358 * pointed to by an indirect block: journal it
4360 BUFFER_TRACE(parent_bh, "get_write_access");
4361 if (!ext4_journal_get_write_access(handle,
4362 parent_bh)){
4363 *p = 0;
4364 BUFFER_TRACE(parent_bh,
4365 "call ext4_handle_dirty_metadata");
4366 ext4_handle_dirty_metadata(handle,
4367 inode,
4368 parent_bh);
4372 } else {
4373 /* We have reached the bottom of the tree. */
4374 BUFFER_TRACE(parent_bh, "free data blocks");
4375 ext4_free_data(handle, inode, parent_bh, first, last);
4379 int ext4_can_truncate(struct inode *inode)
4381 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4382 return 0;
4383 if (S_ISREG(inode->i_mode))
4384 return 1;
4385 if (S_ISDIR(inode->i_mode))
4386 return 1;
4387 if (S_ISLNK(inode->i_mode))
4388 return !ext4_inode_is_fast_symlink(inode);
4389 return 0;
4393 * ext4_truncate()
4395 * We block out ext4_get_block() block instantiations across the entire
4396 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4397 * simultaneously on behalf of the same inode.
4399 * As we work through the truncate and commmit bits of it to the journal there
4400 * is one core, guiding principle: the file's tree must always be consistent on
4401 * disk. We must be able to restart the truncate after a crash.
4403 * The file's tree may be transiently inconsistent in memory (although it
4404 * probably isn't), but whenever we close off and commit a journal transaction,
4405 * the contents of (the filesystem + the journal) must be consistent and
4406 * restartable. It's pretty simple, really: bottom up, right to left (although
4407 * left-to-right works OK too).
4409 * Note that at recovery time, journal replay occurs *before* the restart of
4410 * truncate against the orphan inode list.
4412 * The committed inode has the new, desired i_size (which is the same as
4413 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4414 * that this inode's truncate did not complete and it will again call
4415 * ext4_truncate() to have another go. So there will be instantiated blocks
4416 * to the right of the truncation point in a crashed ext4 filesystem. But
4417 * that's fine - as long as they are linked from the inode, the post-crash
4418 * ext4_truncate() run will find them and release them.
4420 void ext4_truncate(struct inode *inode)
4422 handle_t *handle;
4423 struct ext4_inode_info *ei = EXT4_I(inode);
4424 __le32 *i_data = ei->i_data;
4425 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4426 struct address_space *mapping = inode->i_mapping;
4427 ext4_lblk_t offsets[4];
4428 Indirect chain[4];
4429 Indirect *partial;
4430 __le32 nr = 0;
4431 int n;
4432 ext4_lblk_t last_block;
4433 unsigned blocksize = inode->i_sb->s_blocksize;
4435 if (!ext4_can_truncate(inode))
4436 return;
4438 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4439 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4441 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4442 ext4_ext_truncate(inode);
4443 return;
4446 handle = start_transaction(inode);
4447 if (IS_ERR(handle))
4448 return; /* AKPM: return what? */
4450 last_block = (inode->i_size + blocksize-1)
4451 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4453 if (inode->i_size & (blocksize - 1))
4454 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4455 goto out_stop;
4457 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4458 if (n == 0)
4459 goto out_stop; /* error */
4462 * OK. This truncate is going to happen. We add the inode to the
4463 * orphan list, so that if this truncate spans multiple transactions,
4464 * and we crash, we will resume the truncate when the filesystem
4465 * recovers. It also marks the inode dirty, to catch the new size.
4467 * Implication: the file must always be in a sane, consistent
4468 * truncatable state while each transaction commits.
4470 if (ext4_orphan_add(handle, inode))
4471 goto out_stop;
4474 * From here we block out all ext4_get_block() callers who want to
4475 * modify the block allocation tree.
4477 down_write(&ei->i_data_sem);
4479 ext4_discard_preallocations(inode);
4482 * The orphan list entry will now protect us from any crash which
4483 * occurs before the truncate completes, so it is now safe to propagate
4484 * the new, shorter inode size (held for now in i_size) into the
4485 * on-disk inode. We do this via i_disksize, which is the value which
4486 * ext4 *really* writes onto the disk inode.
4488 ei->i_disksize = inode->i_size;
4490 if (n == 1) { /* direct blocks */
4491 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4492 i_data + EXT4_NDIR_BLOCKS);
4493 goto do_indirects;
4496 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4497 /* Kill the top of shared branch (not detached) */
4498 if (nr) {
4499 if (partial == chain) {
4500 /* Shared branch grows from the inode */
4501 ext4_free_branches(handle, inode, NULL,
4502 &nr, &nr+1, (chain+n-1) - partial);
4503 *partial->p = 0;
4505 * We mark the inode dirty prior to restart,
4506 * and prior to stop. No need for it here.
4508 } else {
4509 /* Shared branch grows from an indirect block */
4510 BUFFER_TRACE(partial->bh, "get_write_access");
4511 ext4_free_branches(handle, inode, partial->bh,
4512 partial->p,
4513 partial->p+1, (chain+n-1) - partial);
4516 /* Clear the ends of indirect blocks on the shared branch */
4517 while (partial > chain) {
4518 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4519 (__le32*)partial->bh->b_data+addr_per_block,
4520 (chain+n-1) - partial);
4521 BUFFER_TRACE(partial->bh, "call brelse");
4522 brelse(partial->bh);
4523 partial--;
4525 do_indirects:
4526 /* Kill the remaining (whole) subtrees */
4527 switch (offsets[0]) {
4528 default:
4529 nr = i_data[EXT4_IND_BLOCK];
4530 if (nr) {
4531 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4532 i_data[EXT4_IND_BLOCK] = 0;
4534 case EXT4_IND_BLOCK:
4535 nr = i_data[EXT4_DIND_BLOCK];
4536 if (nr) {
4537 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4538 i_data[EXT4_DIND_BLOCK] = 0;
4540 case EXT4_DIND_BLOCK:
4541 nr = i_data[EXT4_TIND_BLOCK];
4542 if (nr) {
4543 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4544 i_data[EXT4_TIND_BLOCK] = 0;
4546 case EXT4_TIND_BLOCK:
4550 up_write(&ei->i_data_sem);
4551 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4552 ext4_mark_inode_dirty(handle, inode);
4555 * In a multi-transaction truncate, we only make the final transaction
4556 * synchronous
4558 if (IS_SYNC(inode))
4559 ext4_handle_sync(handle);
4560 out_stop:
4562 * If this was a simple ftruncate(), and the file will remain alive
4563 * then we need to clear up the orphan record which we created above.
4564 * However, if this was a real unlink then we were called by
4565 * ext4_delete_inode(), and we allow that function to clean up the
4566 * orphan info for us.
4568 if (inode->i_nlink)
4569 ext4_orphan_del(handle, inode);
4571 ext4_journal_stop(handle);
4575 * ext4_get_inode_loc returns with an extra refcount against the inode's
4576 * underlying buffer_head on success. If 'in_mem' is true, we have all
4577 * data in memory that is needed to recreate the on-disk version of this
4578 * inode.
4580 static int __ext4_get_inode_loc(struct inode *inode,
4581 struct ext4_iloc *iloc, int in_mem)
4583 struct ext4_group_desc *gdp;
4584 struct buffer_head *bh;
4585 struct super_block *sb = inode->i_sb;
4586 ext4_fsblk_t block;
4587 int inodes_per_block, inode_offset;
4589 iloc->bh = NULL;
4590 if (!ext4_valid_inum(sb, inode->i_ino))
4591 return -EIO;
4593 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4594 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4595 if (!gdp)
4596 return -EIO;
4599 * Figure out the offset within the block group inode table
4601 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4602 inode_offset = ((inode->i_ino - 1) %
4603 EXT4_INODES_PER_GROUP(sb));
4604 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4605 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4607 bh = sb_getblk(sb, block);
4608 if (!bh) {
4609 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4610 "inode block - inode=%lu, block=%llu",
4611 inode->i_ino, block);
4612 return -EIO;
4614 if (!buffer_uptodate(bh)) {
4615 lock_buffer(bh);
4618 * If the buffer has the write error flag, we have failed
4619 * to write out another inode in the same block. In this
4620 * case, we don't have to read the block because we may
4621 * read the old inode data successfully.
4623 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4624 set_buffer_uptodate(bh);
4626 if (buffer_uptodate(bh)) {
4627 /* someone brought it uptodate while we waited */
4628 unlock_buffer(bh);
4629 goto has_buffer;
4633 * If we have all information of the inode in memory and this
4634 * is the only valid inode in the block, we need not read the
4635 * block.
4637 if (in_mem) {
4638 struct buffer_head *bitmap_bh;
4639 int i, start;
4641 start = inode_offset & ~(inodes_per_block - 1);
4643 /* Is the inode bitmap in cache? */
4644 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4645 if (!bitmap_bh)
4646 goto make_io;
4649 * If the inode bitmap isn't in cache then the
4650 * optimisation may end up performing two reads instead
4651 * of one, so skip it.
4653 if (!buffer_uptodate(bitmap_bh)) {
4654 brelse(bitmap_bh);
4655 goto make_io;
4657 for (i = start; i < start + inodes_per_block; i++) {
4658 if (i == inode_offset)
4659 continue;
4660 if (ext4_test_bit(i, bitmap_bh->b_data))
4661 break;
4663 brelse(bitmap_bh);
4664 if (i == start + inodes_per_block) {
4665 /* all other inodes are free, so skip I/O */
4666 memset(bh->b_data, 0, bh->b_size);
4667 set_buffer_uptodate(bh);
4668 unlock_buffer(bh);
4669 goto has_buffer;
4673 make_io:
4675 * If we need to do any I/O, try to pre-readahead extra
4676 * blocks from the inode table.
4678 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4679 ext4_fsblk_t b, end, table;
4680 unsigned num;
4682 table = ext4_inode_table(sb, gdp);
4683 /* s_inode_readahead_blks is always a power of 2 */
4684 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4685 if (table > b)
4686 b = table;
4687 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4688 num = EXT4_INODES_PER_GROUP(sb);
4689 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4690 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4691 num -= ext4_itable_unused_count(sb, gdp);
4692 table += num / inodes_per_block;
4693 if (end > table)
4694 end = table;
4695 while (b <= end)
4696 sb_breadahead(sb, b++);
4700 * There are other valid inodes in the buffer, this inode
4701 * has in-inode xattrs, or we don't have this inode in memory.
4702 * Read the block from disk.
4704 get_bh(bh);
4705 bh->b_end_io = end_buffer_read_sync;
4706 submit_bh(READ_META, bh);
4707 wait_on_buffer(bh);
4708 if (!buffer_uptodate(bh)) {
4709 ext4_error(sb, __func__,
4710 "unable to read inode block - inode=%lu, "
4711 "block=%llu", inode->i_ino, block);
4712 brelse(bh);
4713 return -EIO;
4716 has_buffer:
4717 iloc->bh = bh;
4718 return 0;
4721 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4723 /* We have all inode data except xattrs in memory here. */
4724 return __ext4_get_inode_loc(inode, iloc,
4725 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4728 void ext4_set_inode_flags(struct inode *inode)
4730 unsigned int flags = EXT4_I(inode)->i_flags;
4732 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4733 if (flags & EXT4_SYNC_FL)
4734 inode->i_flags |= S_SYNC;
4735 if (flags & EXT4_APPEND_FL)
4736 inode->i_flags |= S_APPEND;
4737 if (flags & EXT4_IMMUTABLE_FL)
4738 inode->i_flags |= S_IMMUTABLE;
4739 if (flags & EXT4_NOATIME_FL)
4740 inode->i_flags |= S_NOATIME;
4741 if (flags & EXT4_DIRSYNC_FL)
4742 inode->i_flags |= S_DIRSYNC;
4745 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4746 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4748 unsigned int flags = ei->vfs_inode.i_flags;
4750 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4751 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4752 if (flags & S_SYNC)
4753 ei->i_flags |= EXT4_SYNC_FL;
4754 if (flags & S_APPEND)
4755 ei->i_flags |= EXT4_APPEND_FL;
4756 if (flags & S_IMMUTABLE)
4757 ei->i_flags |= EXT4_IMMUTABLE_FL;
4758 if (flags & S_NOATIME)
4759 ei->i_flags |= EXT4_NOATIME_FL;
4760 if (flags & S_DIRSYNC)
4761 ei->i_flags |= EXT4_DIRSYNC_FL;
4764 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4765 struct ext4_inode_info *ei)
4767 blkcnt_t i_blocks ;
4768 struct inode *inode = &(ei->vfs_inode);
4769 struct super_block *sb = inode->i_sb;
4771 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4772 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4773 /* we are using combined 48 bit field */
4774 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4775 le32_to_cpu(raw_inode->i_blocks_lo);
4776 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4777 /* i_blocks represent file system block size */
4778 return i_blocks << (inode->i_blkbits - 9);
4779 } else {
4780 return i_blocks;
4782 } else {
4783 return le32_to_cpu(raw_inode->i_blocks_lo);
4787 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4789 struct ext4_iloc iloc;
4790 struct ext4_inode *raw_inode;
4791 struct ext4_inode_info *ei;
4792 struct inode *inode;
4793 journal_t *journal = EXT4_SB(sb)->s_journal;
4794 long ret;
4795 int block;
4797 inode = iget_locked(sb, ino);
4798 if (!inode)
4799 return ERR_PTR(-ENOMEM);
4800 if (!(inode->i_state & I_NEW))
4801 return inode;
4803 ei = EXT4_I(inode);
4804 iloc.bh = 0;
4806 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4807 if (ret < 0)
4808 goto bad_inode;
4809 raw_inode = ext4_raw_inode(&iloc);
4810 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4811 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4812 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4813 if (!(test_opt(inode->i_sb, NO_UID32))) {
4814 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4815 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4817 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4819 ei->i_state = 0;
4820 ei->i_dir_start_lookup = 0;
4821 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4822 /* We now have enough fields to check if the inode was active or not.
4823 * This is needed because nfsd might try to access dead inodes
4824 * the test is that same one that e2fsck uses
4825 * NeilBrown 1999oct15
4827 if (inode->i_nlink == 0) {
4828 if (inode->i_mode == 0 ||
4829 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4830 /* this inode is deleted */
4831 ret = -ESTALE;
4832 goto bad_inode;
4834 /* The only unlinked inodes we let through here have
4835 * valid i_mode and are being read by the orphan
4836 * recovery code: that's fine, we're about to complete
4837 * the process of deleting those. */
4839 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4840 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4841 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4842 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4843 ei->i_file_acl |=
4844 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4845 inode->i_size = ext4_isize(raw_inode);
4846 ei->i_disksize = inode->i_size;
4847 #ifdef CONFIG_QUOTA
4848 ei->i_reserved_quota = 0;
4849 #endif
4850 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4851 ei->i_block_group = iloc.block_group;
4852 ei->i_last_alloc_group = ~0;
4854 * NOTE! The in-memory inode i_data array is in little-endian order
4855 * even on big-endian machines: we do NOT byteswap the block numbers!
4857 for (block = 0; block < EXT4_N_BLOCKS; block++)
4858 ei->i_data[block] = raw_inode->i_block[block];
4859 INIT_LIST_HEAD(&ei->i_orphan);
4862 * Set transaction id's of transactions that have to be committed
4863 * to finish f[data]sync. We set them to currently running transaction
4864 * as we cannot be sure that the inode or some of its metadata isn't
4865 * part of the transaction - the inode could have been reclaimed and
4866 * now it is reread from disk.
4868 if (journal) {
4869 transaction_t *transaction;
4870 tid_t tid;
4872 spin_lock(&journal->j_state_lock);
4873 if (journal->j_running_transaction)
4874 transaction = journal->j_running_transaction;
4875 else
4876 transaction = journal->j_committing_transaction;
4877 if (transaction)
4878 tid = transaction->t_tid;
4879 else
4880 tid = journal->j_commit_sequence;
4881 spin_unlock(&journal->j_state_lock);
4882 ei->i_sync_tid = tid;
4883 ei->i_datasync_tid = tid;
4886 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4887 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4888 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4889 EXT4_INODE_SIZE(inode->i_sb)) {
4890 ret = -EIO;
4891 goto bad_inode;
4893 if (ei->i_extra_isize == 0) {
4894 /* The extra space is currently unused. Use it. */
4895 ei->i_extra_isize = sizeof(struct ext4_inode) -
4896 EXT4_GOOD_OLD_INODE_SIZE;
4897 } else {
4898 __le32 *magic = (void *)raw_inode +
4899 EXT4_GOOD_OLD_INODE_SIZE +
4900 ei->i_extra_isize;
4901 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4902 ei->i_state |= EXT4_STATE_XATTR;
4904 } else
4905 ei->i_extra_isize = 0;
4907 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4908 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4909 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4910 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4912 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4913 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4914 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4915 inode->i_version |=
4916 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4919 ret = 0;
4920 if (ei->i_file_acl &&
4921 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4922 ext4_error(sb, __func__,
4923 "bad extended attribute block %llu in inode #%lu",
4924 ei->i_file_acl, inode->i_ino);
4925 ret = -EIO;
4926 goto bad_inode;
4927 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4928 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4929 (S_ISLNK(inode->i_mode) &&
4930 !ext4_inode_is_fast_symlink(inode)))
4931 /* Validate extent which is part of inode */
4932 ret = ext4_ext_check_inode(inode);
4933 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4934 (S_ISLNK(inode->i_mode) &&
4935 !ext4_inode_is_fast_symlink(inode))) {
4936 /* Validate block references which are part of inode */
4937 ret = ext4_check_inode_blockref(inode);
4939 if (ret)
4940 goto bad_inode;
4942 if (S_ISREG(inode->i_mode)) {
4943 inode->i_op = &ext4_file_inode_operations;
4944 inode->i_fop = &ext4_file_operations;
4945 ext4_set_aops(inode);
4946 } else if (S_ISDIR(inode->i_mode)) {
4947 inode->i_op = &ext4_dir_inode_operations;
4948 inode->i_fop = &ext4_dir_operations;
4949 } else if (S_ISLNK(inode->i_mode)) {
4950 if (ext4_inode_is_fast_symlink(inode)) {
4951 inode->i_op = &ext4_fast_symlink_inode_operations;
4952 nd_terminate_link(ei->i_data, inode->i_size,
4953 sizeof(ei->i_data) - 1);
4954 } else {
4955 inode->i_op = &ext4_symlink_inode_operations;
4956 ext4_set_aops(inode);
4958 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4959 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4960 inode->i_op = &ext4_special_inode_operations;
4961 if (raw_inode->i_block[0])
4962 init_special_inode(inode, inode->i_mode,
4963 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4964 else
4965 init_special_inode(inode, inode->i_mode,
4966 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4967 } else {
4968 ret = -EIO;
4969 ext4_error(inode->i_sb, __func__,
4970 "bogus i_mode (%o) for inode=%lu",
4971 inode->i_mode, inode->i_ino);
4972 goto bad_inode;
4974 brelse(iloc.bh);
4975 ext4_set_inode_flags(inode);
4976 unlock_new_inode(inode);
4977 return inode;
4979 bad_inode:
4980 brelse(iloc.bh);
4981 iget_failed(inode);
4982 return ERR_PTR(ret);
4985 static int ext4_inode_blocks_set(handle_t *handle,
4986 struct ext4_inode *raw_inode,
4987 struct ext4_inode_info *ei)
4989 struct inode *inode = &(ei->vfs_inode);
4990 u64 i_blocks = inode->i_blocks;
4991 struct super_block *sb = inode->i_sb;
4993 if (i_blocks <= ~0U) {
4995 * i_blocks can be represnted in a 32 bit variable
4996 * as multiple of 512 bytes
4998 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4999 raw_inode->i_blocks_high = 0;
5000 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5001 return 0;
5003 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5004 return -EFBIG;
5006 if (i_blocks <= 0xffffffffffffULL) {
5008 * i_blocks can be represented in a 48 bit variable
5009 * as multiple of 512 bytes
5011 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5012 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5013 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5014 } else {
5015 ei->i_flags |= EXT4_HUGE_FILE_FL;
5016 /* i_block is stored in file system block size */
5017 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5018 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5019 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5021 return 0;
5025 * Post the struct inode info into an on-disk inode location in the
5026 * buffer-cache. This gobbles the caller's reference to the
5027 * buffer_head in the inode location struct.
5029 * The caller must have write access to iloc->bh.
5031 static int ext4_do_update_inode(handle_t *handle,
5032 struct inode *inode,
5033 struct ext4_iloc *iloc)
5035 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5036 struct ext4_inode_info *ei = EXT4_I(inode);
5037 struct buffer_head *bh = iloc->bh;
5038 int err = 0, rc, block;
5040 /* For fields not not tracking in the in-memory inode,
5041 * initialise them to zero for new inodes. */
5042 if (ei->i_state & EXT4_STATE_NEW)
5043 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5045 ext4_get_inode_flags(ei);
5046 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5047 if (!(test_opt(inode->i_sb, NO_UID32))) {
5048 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5049 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5051 * Fix up interoperability with old kernels. Otherwise, old inodes get
5052 * re-used with the upper 16 bits of the uid/gid intact
5054 if (!ei->i_dtime) {
5055 raw_inode->i_uid_high =
5056 cpu_to_le16(high_16_bits(inode->i_uid));
5057 raw_inode->i_gid_high =
5058 cpu_to_le16(high_16_bits(inode->i_gid));
5059 } else {
5060 raw_inode->i_uid_high = 0;
5061 raw_inode->i_gid_high = 0;
5063 } else {
5064 raw_inode->i_uid_low =
5065 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5066 raw_inode->i_gid_low =
5067 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5068 raw_inode->i_uid_high = 0;
5069 raw_inode->i_gid_high = 0;
5071 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5073 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5074 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5075 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5076 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5078 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5079 goto out_brelse;
5080 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5081 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5082 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5083 cpu_to_le32(EXT4_OS_HURD))
5084 raw_inode->i_file_acl_high =
5085 cpu_to_le16(ei->i_file_acl >> 32);
5086 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5087 ext4_isize_set(raw_inode, ei->i_disksize);
5088 if (ei->i_disksize > 0x7fffffffULL) {
5089 struct super_block *sb = inode->i_sb;
5090 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5091 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5092 EXT4_SB(sb)->s_es->s_rev_level ==
5093 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5094 /* If this is the first large file
5095 * created, add a flag to the superblock.
5097 err = ext4_journal_get_write_access(handle,
5098 EXT4_SB(sb)->s_sbh);
5099 if (err)
5100 goto out_brelse;
5101 ext4_update_dynamic_rev(sb);
5102 EXT4_SET_RO_COMPAT_FEATURE(sb,
5103 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5104 sb->s_dirt = 1;
5105 ext4_handle_sync(handle);
5106 err = ext4_handle_dirty_metadata(handle, inode,
5107 EXT4_SB(sb)->s_sbh);
5110 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5111 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5112 if (old_valid_dev(inode->i_rdev)) {
5113 raw_inode->i_block[0] =
5114 cpu_to_le32(old_encode_dev(inode->i_rdev));
5115 raw_inode->i_block[1] = 0;
5116 } else {
5117 raw_inode->i_block[0] = 0;
5118 raw_inode->i_block[1] =
5119 cpu_to_le32(new_encode_dev(inode->i_rdev));
5120 raw_inode->i_block[2] = 0;
5122 } else
5123 for (block = 0; block < EXT4_N_BLOCKS; block++)
5124 raw_inode->i_block[block] = ei->i_data[block];
5126 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5127 if (ei->i_extra_isize) {
5128 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5129 raw_inode->i_version_hi =
5130 cpu_to_le32(inode->i_version >> 32);
5131 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5134 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5135 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5136 if (!err)
5137 err = rc;
5138 ei->i_state &= ~EXT4_STATE_NEW;
5140 ext4_update_inode_fsync_trans(handle, inode, 0);
5141 out_brelse:
5142 brelse(bh);
5143 ext4_std_error(inode->i_sb, err);
5144 return err;
5148 * ext4_write_inode()
5150 * We are called from a few places:
5152 * - Within generic_file_write() for O_SYNC files.
5153 * Here, there will be no transaction running. We wait for any running
5154 * trasnaction to commit.
5156 * - Within sys_sync(), kupdate and such.
5157 * We wait on commit, if tol to.
5159 * - Within prune_icache() (PF_MEMALLOC == true)
5160 * Here we simply return. We can't afford to block kswapd on the
5161 * journal commit.
5163 * In all cases it is actually safe for us to return without doing anything,
5164 * because the inode has been copied into a raw inode buffer in
5165 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5166 * knfsd.
5168 * Note that we are absolutely dependent upon all inode dirtiers doing the
5169 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5170 * which we are interested.
5172 * It would be a bug for them to not do this. The code:
5174 * mark_inode_dirty(inode)
5175 * stuff();
5176 * inode->i_size = expr;
5178 * is in error because a kswapd-driven write_inode() could occur while
5179 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5180 * will no longer be on the superblock's dirty inode list.
5182 int ext4_write_inode(struct inode *inode, int wait)
5184 int err;
5186 if (current->flags & PF_MEMALLOC)
5187 return 0;
5189 if (EXT4_SB(inode->i_sb)->s_journal) {
5190 if (ext4_journal_current_handle()) {
5191 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5192 dump_stack();
5193 return -EIO;
5196 if (!wait)
5197 return 0;
5199 err = ext4_force_commit(inode->i_sb);
5200 } else {
5201 struct ext4_iloc iloc;
5203 err = ext4_get_inode_loc(inode, &iloc);
5204 if (err)
5205 return err;
5206 if (wait)
5207 sync_dirty_buffer(iloc.bh);
5208 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5209 ext4_error(inode->i_sb, __func__,
5210 "IO error syncing inode, "
5211 "inode=%lu, block=%llu",
5212 inode->i_ino,
5213 (unsigned long long)iloc.bh->b_blocknr);
5214 err = -EIO;
5217 return err;
5221 * ext4_setattr()
5223 * Called from notify_change.
5225 * We want to trap VFS attempts to truncate the file as soon as
5226 * possible. In particular, we want to make sure that when the VFS
5227 * shrinks i_size, we put the inode on the orphan list and modify
5228 * i_disksize immediately, so that during the subsequent flushing of
5229 * dirty pages and freeing of disk blocks, we can guarantee that any
5230 * commit will leave the blocks being flushed in an unused state on
5231 * disk. (On recovery, the inode will get truncated and the blocks will
5232 * be freed, so we have a strong guarantee that no future commit will
5233 * leave these blocks visible to the user.)
5235 * Another thing we have to assure is that if we are in ordered mode
5236 * and inode is still attached to the committing transaction, we must
5237 * we start writeout of all the dirty pages which are being truncated.
5238 * This way we are sure that all the data written in the previous
5239 * transaction are already on disk (truncate waits for pages under
5240 * writeback).
5242 * Called with inode->i_mutex down.
5244 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5246 struct inode *inode = dentry->d_inode;
5247 int error, rc = 0;
5248 const unsigned int ia_valid = attr->ia_valid;
5250 error = inode_change_ok(inode, attr);
5251 if (error)
5252 return error;
5254 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5255 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5256 handle_t *handle;
5258 /* (user+group)*(old+new) structure, inode write (sb,
5259 * inode block, ? - but truncate inode update has it) */
5260 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5261 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5262 if (IS_ERR(handle)) {
5263 error = PTR_ERR(handle);
5264 goto err_out;
5266 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5267 if (error) {
5268 ext4_journal_stop(handle);
5269 return error;
5271 /* Update corresponding info in inode so that everything is in
5272 * one transaction */
5273 if (attr->ia_valid & ATTR_UID)
5274 inode->i_uid = attr->ia_uid;
5275 if (attr->ia_valid & ATTR_GID)
5276 inode->i_gid = attr->ia_gid;
5277 error = ext4_mark_inode_dirty(handle, inode);
5278 ext4_journal_stop(handle);
5281 if (attr->ia_valid & ATTR_SIZE) {
5282 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5283 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5285 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5286 error = -EFBIG;
5287 goto err_out;
5292 if (S_ISREG(inode->i_mode) &&
5293 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5294 handle_t *handle;
5296 handle = ext4_journal_start(inode, 3);
5297 if (IS_ERR(handle)) {
5298 error = PTR_ERR(handle);
5299 goto err_out;
5302 error = ext4_orphan_add(handle, inode);
5303 EXT4_I(inode)->i_disksize = attr->ia_size;
5304 rc = ext4_mark_inode_dirty(handle, inode);
5305 if (!error)
5306 error = rc;
5307 ext4_journal_stop(handle);
5309 if (ext4_should_order_data(inode)) {
5310 error = ext4_begin_ordered_truncate(inode,
5311 attr->ia_size);
5312 if (error) {
5313 /* Do as much error cleanup as possible */
5314 handle = ext4_journal_start(inode, 3);
5315 if (IS_ERR(handle)) {
5316 ext4_orphan_del(NULL, inode);
5317 goto err_out;
5319 ext4_orphan_del(handle, inode);
5320 ext4_journal_stop(handle);
5321 goto err_out;
5326 rc = inode_setattr(inode, attr);
5328 /* If inode_setattr's call to ext4_truncate failed to get a
5329 * transaction handle at all, we need to clean up the in-core
5330 * orphan list manually. */
5331 if (inode->i_nlink)
5332 ext4_orphan_del(NULL, inode);
5334 if (!rc && (ia_valid & ATTR_MODE))
5335 rc = ext4_acl_chmod(inode);
5337 err_out:
5338 ext4_std_error(inode->i_sb, error);
5339 if (!error)
5340 error = rc;
5341 return error;
5344 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5345 struct kstat *stat)
5347 struct inode *inode;
5348 unsigned long delalloc_blocks;
5350 inode = dentry->d_inode;
5351 generic_fillattr(inode, stat);
5354 * We can't update i_blocks if the block allocation is delayed
5355 * otherwise in the case of system crash before the real block
5356 * allocation is done, we will have i_blocks inconsistent with
5357 * on-disk file blocks.
5358 * We always keep i_blocks updated together with real
5359 * allocation. But to not confuse with user, stat
5360 * will return the blocks that include the delayed allocation
5361 * blocks for this file.
5363 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5364 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5365 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5367 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5368 return 0;
5371 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5372 int chunk)
5374 int indirects;
5376 /* if nrblocks are contiguous */
5377 if (chunk) {
5379 * With N contiguous data blocks, it need at most
5380 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5381 * 2 dindirect blocks
5382 * 1 tindirect block
5384 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5385 return indirects + 3;
5388 * if nrblocks are not contiguous, worse case, each block touch
5389 * a indirect block, and each indirect block touch a double indirect
5390 * block, plus a triple indirect block
5392 indirects = nrblocks * 2 + 1;
5393 return indirects;
5396 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5398 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5399 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5400 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5404 * Account for index blocks, block groups bitmaps and block group
5405 * descriptor blocks if modify datablocks and index blocks
5406 * worse case, the indexs blocks spread over different block groups
5408 * If datablocks are discontiguous, they are possible to spread over
5409 * different block groups too. If they are contiugous, with flexbg,
5410 * they could still across block group boundary.
5412 * Also account for superblock, inode, quota and xattr blocks
5414 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5416 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5417 int gdpblocks;
5418 int idxblocks;
5419 int ret = 0;
5422 * How many index blocks need to touch to modify nrblocks?
5423 * The "Chunk" flag indicating whether the nrblocks is
5424 * physically contiguous on disk
5426 * For Direct IO and fallocate, they calls get_block to allocate
5427 * one single extent at a time, so they could set the "Chunk" flag
5429 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5431 ret = idxblocks;
5434 * Now let's see how many group bitmaps and group descriptors need
5435 * to account
5437 groups = idxblocks;
5438 if (chunk)
5439 groups += 1;
5440 else
5441 groups += nrblocks;
5443 gdpblocks = groups;
5444 if (groups > ngroups)
5445 groups = ngroups;
5446 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5447 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5449 /* bitmaps and block group descriptor blocks */
5450 ret += groups + gdpblocks;
5452 /* Blocks for super block, inode, quota and xattr blocks */
5453 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5455 return ret;
5459 * Calulate the total number of credits to reserve to fit
5460 * the modification of a single pages into a single transaction,
5461 * which may include multiple chunks of block allocations.
5463 * This could be called via ext4_write_begin()
5465 * We need to consider the worse case, when
5466 * one new block per extent.
5468 int ext4_writepage_trans_blocks(struct inode *inode)
5470 int bpp = ext4_journal_blocks_per_page(inode);
5471 int ret;
5473 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5475 /* Account for data blocks for journalled mode */
5476 if (ext4_should_journal_data(inode))
5477 ret += bpp;
5478 return ret;
5482 * Calculate the journal credits for a chunk of data modification.
5484 * This is called from DIO, fallocate or whoever calling
5485 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5487 * journal buffers for data blocks are not included here, as DIO
5488 * and fallocate do no need to journal data buffers.
5490 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5492 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5496 * The caller must have previously called ext4_reserve_inode_write().
5497 * Give this, we know that the caller already has write access to iloc->bh.
5499 int ext4_mark_iloc_dirty(handle_t *handle,
5500 struct inode *inode, struct ext4_iloc *iloc)
5502 int err = 0;
5504 if (test_opt(inode->i_sb, I_VERSION))
5505 inode_inc_iversion(inode);
5507 /* the do_update_inode consumes one bh->b_count */
5508 get_bh(iloc->bh);
5510 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5511 err = ext4_do_update_inode(handle, inode, iloc);
5512 put_bh(iloc->bh);
5513 return err;
5517 * On success, We end up with an outstanding reference count against
5518 * iloc->bh. This _must_ be cleaned up later.
5522 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5523 struct ext4_iloc *iloc)
5525 int err;
5527 err = ext4_get_inode_loc(inode, iloc);
5528 if (!err) {
5529 BUFFER_TRACE(iloc->bh, "get_write_access");
5530 err = ext4_journal_get_write_access(handle, iloc->bh);
5531 if (err) {
5532 brelse(iloc->bh);
5533 iloc->bh = NULL;
5536 ext4_std_error(inode->i_sb, err);
5537 return err;
5541 * Expand an inode by new_extra_isize bytes.
5542 * Returns 0 on success or negative error number on failure.
5544 static int ext4_expand_extra_isize(struct inode *inode,
5545 unsigned int new_extra_isize,
5546 struct ext4_iloc iloc,
5547 handle_t *handle)
5549 struct ext4_inode *raw_inode;
5550 struct ext4_xattr_ibody_header *header;
5551 struct ext4_xattr_entry *entry;
5553 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5554 return 0;
5556 raw_inode = ext4_raw_inode(&iloc);
5558 header = IHDR(inode, raw_inode);
5559 entry = IFIRST(header);
5561 /* No extended attributes present */
5562 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5563 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5564 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5565 new_extra_isize);
5566 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5567 return 0;
5570 /* try to expand with EAs present */
5571 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5572 raw_inode, handle);
5576 * What we do here is to mark the in-core inode as clean with respect to inode
5577 * dirtiness (it may still be data-dirty).
5578 * This means that the in-core inode may be reaped by prune_icache
5579 * without having to perform any I/O. This is a very good thing,
5580 * because *any* task may call prune_icache - even ones which
5581 * have a transaction open against a different journal.
5583 * Is this cheating? Not really. Sure, we haven't written the
5584 * inode out, but prune_icache isn't a user-visible syncing function.
5585 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5586 * we start and wait on commits.
5588 * Is this efficient/effective? Well, we're being nice to the system
5589 * by cleaning up our inodes proactively so they can be reaped
5590 * without I/O. But we are potentially leaving up to five seconds'
5591 * worth of inodes floating about which prune_icache wants us to
5592 * write out. One way to fix that would be to get prune_icache()
5593 * to do a write_super() to free up some memory. It has the desired
5594 * effect.
5596 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5598 struct ext4_iloc iloc;
5599 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5600 static unsigned int mnt_count;
5601 int err, ret;
5603 might_sleep();
5604 err = ext4_reserve_inode_write(handle, inode, &iloc);
5605 if (ext4_handle_valid(handle) &&
5606 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5607 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5609 * We need extra buffer credits since we may write into EA block
5610 * with this same handle. If journal_extend fails, then it will
5611 * only result in a minor loss of functionality for that inode.
5612 * If this is felt to be critical, then e2fsck should be run to
5613 * force a large enough s_min_extra_isize.
5615 if ((jbd2_journal_extend(handle,
5616 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5617 ret = ext4_expand_extra_isize(inode,
5618 sbi->s_want_extra_isize,
5619 iloc, handle);
5620 if (ret) {
5621 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5622 if (mnt_count !=
5623 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5624 ext4_warning(inode->i_sb, __func__,
5625 "Unable to expand inode %lu. Delete"
5626 " some EAs or run e2fsck.",
5627 inode->i_ino);
5628 mnt_count =
5629 le16_to_cpu(sbi->s_es->s_mnt_count);
5634 if (!err)
5635 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5636 return err;
5640 * ext4_dirty_inode() is called from __mark_inode_dirty()
5642 * We're really interested in the case where a file is being extended.
5643 * i_size has been changed by generic_commit_write() and we thus need
5644 * to include the updated inode in the current transaction.
5646 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5647 * are allocated to the file.
5649 * If the inode is marked synchronous, we don't honour that here - doing
5650 * so would cause a commit on atime updates, which we don't bother doing.
5651 * We handle synchronous inodes at the highest possible level.
5653 void ext4_dirty_inode(struct inode *inode)
5655 handle_t *handle;
5657 handle = ext4_journal_start(inode, 2);
5658 if (IS_ERR(handle))
5659 goto out;
5661 ext4_mark_inode_dirty(handle, inode);
5663 ext4_journal_stop(handle);
5664 out:
5665 return;
5668 #if 0
5670 * Bind an inode's backing buffer_head into this transaction, to prevent
5671 * it from being flushed to disk early. Unlike
5672 * ext4_reserve_inode_write, this leaves behind no bh reference and
5673 * returns no iloc structure, so the caller needs to repeat the iloc
5674 * lookup to mark the inode dirty later.
5676 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5678 struct ext4_iloc iloc;
5680 int err = 0;
5681 if (handle) {
5682 err = ext4_get_inode_loc(inode, &iloc);
5683 if (!err) {
5684 BUFFER_TRACE(iloc.bh, "get_write_access");
5685 err = jbd2_journal_get_write_access(handle, iloc.bh);
5686 if (!err)
5687 err = ext4_handle_dirty_metadata(handle,
5688 inode,
5689 iloc.bh);
5690 brelse(iloc.bh);
5693 ext4_std_error(inode->i_sb, err);
5694 return err;
5696 #endif
5698 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5700 journal_t *journal;
5701 handle_t *handle;
5702 int err;
5705 * We have to be very careful here: changing a data block's
5706 * journaling status dynamically is dangerous. If we write a
5707 * data block to the journal, change the status and then delete
5708 * that block, we risk forgetting to revoke the old log record
5709 * from the journal and so a subsequent replay can corrupt data.
5710 * So, first we make sure that the journal is empty and that
5711 * nobody is changing anything.
5714 journal = EXT4_JOURNAL(inode);
5715 if (!journal)
5716 return 0;
5717 if (is_journal_aborted(journal))
5718 return -EROFS;
5720 jbd2_journal_lock_updates(journal);
5721 jbd2_journal_flush(journal);
5724 * OK, there are no updates running now, and all cached data is
5725 * synced to disk. We are now in a completely consistent state
5726 * which doesn't have anything in the journal, and we know that
5727 * no filesystem updates are running, so it is safe to modify
5728 * the inode's in-core data-journaling state flag now.
5731 if (val)
5732 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5733 else
5734 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5735 ext4_set_aops(inode);
5737 jbd2_journal_unlock_updates(journal);
5739 /* Finally we can mark the inode as dirty. */
5741 handle = ext4_journal_start(inode, 1);
5742 if (IS_ERR(handle))
5743 return PTR_ERR(handle);
5745 err = ext4_mark_inode_dirty(handle, inode);
5746 ext4_handle_sync(handle);
5747 ext4_journal_stop(handle);
5748 ext4_std_error(inode->i_sb, err);
5750 return err;
5753 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5755 return !buffer_mapped(bh);
5758 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5760 struct page *page = vmf->page;
5761 loff_t size;
5762 unsigned long len;
5763 int ret = -EINVAL;
5764 void *fsdata;
5765 struct file *file = vma->vm_file;
5766 struct inode *inode = file->f_path.dentry->d_inode;
5767 struct address_space *mapping = inode->i_mapping;
5770 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5771 * get i_mutex because we are already holding mmap_sem.
5773 down_read(&inode->i_alloc_sem);
5774 size = i_size_read(inode);
5775 if (page->mapping != mapping || size <= page_offset(page)
5776 || !PageUptodate(page)) {
5777 /* page got truncated from under us? */
5778 goto out_unlock;
5780 ret = 0;
5781 if (PageMappedToDisk(page))
5782 goto out_unlock;
5784 if (page->index == size >> PAGE_CACHE_SHIFT)
5785 len = size & ~PAGE_CACHE_MASK;
5786 else
5787 len = PAGE_CACHE_SIZE;
5789 lock_page(page);
5791 * return if we have all the buffers mapped. This avoid
5792 * the need to call write_begin/write_end which does a
5793 * journal_start/journal_stop which can block and take
5794 * long time
5796 if (page_has_buffers(page)) {
5797 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5798 ext4_bh_unmapped)) {
5799 unlock_page(page);
5800 goto out_unlock;
5803 unlock_page(page);
5805 * OK, we need to fill the hole... Do write_begin write_end
5806 * to do block allocation/reservation.We are not holding
5807 * inode.i__mutex here. That allow * parallel write_begin,
5808 * write_end call. lock_page prevent this from happening
5809 * on the same page though
5811 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5812 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5813 if (ret < 0)
5814 goto out_unlock;
5815 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5816 len, len, page, fsdata);
5817 if (ret < 0)
5818 goto out_unlock;
5819 ret = 0;
5820 out_unlock:
5821 if (ret)
5822 ret = VM_FAULT_SIGBUS;
5823 up_read(&inode->i_alloc_sem);
5824 return ret;