usb: added usb-host functionality for MSM devices amd Leo config file
[htc-linux.git] / mm / page_alloc.c
blob7d4406f07d97022c652b9ece0cf5090dc820af3e
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
58 * Array of node states.
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
71 EXPORT_SYMBOL(node_states);
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
82 static void __free_pages_ok(struct page *page, unsigned int order);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
104 #endif
108 EXPORT_SYMBOL(totalram_pages);
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
124 int min_free_kbytes = 1024;
125 int min_free_order_shift = 1;
127 static unsigned long __meminitdata nr_kernel_pages;
128 static unsigned long __meminitdata nr_all_pages;
129 static unsigned long __meminitdata dma_reserve;
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 int nr_online_nodes __read_mostly = 1;
168 EXPORT_SYMBOL(nr_node_ids);
169 EXPORT_SYMBOL(nr_online_nodes);
170 #endif
172 int page_group_by_mobility_disabled __read_mostly;
174 static void set_pageblock_migratetype(struct page *page, int migratetype)
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
184 bool oom_killer_disabled __read_mostly;
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
201 return ret;
204 static int page_is_consistent(struct zone *zone, struct page *page)
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
211 return 1;
214 * Temporary debugging check for pages not lying within a given zone.
216 static int bad_range(struct zone *zone, struct page *page)
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
223 return 0;
225 #else
226 static inline int bad_range(struct zone *zone, struct page *page)
228 return 0;
230 #endif
232 static void bad_page(struct page *page)
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page)) {
240 __ClearPageBuddy(page);
241 return;
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
248 if (nr_shown == 60) {
249 if (time_before(jiffies, resume)) {
250 nr_unshown++;
251 goto out;
253 if (nr_unshown) {
254 printk(KERN_ALERT
255 "BUG: Bad page state: %lu messages suppressed\n",
256 nr_unshown);
257 nr_unshown = 0;
259 nr_shown = 0;
261 if (nr_shown++ == 0)
262 resume = jiffies + 60 * HZ;
264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 printk(KERN_ALERT
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page, (void *)page->flags, page_count(page),
269 page_mapcount(page), page->mapping, page->index);
271 dump_stack();
272 out:
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page);
275 add_taint(TAINT_BAD_PAGE);
279 * Higher-order pages are called "compound pages". They are structured thusly:
281 * The first PAGE_SIZE page is called the "head page".
283 * The remaining PAGE_SIZE pages are called "tail pages".
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
293 static void free_compound_page(struct page *page)
295 __free_pages_ok(page, compound_order(page));
298 void prep_compound_page(struct page *page, unsigned long order)
300 int i;
301 int nr_pages = 1 << order;
303 set_compound_page_dtor(page, free_compound_page);
304 set_compound_order(page, order);
305 __SetPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
309 __SetPageTail(p);
310 p->first_page = page;
314 static int destroy_compound_page(struct page *page, unsigned long order)
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
326 __ClearPageHead(page);
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
335 __ClearPageTail(p);
338 return bad;
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 int i;
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
354 static inline void set_page_order(struct page *page, int order)
356 set_page_private(page, order);
357 __SetPageBuddy(page);
360 static inline void rmv_page_order(struct page *page)
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 unsigned long buddy_idx = page_idx ^ (1 << order);
388 return page + (buddy_idx - page_idx);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
394 return (page_idx & ~(1 << order));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 VM_BUG_ON(page_count(buddy) != 0);
421 return 1;
423 return 0;
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
447 * -- wli
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order,
452 int migratetype)
454 unsigned long page_idx;
456 if (unlikely(PageCompound(page)))
457 if (unlikely(destroy_compound_page(page, order)))
458 return;
460 VM_BUG_ON(migratetype == -1);
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
464 VM_BUG_ON(page_idx & ((1 << order) - 1));
465 VM_BUG_ON(bad_range(zone, page));
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
490 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
492 * free_page_mlock() -- clean up attempts to free and mlocked() page.
493 * Page should not be on lru, so no need to fix that up.
494 * free_pages_check() will verify...
496 static inline void free_page_mlock(struct page *page)
498 __dec_zone_page_state(page, NR_MLOCK);
499 __count_vm_event(UNEVICTABLE_MLOCKFREED);
501 #else
502 static void free_page_mlock(struct page *page) { }
503 #endif
505 static inline int free_pages_check(struct page *page)
507 if (unlikely(page_mapcount(page) |
508 (page->mapping != NULL) |
509 (atomic_read(&page->_count) != 0) |
510 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
511 bad_page(page);
512 return 1;
514 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
515 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
516 return 0;
520 * Frees a number of pages from the PCP lists
521 * Assumes all pages on list are in same zone, and of same order.
522 * count is the number of pages to free.
524 * If the zone was previously in an "all pages pinned" state then look to
525 * see if this freeing clears that state.
527 * And clear the zone's pages_scanned counter, to hold off the "all pages are
528 * pinned" detection logic.
530 static void free_pcppages_bulk(struct zone *zone, int count,
531 struct per_cpu_pages *pcp)
533 int migratetype = 0;
534 int batch_free = 0;
536 spin_lock(&zone->lock);
537 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
538 zone->pages_scanned = 0;
540 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
541 while (count) {
542 struct page *page;
543 struct list_head *list;
546 * Remove pages from lists in a round-robin fashion. A
547 * batch_free count is maintained that is incremented when an
548 * empty list is encountered. This is so more pages are freed
549 * off fuller lists instead of spinning excessively around empty
550 * lists
552 do {
553 batch_free++;
554 if (++migratetype == MIGRATE_PCPTYPES)
555 migratetype = 0;
556 list = &pcp->lists[migratetype];
557 } while (list_empty(list));
559 do {
560 page = list_entry(list->prev, struct page, lru);
561 /* must delete as __free_one_page list manipulates */
562 list_del(&page->lru);
563 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
564 __free_one_page(page, zone, 0, page_private(page));
565 trace_mm_page_pcpu_drain(page, 0, page_private(page));
566 } while (--count && --batch_free && !list_empty(list));
568 spin_unlock(&zone->lock);
571 static void free_one_page(struct zone *zone, struct page *page, int order,
572 int migratetype)
574 spin_lock(&zone->lock);
575 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
576 zone->pages_scanned = 0;
578 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
579 __free_one_page(page, zone, order, migratetype);
580 spin_unlock(&zone->lock);
583 static void __free_pages_ok(struct page *page, unsigned int order)
585 unsigned long flags;
586 int i;
587 int bad = 0;
588 int wasMlocked = __TestClearPageMlocked(page);
590 kmemcheck_free_shadow(page, order);
592 for (i = 0 ; i < (1 << order) ; ++i)
593 bad += free_pages_check(page + i);
594 if (bad)
595 return;
597 if (!PageHighMem(page)) {
598 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
599 debug_check_no_obj_freed(page_address(page),
600 PAGE_SIZE << order);
602 arch_free_page(page, order);
603 kernel_map_pages(page, 1 << order, 0);
605 local_irq_save(flags);
606 if (unlikely(wasMlocked))
607 free_page_mlock(page);
608 __count_vm_events(PGFREE, 1 << order);
609 free_one_page(page_zone(page), page, order,
610 get_pageblock_migratetype(page));
611 local_irq_restore(flags);
615 * permit the bootmem allocator to evade page validation on high-order frees
617 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
619 if (order == 0) {
620 __ClearPageReserved(page);
621 set_page_count(page, 0);
622 set_page_refcounted(page);
623 __free_page(page);
624 } else {
625 int loop;
627 prefetchw(page);
628 for (loop = 0; loop < BITS_PER_LONG; loop++) {
629 struct page *p = &page[loop];
631 if (loop + 1 < BITS_PER_LONG)
632 prefetchw(p + 1);
633 __ClearPageReserved(p);
634 set_page_count(p, 0);
637 set_page_refcounted(page);
638 __free_pages(page, order);
644 * The order of subdivision here is critical for the IO subsystem.
645 * Please do not alter this order without good reasons and regression
646 * testing. Specifically, as large blocks of memory are subdivided,
647 * the order in which smaller blocks are delivered depends on the order
648 * they're subdivided in this function. This is the primary factor
649 * influencing the order in which pages are delivered to the IO
650 * subsystem according to empirical testing, and this is also justified
651 * by considering the behavior of a buddy system containing a single
652 * large block of memory acted on by a series of small allocations.
653 * This behavior is a critical factor in sglist merging's success.
655 * -- wli
657 static inline void expand(struct zone *zone, struct page *page,
658 int low, int high, struct free_area *area,
659 int migratetype)
661 unsigned long size = 1 << high;
663 while (high > low) {
664 area--;
665 high--;
666 size >>= 1;
667 VM_BUG_ON(bad_range(zone, &page[size]));
668 list_add(&page[size].lru, &area->free_list[migratetype]);
669 area->nr_free++;
670 set_page_order(&page[size], high);
675 * This page is about to be returned from the page allocator
677 static inline int check_new_page(struct page *page)
679 if (unlikely(page_mapcount(page) |
680 (page->mapping != NULL) |
681 (atomic_read(&page->_count) != 0) |
682 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
683 bad_page(page);
684 return 1;
686 return 0;
689 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
691 int i;
693 for (i = 0; i < (1 << order); i++) {
694 struct page *p = page + i;
695 if (unlikely(check_new_page(p)))
696 return 1;
699 set_page_private(page, 0);
700 set_page_refcounted(page);
702 arch_alloc_page(page, order);
703 kernel_map_pages(page, 1 << order, 1);
705 if (gfp_flags & __GFP_ZERO)
706 prep_zero_page(page, order, gfp_flags);
708 if (order && (gfp_flags & __GFP_COMP))
709 prep_compound_page(page, order);
711 return 0;
715 * Go through the free lists for the given migratetype and remove
716 * the smallest available page from the freelists
718 static inline
719 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
720 int migratetype)
722 unsigned int current_order;
723 struct free_area * area;
724 struct page *page;
726 /* Find a page of the appropriate size in the preferred list */
727 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
728 area = &(zone->free_area[current_order]);
729 if (list_empty(&area->free_list[migratetype]))
730 continue;
732 page = list_entry(area->free_list[migratetype].next,
733 struct page, lru);
734 list_del(&page->lru);
735 rmv_page_order(page);
736 area->nr_free--;
737 expand(zone, page, order, current_order, area, migratetype);
738 return page;
741 return NULL;
746 * This array describes the order lists are fallen back to when
747 * the free lists for the desirable migrate type are depleted
749 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
750 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
751 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
752 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
753 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
757 * Move the free pages in a range to the free lists of the requested type.
758 * Note that start_page and end_pages are not aligned on a pageblock
759 * boundary. If alignment is required, use move_freepages_block()
761 static int move_freepages(struct zone *zone,
762 struct page *start_page, struct page *end_page,
763 int migratetype)
765 struct page *page;
766 unsigned long order;
767 int pages_moved = 0;
769 #ifndef CONFIG_HOLES_IN_ZONE
771 * page_zone is not safe to call in this context when
772 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
773 * anyway as we check zone boundaries in move_freepages_block().
774 * Remove at a later date when no bug reports exist related to
775 * grouping pages by mobility
777 BUG_ON(page_zone(start_page) != page_zone(end_page));
778 #endif
780 for (page = start_page; page <= end_page;) {
781 /* Make sure we are not inadvertently changing nodes */
782 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
784 if (!pfn_valid_within(page_to_pfn(page))) {
785 page++;
786 continue;
789 if (!PageBuddy(page)) {
790 page++;
791 continue;
794 order = page_order(page);
795 list_del(&page->lru);
796 list_add(&page->lru,
797 &zone->free_area[order].free_list[migratetype]);
798 page += 1 << order;
799 pages_moved += 1 << order;
802 return pages_moved;
805 static int move_freepages_block(struct zone *zone, struct page *page,
806 int migratetype)
808 unsigned long start_pfn, end_pfn;
809 struct page *start_page, *end_page;
811 start_pfn = page_to_pfn(page);
812 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
813 start_page = pfn_to_page(start_pfn);
814 end_page = start_page + pageblock_nr_pages - 1;
815 end_pfn = start_pfn + pageblock_nr_pages - 1;
817 /* Do not cross zone boundaries */
818 if (start_pfn < zone->zone_start_pfn)
819 start_page = page;
820 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
821 return 0;
823 return move_freepages(zone, start_page, end_page, migratetype);
826 static void change_pageblock_range(struct page *pageblock_page,
827 int start_order, int migratetype)
829 int nr_pageblocks = 1 << (start_order - pageblock_order);
831 while (nr_pageblocks--) {
832 set_pageblock_migratetype(pageblock_page, migratetype);
833 pageblock_page += pageblock_nr_pages;
837 /* Remove an element from the buddy allocator from the fallback list */
838 static inline struct page *
839 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
841 struct free_area * area;
842 int current_order;
843 struct page *page;
844 int migratetype, i;
846 /* Find the largest possible block of pages in the other list */
847 for (current_order = MAX_ORDER-1; current_order >= order;
848 --current_order) {
849 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
850 migratetype = fallbacks[start_migratetype][i];
852 /* MIGRATE_RESERVE handled later if necessary */
853 if (migratetype == MIGRATE_RESERVE)
854 continue;
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 area->nr_free--;
865 * If breaking a large block of pages, move all free
866 * pages to the preferred allocation list. If falling
867 * back for a reclaimable kernel allocation, be more
868 * agressive about taking ownership of free pages
870 if (unlikely(current_order >= (pageblock_order >> 1)) ||
871 start_migratetype == MIGRATE_RECLAIMABLE ||
872 page_group_by_mobility_disabled) {
873 unsigned long pages;
874 pages = move_freepages_block(zone, page,
875 start_migratetype);
877 /* Claim the whole block if over half of it is free */
878 if (pages >= (1 << (pageblock_order-1)) ||
879 page_group_by_mobility_disabled)
880 set_pageblock_migratetype(page,
881 start_migratetype);
883 migratetype = start_migratetype;
886 /* Remove the page from the freelists */
887 list_del(&page->lru);
888 rmv_page_order(page);
890 /* Take ownership for orders >= pageblock_order */
891 if (current_order >= pageblock_order)
892 change_pageblock_range(page, current_order,
893 start_migratetype);
895 expand(zone, page, order, current_order, area, migratetype);
897 trace_mm_page_alloc_extfrag(page, order, current_order,
898 start_migratetype, migratetype);
900 return page;
904 return NULL;
908 * Do the hard work of removing an element from the buddy allocator.
909 * Call me with the zone->lock already held.
911 static struct page *__rmqueue(struct zone *zone, unsigned int order,
912 int migratetype)
914 struct page *page;
916 retry_reserve:
917 page = __rmqueue_smallest(zone, order, migratetype);
919 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
920 page = __rmqueue_fallback(zone, order, migratetype);
923 * Use MIGRATE_RESERVE rather than fail an allocation. goto
924 * is used because __rmqueue_smallest is an inline function
925 * and we want just one call site
927 if (!page) {
928 migratetype = MIGRATE_RESERVE;
929 goto retry_reserve;
933 trace_mm_page_alloc_zone_locked(page, order, migratetype);
934 return page;
938 * Obtain a specified number of elements from the buddy allocator, all under
939 * a single hold of the lock, for efficiency. Add them to the supplied list.
940 * Returns the number of new pages which were placed at *list.
942 static int rmqueue_bulk(struct zone *zone, unsigned int order,
943 unsigned long count, struct list_head *list,
944 int migratetype, int cold)
946 int i;
948 spin_lock(&zone->lock);
949 for (i = 0; i < count; ++i) {
950 struct page *page = __rmqueue(zone, order, migratetype);
951 if (unlikely(page == NULL))
952 break;
955 * Split buddy pages returned by expand() are received here
956 * in physical page order. The page is added to the callers and
957 * list and the list head then moves forward. From the callers
958 * perspective, the linked list is ordered by page number in
959 * some conditions. This is useful for IO devices that can
960 * merge IO requests if the physical pages are ordered
961 * properly.
963 if (likely(cold == 0))
964 list_add(&page->lru, list);
965 else
966 list_add_tail(&page->lru, list);
967 set_page_private(page, migratetype);
968 list = &page->lru;
970 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
971 spin_unlock(&zone->lock);
972 return i;
975 #ifdef CONFIG_NUMA
977 * Called from the vmstat counter updater to drain pagesets of this
978 * currently executing processor on remote nodes after they have
979 * expired.
981 * Note that this function must be called with the thread pinned to
982 * a single processor.
984 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
986 unsigned long flags;
987 int to_drain;
989 local_irq_save(flags);
990 if (pcp->count >= pcp->batch)
991 to_drain = pcp->batch;
992 else
993 to_drain = pcp->count;
994 free_pcppages_bulk(zone, to_drain, pcp);
995 pcp->count -= to_drain;
996 local_irq_restore(flags);
998 #endif
1001 * Drain pages of the indicated processor.
1003 * The processor must either be the current processor and the
1004 * thread pinned to the current processor or a processor that
1005 * is not online.
1007 static void drain_pages(unsigned int cpu)
1009 unsigned long flags;
1010 struct zone *zone;
1012 for_each_populated_zone(zone) {
1013 struct per_cpu_pageset *pset;
1014 struct per_cpu_pages *pcp;
1016 pset = zone_pcp(zone, cpu);
1018 pcp = &pset->pcp;
1019 local_irq_save(flags);
1020 free_pcppages_bulk(zone, pcp->count, pcp);
1021 pcp->count = 0;
1022 local_irq_restore(flags);
1027 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1029 void drain_local_pages(void *arg)
1031 drain_pages(smp_processor_id());
1035 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1037 void drain_all_pages(void)
1039 on_each_cpu(drain_local_pages, NULL, 1);
1042 #ifdef CONFIG_HIBERNATION
1044 void mark_free_pages(struct zone *zone)
1046 unsigned long pfn, max_zone_pfn;
1047 unsigned long flags;
1048 int order, t;
1049 struct list_head *curr;
1051 if (!zone->spanned_pages)
1052 return;
1054 spin_lock_irqsave(&zone->lock, flags);
1056 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1057 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1058 if (pfn_valid(pfn)) {
1059 struct page *page = pfn_to_page(pfn);
1061 if (!swsusp_page_is_forbidden(page))
1062 swsusp_unset_page_free(page);
1065 for_each_migratetype_order(order, t) {
1066 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1067 unsigned long i;
1069 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1070 for (i = 0; i < (1UL << order); i++)
1071 swsusp_set_page_free(pfn_to_page(pfn + i));
1074 spin_unlock_irqrestore(&zone->lock, flags);
1076 #endif /* CONFIG_PM */
1079 * Free a 0-order page
1081 static void free_hot_cold_page(struct page *page, int cold)
1083 struct zone *zone = page_zone(page);
1084 struct per_cpu_pages *pcp;
1085 unsigned long flags;
1086 int migratetype;
1087 int wasMlocked = __TestClearPageMlocked(page);
1089 kmemcheck_free_shadow(page, 0);
1091 if (PageAnon(page))
1092 page->mapping = NULL;
1093 if (free_pages_check(page))
1094 return;
1096 if (!PageHighMem(page)) {
1097 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1098 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1100 arch_free_page(page, 0);
1101 kernel_map_pages(page, 1, 0);
1103 pcp = &zone_pcp(zone, get_cpu())->pcp;
1104 migratetype = get_pageblock_migratetype(page);
1105 set_page_private(page, migratetype);
1106 local_irq_save(flags);
1107 if (unlikely(wasMlocked))
1108 free_page_mlock(page);
1109 __count_vm_event(PGFREE);
1112 * We only track unmovable, reclaimable and movable on pcp lists.
1113 * Free ISOLATE pages back to the allocator because they are being
1114 * offlined but treat RESERVE as movable pages so we can get those
1115 * areas back if necessary. Otherwise, we may have to free
1116 * excessively into the page allocator
1118 if (migratetype >= MIGRATE_PCPTYPES) {
1119 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1120 free_one_page(zone, page, 0, migratetype);
1121 goto out;
1123 migratetype = MIGRATE_MOVABLE;
1126 if (cold)
1127 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1128 else
1129 list_add(&page->lru, &pcp->lists[migratetype]);
1130 pcp->count++;
1131 if (pcp->count >= pcp->high) {
1132 free_pcppages_bulk(zone, pcp->batch, pcp);
1133 pcp->count -= pcp->batch;
1136 out:
1137 local_irq_restore(flags);
1138 put_cpu();
1141 void free_hot_page(struct page *page)
1143 trace_mm_page_free_direct(page, 0);
1144 free_hot_cold_page(page, 0);
1148 * split_page takes a non-compound higher-order page, and splits it into
1149 * n (1<<order) sub-pages: page[0..n]
1150 * Each sub-page must be freed individually.
1152 * Note: this is probably too low level an operation for use in drivers.
1153 * Please consult with lkml before using this in your driver.
1155 void split_page(struct page *page, unsigned int order)
1157 int i;
1159 VM_BUG_ON(PageCompound(page));
1160 VM_BUG_ON(!page_count(page));
1162 #ifdef CONFIG_KMEMCHECK
1164 * Split shadow pages too, because free(page[0]) would
1165 * otherwise free the whole shadow.
1167 if (kmemcheck_page_is_tracked(page))
1168 split_page(virt_to_page(page[0].shadow), order);
1169 #endif
1171 for (i = 1; i < (1 << order); i++)
1172 set_page_refcounted(page + i);
1176 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1177 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1178 * or two.
1180 static inline
1181 struct page *buffered_rmqueue(struct zone *preferred_zone,
1182 struct zone *zone, int order, gfp_t gfp_flags,
1183 int migratetype)
1185 unsigned long flags;
1186 struct page *page;
1187 int cold = !!(gfp_flags & __GFP_COLD);
1188 int cpu;
1190 again:
1191 cpu = get_cpu();
1192 if (likely(order == 0)) {
1193 struct per_cpu_pages *pcp;
1194 struct list_head *list;
1196 pcp = &zone_pcp(zone, cpu)->pcp;
1197 list = &pcp->lists[migratetype];
1198 local_irq_save(flags);
1199 if (list_empty(list)) {
1200 pcp->count += rmqueue_bulk(zone, 0,
1201 pcp->batch, list,
1202 migratetype, cold);
1203 if (unlikely(list_empty(list)))
1204 goto failed;
1207 if (cold)
1208 page = list_entry(list->prev, struct page, lru);
1209 else
1210 page = list_entry(list->next, struct page, lru);
1212 list_del(&page->lru);
1213 pcp->count--;
1214 } else {
1215 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1217 * __GFP_NOFAIL is not to be used in new code.
1219 * All __GFP_NOFAIL callers should be fixed so that they
1220 * properly detect and handle allocation failures.
1222 * We most definitely don't want callers attempting to
1223 * allocate greater than order-1 page units with
1224 * __GFP_NOFAIL.
1226 WARN_ON_ONCE(order > 1);
1228 spin_lock_irqsave(&zone->lock, flags);
1229 page = __rmqueue(zone, order, migratetype);
1230 spin_unlock(&zone->lock);
1231 if (!page)
1232 goto failed;
1233 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1236 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1237 zone_statistics(preferred_zone, zone);
1238 local_irq_restore(flags);
1239 put_cpu();
1241 VM_BUG_ON(bad_range(zone, page));
1242 if (prep_new_page(page, order, gfp_flags))
1243 goto again;
1244 return page;
1246 failed:
1247 local_irq_restore(flags);
1248 put_cpu();
1249 return NULL;
1252 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1253 #define ALLOC_WMARK_MIN WMARK_MIN
1254 #define ALLOC_WMARK_LOW WMARK_LOW
1255 #define ALLOC_WMARK_HIGH WMARK_HIGH
1256 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1258 /* Mask to get the watermark bits */
1259 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1261 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1262 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1263 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1265 #ifdef CONFIG_FAIL_PAGE_ALLOC
1267 static struct fail_page_alloc_attr {
1268 struct fault_attr attr;
1270 u32 ignore_gfp_highmem;
1271 u32 ignore_gfp_wait;
1272 u32 min_order;
1274 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1276 struct dentry *ignore_gfp_highmem_file;
1277 struct dentry *ignore_gfp_wait_file;
1278 struct dentry *min_order_file;
1280 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1282 } fail_page_alloc = {
1283 .attr = FAULT_ATTR_INITIALIZER,
1284 .ignore_gfp_wait = 1,
1285 .ignore_gfp_highmem = 1,
1286 .min_order = 1,
1289 static int __init setup_fail_page_alloc(char *str)
1291 return setup_fault_attr(&fail_page_alloc.attr, str);
1293 __setup("fail_page_alloc=", setup_fail_page_alloc);
1295 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1297 if (order < fail_page_alloc.min_order)
1298 return 0;
1299 if (gfp_mask & __GFP_NOFAIL)
1300 return 0;
1301 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1302 return 0;
1303 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1304 return 0;
1306 return should_fail(&fail_page_alloc.attr, 1 << order);
1309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1311 static int __init fail_page_alloc_debugfs(void)
1313 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1314 struct dentry *dir;
1315 int err;
1317 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1318 "fail_page_alloc");
1319 if (err)
1320 return err;
1321 dir = fail_page_alloc.attr.dentries.dir;
1323 fail_page_alloc.ignore_gfp_wait_file =
1324 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1325 &fail_page_alloc.ignore_gfp_wait);
1327 fail_page_alloc.ignore_gfp_highmem_file =
1328 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1329 &fail_page_alloc.ignore_gfp_highmem);
1330 fail_page_alloc.min_order_file =
1331 debugfs_create_u32("min-order", mode, dir,
1332 &fail_page_alloc.min_order);
1334 if (!fail_page_alloc.ignore_gfp_wait_file ||
1335 !fail_page_alloc.ignore_gfp_highmem_file ||
1336 !fail_page_alloc.min_order_file) {
1337 err = -ENOMEM;
1338 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1339 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1340 debugfs_remove(fail_page_alloc.min_order_file);
1341 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1344 return err;
1347 late_initcall(fail_page_alloc_debugfs);
1349 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1351 #else /* CONFIG_FAIL_PAGE_ALLOC */
1353 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1355 return 0;
1358 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1361 * Return 1 if free pages are above 'mark'. This takes into account the order
1362 * of the allocation.
1364 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1365 int classzone_idx, int alloc_flags)
1367 /* free_pages my go negative - that's OK */
1368 long min = mark;
1369 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1370 int o;
1372 if (alloc_flags & ALLOC_HIGH)
1373 min -= min / 2;
1374 if (alloc_flags & ALLOC_HARDER)
1375 min -= min / 4;
1377 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1378 return 0;
1379 for (o = 0; o < order; o++) {
1380 /* At the next order, this order's pages become unavailable */
1381 free_pages -= z->free_area[o].nr_free << o;
1383 /* Require fewer higher order pages to be free */
1384 min >>= min_free_order_shift;
1386 if (free_pages <= min)
1387 return 0;
1389 return 1;
1392 #ifdef CONFIG_NUMA
1394 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1395 * skip over zones that are not allowed by the cpuset, or that have
1396 * been recently (in last second) found to be nearly full. See further
1397 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1398 * that have to skip over a lot of full or unallowed zones.
1400 * If the zonelist cache is present in the passed in zonelist, then
1401 * returns a pointer to the allowed node mask (either the current
1402 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1404 * If the zonelist cache is not available for this zonelist, does
1405 * nothing and returns NULL.
1407 * If the fullzones BITMAP in the zonelist cache is stale (more than
1408 * a second since last zap'd) then we zap it out (clear its bits.)
1410 * We hold off even calling zlc_setup, until after we've checked the
1411 * first zone in the zonelist, on the theory that most allocations will
1412 * be satisfied from that first zone, so best to examine that zone as
1413 * quickly as we can.
1415 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1417 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1418 nodemask_t *allowednodes; /* zonelist_cache approximation */
1420 zlc = zonelist->zlcache_ptr;
1421 if (!zlc)
1422 return NULL;
1424 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1425 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1426 zlc->last_full_zap = jiffies;
1429 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1430 &cpuset_current_mems_allowed :
1431 &node_states[N_HIGH_MEMORY];
1432 return allowednodes;
1436 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1437 * if it is worth looking at further for free memory:
1438 * 1) Check that the zone isn't thought to be full (doesn't have its
1439 * bit set in the zonelist_cache fullzones BITMAP).
1440 * 2) Check that the zones node (obtained from the zonelist_cache
1441 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1442 * Return true (non-zero) if zone is worth looking at further, or
1443 * else return false (zero) if it is not.
1445 * This check -ignores- the distinction between various watermarks,
1446 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1447 * found to be full for any variation of these watermarks, it will
1448 * be considered full for up to one second by all requests, unless
1449 * we are so low on memory on all allowed nodes that we are forced
1450 * into the second scan of the zonelist.
1452 * In the second scan we ignore this zonelist cache and exactly
1453 * apply the watermarks to all zones, even it is slower to do so.
1454 * We are low on memory in the second scan, and should leave no stone
1455 * unturned looking for a free page.
1457 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1458 nodemask_t *allowednodes)
1460 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1461 int i; /* index of *z in zonelist zones */
1462 int n; /* node that zone *z is on */
1464 zlc = zonelist->zlcache_ptr;
1465 if (!zlc)
1466 return 1;
1468 i = z - zonelist->_zonerefs;
1469 n = zlc->z_to_n[i];
1471 /* This zone is worth trying if it is allowed but not full */
1472 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1476 * Given 'z' scanning a zonelist, set the corresponding bit in
1477 * zlc->fullzones, so that subsequent attempts to allocate a page
1478 * from that zone don't waste time re-examining it.
1480 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1482 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1483 int i; /* index of *z in zonelist zones */
1485 zlc = zonelist->zlcache_ptr;
1486 if (!zlc)
1487 return;
1489 i = z - zonelist->_zonerefs;
1491 set_bit(i, zlc->fullzones);
1494 #else /* CONFIG_NUMA */
1496 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1498 return NULL;
1501 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1502 nodemask_t *allowednodes)
1504 return 1;
1507 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1510 #endif /* CONFIG_NUMA */
1513 * get_page_from_freelist goes through the zonelist trying to allocate
1514 * a page.
1516 static struct page *
1517 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1518 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1519 struct zone *preferred_zone, int migratetype)
1521 struct zoneref *z;
1522 struct page *page = NULL;
1523 int classzone_idx;
1524 struct zone *zone;
1525 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1526 int zlc_active = 0; /* set if using zonelist_cache */
1527 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1529 classzone_idx = zone_idx(preferred_zone);
1530 zonelist_scan:
1532 * Scan zonelist, looking for a zone with enough free.
1533 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1536 high_zoneidx, nodemask) {
1537 if (NUMA_BUILD && zlc_active &&
1538 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1539 continue;
1540 if ((alloc_flags & ALLOC_CPUSET) &&
1541 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1542 goto try_next_zone;
1544 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1545 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1546 unsigned long mark;
1547 int ret;
1549 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1550 if (zone_watermark_ok(zone, order, mark,
1551 classzone_idx, alloc_flags))
1552 goto try_this_zone;
1554 if (zone_reclaim_mode == 0)
1555 goto this_zone_full;
1557 ret = zone_reclaim(zone, gfp_mask, order);
1558 switch (ret) {
1559 case ZONE_RECLAIM_NOSCAN:
1560 /* did not scan */
1561 goto try_next_zone;
1562 case ZONE_RECLAIM_FULL:
1563 /* scanned but unreclaimable */
1564 goto this_zone_full;
1565 default:
1566 /* did we reclaim enough */
1567 if (!zone_watermark_ok(zone, order, mark,
1568 classzone_idx, alloc_flags))
1569 goto this_zone_full;
1573 try_this_zone:
1574 page = buffered_rmqueue(preferred_zone, zone, order,
1575 gfp_mask, migratetype);
1576 if (page)
1577 break;
1578 this_zone_full:
1579 if (NUMA_BUILD)
1580 zlc_mark_zone_full(zonelist, z);
1581 try_next_zone:
1582 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1584 * we do zlc_setup after the first zone is tried but only
1585 * if there are multiple nodes make it worthwhile
1587 allowednodes = zlc_setup(zonelist, alloc_flags);
1588 zlc_active = 1;
1589 did_zlc_setup = 1;
1593 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1594 /* Disable zlc cache for second zonelist scan */
1595 zlc_active = 0;
1596 goto zonelist_scan;
1598 return page;
1601 static inline int
1602 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1603 unsigned long pages_reclaimed)
1605 /* Do not loop if specifically requested */
1606 if (gfp_mask & __GFP_NORETRY)
1607 return 0;
1610 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1611 * means __GFP_NOFAIL, but that may not be true in other
1612 * implementations.
1614 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1615 return 1;
1618 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1619 * specified, then we retry until we no longer reclaim any pages
1620 * (above), or we've reclaimed an order of pages at least as
1621 * large as the allocation's order. In both cases, if the
1622 * allocation still fails, we stop retrying.
1624 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1625 return 1;
1628 * Don't let big-order allocations loop unless the caller
1629 * explicitly requests that.
1631 if (gfp_mask & __GFP_NOFAIL)
1632 return 1;
1634 return 0;
1637 static inline struct page *
1638 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1639 struct zonelist *zonelist, enum zone_type high_zoneidx,
1640 nodemask_t *nodemask, struct zone *preferred_zone,
1641 int migratetype)
1643 struct page *page;
1645 /* Acquire the OOM killer lock for the zones in zonelist */
1646 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1647 schedule_timeout_uninterruptible(1);
1648 return NULL;
1652 * Go through the zonelist yet one more time, keep very high watermark
1653 * here, this is only to catch a parallel oom killing, we must fail if
1654 * we're still under heavy pressure.
1656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1657 order, zonelist, high_zoneidx,
1658 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1659 preferred_zone, migratetype);
1660 if (page)
1661 goto out;
1663 /* The OOM killer will not help higher order allocs */
1664 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1665 goto out;
1667 /* Exhausted what can be done so it's blamo time */
1668 out_of_memory(zonelist, gfp_mask, order);
1670 out:
1671 clear_zonelist_oom(zonelist, gfp_mask);
1672 return page;
1675 /* The really slow allocator path where we enter direct reclaim */
1676 static inline struct page *
1677 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1678 struct zonelist *zonelist, enum zone_type high_zoneidx,
1679 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1680 int migratetype, unsigned long *did_some_progress)
1682 struct page *page = NULL;
1683 struct reclaim_state reclaim_state;
1684 struct task_struct *p = current;
1686 cond_resched();
1688 /* We now go into synchronous reclaim */
1689 cpuset_memory_pressure_bump();
1690 p->flags |= PF_MEMALLOC;
1691 lockdep_set_current_reclaim_state(gfp_mask);
1692 reclaim_state.reclaimed_slab = 0;
1693 p->reclaim_state = &reclaim_state;
1695 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1697 p->reclaim_state = NULL;
1698 lockdep_clear_current_reclaim_state();
1699 p->flags &= ~PF_MEMALLOC;
1701 cond_resched();
1703 if (order != 0)
1704 drain_all_pages();
1706 if (likely(*did_some_progress))
1707 page = get_page_from_freelist(gfp_mask, nodemask, order,
1708 zonelist, high_zoneidx,
1709 alloc_flags, preferred_zone,
1710 migratetype);
1711 return page;
1715 * This is called in the allocator slow-path if the allocation request is of
1716 * sufficient urgency to ignore watermarks and take other desperate measures
1718 static inline struct page *
1719 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1720 struct zonelist *zonelist, enum zone_type high_zoneidx,
1721 nodemask_t *nodemask, struct zone *preferred_zone,
1722 int migratetype)
1724 struct page *page;
1726 do {
1727 page = get_page_from_freelist(gfp_mask, nodemask, order,
1728 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1729 preferred_zone, migratetype);
1731 if (!page && gfp_mask & __GFP_NOFAIL)
1732 congestion_wait(BLK_RW_ASYNC, HZ/50);
1733 } while (!page && (gfp_mask & __GFP_NOFAIL));
1735 return page;
1738 static inline
1739 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1740 enum zone_type high_zoneidx)
1742 struct zoneref *z;
1743 struct zone *zone;
1745 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1746 wakeup_kswapd(zone, order);
1749 static inline int
1750 gfp_to_alloc_flags(gfp_t gfp_mask)
1752 struct task_struct *p = current;
1753 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1754 const gfp_t wait = gfp_mask & __GFP_WAIT;
1756 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1757 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1760 * The caller may dip into page reserves a bit more if the caller
1761 * cannot run direct reclaim, or if the caller has realtime scheduling
1762 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1763 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1765 alloc_flags |= (gfp_mask & __GFP_HIGH);
1767 if (!wait) {
1768 alloc_flags |= ALLOC_HARDER;
1770 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1771 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1773 alloc_flags &= ~ALLOC_CPUSET;
1774 } else if (unlikely(rt_task(p)) && !in_interrupt())
1775 alloc_flags |= ALLOC_HARDER;
1777 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1778 if (!in_interrupt() &&
1779 ((p->flags & PF_MEMALLOC) ||
1780 unlikely(test_thread_flag(TIF_MEMDIE))))
1781 alloc_flags |= ALLOC_NO_WATERMARKS;
1784 return alloc_flags;
1787 static inline struct page *
1788 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1789 struct zonelist *zonelist, enum zone_type high_zoneidx,
1790 nodemask_t *nodemask, struct zone *preferred_zone,
1791 int migratetype)
1793 const gfp_t wait = gfp_mask & __GFP_WAIT;
1794 struct page *page = NULL;
1795 int alloc_flags;
1796 unsigned long pages_reclaimed = 0;
1797 unsigned long did_some_progress;
1798 struct task_struct *p = current;
1801 * In the slowpath, we sanity check order to avoid ever trying to
1802 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1803 * be using allocators in order of preference for an area that is
1804 * too large.
1806 if (order >= MAX_ORDER) {
1807 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1808 return NULL;
1812 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1813 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1814 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1815 * using a larger set of nodes after it has established that the
1816 * allowed per node queues are empty and that nodes are
1817 * over allocated.
1819 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1820 goto nopage;
1822 restart:
1823 wake_all_kswapd(order, zonelist, high_zoneidx);
1826 * OK, we're below the kswapd watermark and have kicked background
1827 * reclaim. Now things get more complex, so set up alloc_flags according
1828 * to how we want to proceed.
1830 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1832 /* This is the last chance, in general, before the goto nopage. */
1833 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1834 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1835 preferred_zone, migratetype);
1836 if (page)
1837 goto got_pg;
1839 rebalance:
1840 /* Allocate without watermarks if the context allows */
1841 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1842 page = __alloc_pages_high_priority(gfp_mask, order,
1843 zonelist, high_zoneidx, nodemask,
1844 preferred_zone, migratetype);
1845 if (page)
1846 goto got_pg;
1849 /* Atomic allocations - we can't balance anything */
1850 if (!wait)
1851 goto nopage;
1853 /* Avoid recursion of direct reclaim */
1854 if (p->flags & PF_MEMALLOC)
1855 goto nopage;
1857 /* Avoid allocations with no watermarks from looping endlessly */
1858 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1859 goto nopage;
1861 /* Try direct reclaim and then allocating */
1862 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1863 zonelist, high_zoneidx,
1864 nodemask,
1865 alloc_flags, preferred_zone,
1866 migratetype, &did_some_progress);
1867 if (page)
1868 goto got_pg;
1871 * If we failed to make any progress reclaiming, then we are
1872 * running out of options and have to consider going OOM
1874 if (!did_some_progress) {
1875 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1876 if (oom_killer_disabled)
1877 goto nopage;
1878 page = __alloc_pages_may_oom(gfp_mask, order,
1879 zonelist, high_zoneidx,
1880 nodemask, preferred_zone,
1881 migratetype);
1882 if (page)
1883 goto got_pg;
1886 * The OOM killer does not trigger for high-order
1887 * ~__GFP_NOFAIL allocations so if no progress is being
1888 * made, there are no other options and retrying is
1889 * unlikely to help.
1891 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1892 !(gfp_mask & __GFP_NOFAIL))
1893 goto nopage;
1895 goto restart;
1899 /* Check if we should retry the allocation */
1900 pages_reclaimed += did_some_progress;
1901 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1902 /* Wait for some write requests to complete then retry */
1903 congestion_wait(BLK_RW_ASYNC, HZ/50);
1904 goto rebalance;
1907 nopage:
1908 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1909 printk(KERN_WARNING "%s: page allocation failure."
1910 " order:%d, mode:0x%x\n",
1911 p->comm, order, gfp_mask);
1912 dump_stack();
1913 show_mem();
1915 return page;
1916 got_pg:
1917 if (kmemcheck_enabled)
1918 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1919 return page;
1924 * This is the 'heart' of the zoned buddy allocator.
1926 struct page *
1927 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1928 struct zonelist *zonelist, nodemask_t *nodemask)
1930 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1931 struct zone *preferred_zone;
1932 struct page *page;
1933 int migratetype = allocflags_to_migratetype(gfp_mask);
1935 gfp_mask &= gfp_allowed_mask;
1937 lockdep_trace_alloc(gfp_mask);
1939 might_sleep_if(gfp_mask & __GFP_WAIT);
1941 if (should_fail_alloc_page(gfp_mask, order))
1942 return NULL;
1945 * Check the zones suitable for the gfp_mask contain at least one
1946 * valid zone. It's possible to have an empty zonelist as a result
1947 * of GFP_THISNODE and a memoryless node
1949 if (unlikely(!zonelist->_zonerefs->zone))
1950 return NULL;
1952 /* The preferred zone is used for statistics later */
1953 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1954 if (!preferred_zone)
1955 return NULL;
1957 /* First allocation attempt */
1958 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1959 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1960 preferred_zone, migratetype);
1961 if (unlikely(!page))
1962 page = __alloc_pages_slowpath(gfp_mask, order,
1963 zonelist, high_zoneidx, nodemask,
1964 preferred_zone, migratetype);
1966 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1967 return page;
1969 EXPORT_SYMBOL(__alloc_pages_nodemask);
1972 * Common helper functions.
1974 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1976 struct page *page;
1979 * __get_free_pages() returns a 32-bit address, which cannot represent
1980 * a highmem page
1982 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1984 page = alloc_pages(gfp_mask, order);
1985 if (!page)
1986 return 0;
1987 return (unsigned long) page_address(page);
1989 EXPORT_SYMBOL(__get_free_pages);
1991 unsigned long get_zeroed_page(gfp_t gfp_mask)
1993 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1995 EXPORT_SYMBOL(get_zeroed_page);
1997 void __pagevec_free(struct pagevec *pvec)
1999 int i = pagevec_count(pvec);
2001 while (--i >= 0) {
2002 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2003 free_hot_cold_page(pvec->pages[i], pvec->cold);
2007 void __free_pages(struct page *page, unsigned int order)
2009 if (put_page_testzero(page)) {
2010 trace_mm_page_free_direct(page, order);
2011 if (order == 0)
2012 free_hot_page(page);
2013 else
2014 __free_pages_ok(page, order);
2018 EXPORT_SYMBOL(__free_pages);
2020 void free_pages(unsigned long addr, unsigned int order)
2022 if (addr != 0) {
2023 VM_BUG_ON(!virt_addr_valid((void *)addr));
2024 __free_pages(virt_to_page((void *)addr), order);
2028 EXPORT_SYMBOL(free_pages);
2031 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2032 * @size: the number of bytes to allocate
2033 * @gfp_mask: GFP flags for the allocation
2035 * This function is similar to alloc_pages(), except that it allocates the
2036 * minimum number of pages to satisfy the request. alloc_pages() can only
2037 * allocate memory in power-of-two pages.
2039 * This function is also limited by MAX_ORDER.
2041 * Memory allocated by this function must be released by free_pages_exact().
2043 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2045 unsigned int order = get_order(size);
2046 unsigned long addr;
2048 addr = __get_free_pages(gfp_mask, order);
2049 if (addr) {
2050 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2051 unsigned long used = addr + PAGE_ALIGN(size);
2053 split_page(virt_to_page((void *)addr), order);
2054 while (used < alloc_end) {
2055 free_page(used);
2056 used += PAGE_SIZE;
2060 return (void *)addr;
2062 EXPORT_SYMBOL(alloc_pages_exact);
2065 * free_pages_exact - release memory allocated via alloc_pages_exact()
2066 * @virt: the value returned by alloc_pages_exact.
2067 * @size: size of allocation, same value as passed to alloc_pages_exact().
2069 * Release the memory allocated by a previous call to alloc_pages_exact.
2071 void free_pages_exact(void *virt, size_t size)
2073 unsigned long addr = (unsigned long)virt;
2074 unsigned long end = addr + PAGE_ALIGN(size);
2076 while (addr < end) {
2077 free_page(addr);
2078 addr += PAGE_SIZE;
2081 EXPORT_SYMBOL(free_pages_exact);
2083 static unsigned int nr_free_zone_pages(int offset)
2085 struct zoneref *z;
2086 struct zone *zone;
2088 /* Just pick one node, since fallback list is circular */
2089 unsigned int sum = 0;
2091 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2093 for_each_zone_zonelist(zone, z, zonelist, offset) {
2094 unsigned long size = zone->present_pages;
2095 unsigned long high = high_wmark_pages(zone);
2096 if (size > high)
2097 sum += size - high;
2100 return sum;
2104 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2106 unsigned int nr_free_buffer_pages(void)
2108 return nr_free_zone_pages(gfp_zone(GFP_USER));
2110 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2113 * Amount of free RAM allocatable within all zones
2115 unsigned int nr_free_pagecache_pages(void)
2117 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2120 static inline void show_node(struct zone *zone)
2122 if (NUMA_BUILD)
2123 printk("Node %d ", zone_to_nid(zone));
2126 void si_meminfo(struct sysinfo *val)
2128 val->totalram = totalram_pages;
2129 val->sharedram = 0;
2130 val->freeram = global_page_state(NR_FREE_PAGES);
2131 val->bufferram = nr_blockdev_pages();
2132 val->totalhigh = totalhigh_pages;
2133 val->freehigh = nr_free_highpages();
2134 val->mem_unit = PAGE_SIZE;
2137 EXPORT_SYMBOL(si_meminfo);
2139 #ifdef CONFIG_NUMA
2140 void si_meminfo_node(struct sysinfo *val, int nid)
2142 pg_data_t *pgdat = NODE_DATA(nid);
2144 val->totalram = pgdat->node_present_pages;
2145 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2146 #ifdef CONFIG_HIGHMEM
2147 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2148 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2149 NR_FREE_PAGES);
2150 #else
2151 val->totalhigh = 0;
2152 val->freehigh = 0;
2153 #endif
2154 val->mem_unit = PAGE_SIZE;
2156 #endif
2158 #define K(x) ((x) << (PAGE_SHIFT-10))
2161 * Show free area list (used inside shift_scroll-lock stuff)
2162 * We also calculate the percentage fragmentation. We do this by counting the
2163 * memory on each free list with the exception of the first item on the list.
2165 void show_free_areas(void)
2167 int cpu;
2168 struct zone *zone;
2170 for_each_populated_zone(zone) {
2171 show_node(zone);
2172 printk("%s per-cpu:\n", zone->name);
2174 for_each_online_cpu(cpu) {
2175 struct per_cpu_pageset *pageset;
2177 pageset = zone_pcp(zone, cpu);
2179 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2180 cpu, pageset->pcp.high,
2181 pageset->pcp.batch, pageset->pcp.count);
2185 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2186 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2187 " unevictable:%lu"
2188 " dirty:%lu writeback:%lu unstable:%lu\n"
2189 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2190 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2191 global_page_state(NR_ACTIVE_ANON),
2192 global_page_state(NR_INACTIVE_ANON),
2193 global_page_state(NR_ISOLATED_ANON),
2194 global_page_state(NR_ACTIVE_FILE),
2195 global_page_state(NR_INACTIVE_FILE),
2196 global_page_state(NR_ISOLATED_FILE),
2197 global_page_state(NR_UNEVICTABLE),
2198 global_page_state(NR_FILE_DIRTY),
2199 global_page_state(NR_WRITEBACK),
2200 global_page_state(NR_UNSTABLE_NFS),
2201 global_page_state(NR_FREE_PAGES),
2202 global_page_state(NR_SLAB_RECLAIMABLE),
2203 global_page_state(NR_SLAB_UNRECLAIMABLE),
2204 global_page_state(NR_FILE_MAPPED),
2205 global_page_state(NR_SHMEM),
2206 global_page_state(NR_PAGETABLE),
2207 global_page_state(NR_BOUNCE));
2209 for_each_populated_zone(zone) {
2210 int i;
2212 show_node(zone);
2213 printk("%s"
2214 " free:%lukB"
2215 " min:%lukB"
2216 " low:%lukB"
2217 " high:%lukB"
2218 " active_anon:%lukB"
2219 " inactive_anon:%lukB"
2220 " active_file:%lukB"
2221 " inactive_file:%lukB"
2222 " unevictable:%lukB"
2223 " isolated(anon):%lukB"
2224 " isolated(file):%lukB"
2225 " present:%lukB"
2226 " mlocked:%lukB"
2227 " dirty:%lukB"
2228 " writeback:%lukB"
2229 " mapped:%lukB"
2230 " shmem:%lukB"
2231 " slab_reclaimable:%lukB"
2232 " slab_unreclaimable:%lukB"
2233 " kernel_stack:%lukB"
2234 " pagetables:%lukB"
2235 " unstable:%lukB"
2236 " bounce:%lukB"
2237 " writeback_tmp:%lukB"
2238 " pages_scanned:%lu"
2239 " all_unreclaimable? %s"
2240 "\n",
2241 zone->name,
2242 K(zone_page_state(zone, NR_FREE_PAGES)),
2243 K(min_wmark_pages(zone)),
2244 K(low_wmark_pages(zone)),
2245 K(high_wmark_pages(zone)),
2246 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2247 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2248 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2249 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2250 K(zone_page_state(zone, NR_UNEVICTABLE)),
2251 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2252 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2253 K(zone->present_pages),
2254 K(zone_page_state(zone, NR_MLOCK)),
2255 K(zone_page_state(zone, NR_FILE_DIRTY)),
2256 K(zone_page_state(zone, NR_WRITEBACK)),
2257 K(zone_page_state(zone, NR_FILE_MAPPED)),
2258 K(zone_page_state(zone, NR_SHMEM)),
2259 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2260 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2261 zone_page_state(zone, NR_KERNEL_STACK) *
2262 THREAD_SIZE / 1024,
2263 K(zone_page_state(zone, NR_PAGETABLE)),
2264 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2265 K(zone_page_state(zone, NR_BOUNCE)),
2266 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2267 zone->pages_scanned,
2268 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2270 printk("lowmem_reserve[]:");
2271 for (i = 0; i < MAX_NR_ZONES; i++)
2272 printk(" %lu", zone->lowmem_reserve[i]);
2273 printk("\n");
2276 for_each_populated_zone(zone) {
2277 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2279 show_node(zone);
2280 printk("%s: ", zone->name);
2282 spin_lock_irqsave(&zone->lock, flags);
2283 for (order = 0; order < MAX_ORDER; order++) {
2284 nr[order] = zone->free_area[order].nr_free;
2285 total += nr[order] << order;
2287 spin_unlock_irqrestore(&zone->lock, flags);
2288 for (order = 0; order < MAX_ORDER; order++)
2289 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2290 printk("= %lukB\n", K(total));
2293 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2295 show_swap_cache_info();
2298 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2300 zoneref->zone = zone;
2301 zoneref->zone_idx = zone_idx(zone);
2305 * Builds allocation fallback zone lists.
2307 * Add all populated zones of a node to the zonelist.
2309 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2310 int nr_zones, enum zone_type zone_type)
2312 struct zone *zone;
2314 BUG_ON(zone_type >= MAX_NR_ZONES);
2315 zone_type++;
2317 do {
2318 zone_type--;
2319 zone = pgdat->node_zones + zone_type;
2320 if (populated_zone(zone)) {
2321 zoneref_set_zone(zone,
2322 &zonelist->_zonerefs[nr_zones++]);
2323 check_highest_zone(zone_type);
2326 } while (zone_type);
2327 return nr_zones;
2332 * zonelist_order:
2333 * 0 = automatic detection of better ordering.
2334 * 1 = order by ([node] distance, -zonetype)
2335 * 2 = order by (-zonetype, [node] distance)
2337 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2338 * the same zonelist. So only NUMA can configure this param.
2340 #define ZONELIST_ORDER_DEFAULT 0
2341 #define ZONELIST_ORDER_NODE 1
2342 #define ZONELIST_ORDER_ZONE 2
2344 /* zonelist order in the kernel.
2345 * set_zonelist_order() will set this to NODE or ZONE.
2347 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2348 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2351 #ifdef CONFIG_NUMA
2352 /* The value user specified ....changed by config */
2353 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2354 /* string for sysctl */
2355 #define NUMA_ZONELIST_ORDER_LEN 16
2356 char numa_zonelist_order[16] = "default";
2359 * interface for configure zonelist ordering.
2360 * command line option "numa_zonelist_order"
2361 * = "[dD]efault - default, automatic configuration.
2362 * = "[nN]ode - order by node locality, then by zone within node
2363 * = "[zZ]one - order by zone, then by locality within zone
2366 static int __parse_numa_zonelist_order(char *s)
2368 if (*s == 'd' || *s == 'D') {
2369 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2370 } else if (*s == 'n' || *s == 'N') {
2371 user_zonelist_order = ZONELIST_ORDER_NODE;
2372 } else if (*s == 'z' || *s == 'Z') {
2373 user_zonelist_order = ZONELIST_ORDER_ZONE;
2374 } else {
2375 printk(KERN_WARNING
2376 "Ignoring invalid numa_zonelist_order value: "
2377 "%s\n", s);
2378 return -EINVAL;
2380 return 0;
2383 static __init int setup_numa_zonelist_order(char *s)
2385 if (s)
2386 return __parse_numa_zonelist_order(s);
2387 return 0;
2389 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2392 * sysctl handler for numa_zonelist_order
2394 int numa_zonelist_order_handler(ctl_table *table, int write,
2395 void __user *buffer, size_t *length,
2396 loff_t *ppos)
2398 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2399 int ret;
2401 if (write)
2402 strncpy(saved_string, (char*)table->data,
2403 NUMA_ZONELIST_ORDER_LEN);
2404 ret = proc_dostring(table, write, buffer, length, ppos);
2405 if (ret)
2406 return ret;
2407 if (write) {
2408 int oldval = user_zonelist_order;
2409 if (__parse_numa_zonelist_order((char*)table->data)) {
2411 * bogus value. restore saved string
2413 strncpy((char*)table->data, saved_string,
2414 NUMA_ZONELIST_ORDER_LEN);
2415 user_zonelist_order = oldval;
2416 } else if (oldval != user_zonelist_order)
2417 build_all_zonelists();
2419 return 0;
2423 #define MAX_NODE_LOAD (nr_online_nodes)
2424 static int node_load[MAX_NUMNODES];
2427 * find_next_best_node - find the next node that should appear in a given node's fallback list
2428 * @node: node whose fallback list we're appending
2429 * @used_node_mask: nodemask_t of already used nodes
2431 * We use a number of factors to determine which is the next node that should
2432 * appear on a given node's fallback list. The node should not have appeared
2433 * already in @node's fallback list, and it should be the next closest node
2434 * according to the distance array (which contains arbitrary distance values
2435 * from each node to each node in the system), and should also prefer nodes
2436 * with no CPUs, since presumably they'll have very little allocation pressure
2437 * on them otherwise.
2438 * It returns -1 if no node is found.
2440 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2442 int n, val;
2443 int min_val = INT_MAX;
2444 int best_node = -1;
2445 const struct cpumask *tmp = cpumask_of_node(0);
2447 /* Use the local node if we haven't already */
2448 if (!node_isset(node, *used_node_mask)) {
2449 node_set(node, *used_node_mask);
2450 return node;
2453 for_each_node_state(n, N_HIGH_MEMORY) {
2455 /* Don't want a node to appear more than once */
2456 if (node_isset(n, *used_node_mask))
2457 continue;
2459 /* Use the distance array to find the distance */
2460 val = node_distance(node, n);
2462 /* Penalize nodes under us ("prefer the next node") */
2463 val += (n < node);
2465 /* Give preference to headless and unused nodes */
2466 tmp = cpumask_of_node(n);
2467 if (!cpumask_empty(tmp))
2468 val += PENALTY_FOR_NODE_WITH_CPUS;
2470 /* Slight preference for less loaded node */
2471 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2472 val += node_load[n];
2474 if (val < min_val) {
2475 min_val = val;
2476 best_node = n;
2480 if (best_node >= 0)
2481 node_set(best_node, *used_node_mask);
2483 return best_node;
2488 * Build zonelists ordered by node and zones within node.
2489 * This results in maximum locality--normal zone overflows into local
2490 * DMA zone, if any--but risks exhausting DMA zone.
2492 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2494 int j;
2495 struct zonelist *zonelist;
2497 zonelist = &pgdat->node_zonelists[0];
2498 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2500 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2501 MAX_NR_ZONES - 1);
2502 zonelist->_zonerefs[j].zone = NULL;
2503 zonelist->_zonerefs[j].zone_idx = 0;
2507 * Build gfp_thisnode zonelists
2509 static void build_thisnode_zonelists(pg_data_t *pgdat)
2511 int j;
2512 struct zonelist *zonelist;
2514 zonelist = &pgdat->node_zonelists[1];
2515 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2516 zonelist->_zonerefs[j].zone = NULL;
2517 zonelist->_zonerefs[j].zone_idx = 0;
2521 * Build zonelists ordered by zone and nodes within zones.
2522 * This results in conserving DMA zone[s] until all Normal memory is
2523 * exhausted, but results in overflowing to remote node while memory
2524 * may still exist in local DMA zone.
2526 static int node_order[MAX_NUMNODES];
2528 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2530 int pos, j, node;
2531 int zone_type; /* needs to be signed */
2532 struct zone *z;
2533 struct zonelist *zonelist;
2535 zonelist = &pgdat->node_zonelists[0];
2536 pos = 0;
2537 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2538 for (j = 0; j < nr_nodes; j++) {
2539 node = node_order[j];
2540 z = &NODE_DATA(node)->node_zones[zone_type];
2541 if (populated_zone(z)) {
2542 zoneref_set_zone(z,
2543 &zonelist->_zonerefs[pos++]);
2544 check_highest_zone(zone_type);
2548 zonelist->_zonerefs[pos].zone = NULL;
2549 zonelist->_zonerefs[pos].zone_idx = 0;
2552 static int default_zonelist_order(void)
2554 int nid, zone_type;
2555 unsigned long low_kmem_size,total_size;
2556 struct zone *z;
2557 int average_size;
2559 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2560 * If they are really small and used heavily, the system can fall
2561 * into OOM very easily.
2562 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2564 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2565 low_kmem_size = 0;
2566 total_size = 0;
2567 for_each_online_node(nid) {
2568 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2569 z = &NODE_DATA(nid)->node_zones[zone_type];
2570 if (populated_zone(z)) {
2571 if (zone_type < ZONE_NORMAL)
2572 low_kmem_size += z->present_pages;
2573 total_size += z->present_pages;
2577 if (!low_kmem_size || /* there are no DMA area. */
2578 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2579 return ZONELIST_ORDER_NODE;
2581 * look into each node's config.
2582 * If there is a node whose DMA/DMA32 memory is very big area on
2583 * local memory, NODE_ORDER may be suitable.
2585 average_size = total_size /
2586 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2587 for_each_online_node(nid) {
2588 low_kmem_size = 0;
2589 total_size = 0;
2590 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2591 z = &NODE_DATA(nid)->node_zones[zone_type];
2592 if (populated_zone(z)) {
2593 if (zone_type < ZONE_NORMAL)
2594 low_kmem_size += z->present_pages;
2595 total_size += z->present_pages;
2598 if (low_kmem_size &&
2599 total_size > average_size && /* ignore small node */
2600 low_kmem_size > total_size * 70/100)
2601 return ZONELIST_ORDER_NODE;
2603 return ZONELIST_ORDER_ZONE;
2606 static void set_zonelist_order(void)
2608 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2609 current_zonelist_order = default_zonelist_order();
2610 else
2611 current_zonelist_order = user_zonelist_order;
2614 static void build_zonelists(pg_data_t *pgdat)
2616 int j, node, load;
2617 enum zone_type i;
2618 nodemask_t used_mask;
2619 int local_node, prev_node;
2620 struct zonelist *zonelist;
2621 int order = current_zonelist_order;
2623 /* initialize zonelists */
2624 for (i = 0; i < MAX_ZONELISTS; i++) {
2625 zonelist = pgdat->node_zonelists + i;
2626 zonelist->_zonerefs[0].zone = NULL;
2627 zonelist->_zonerefs[0].zone_idx = 0;
2630 /* NUMA-aware ordering of nodes */
2631 local_node = pgdat->node_id;
2632 load = nr_online_nodes;
2633 prev_node = local_node;
2634 nodes_clear(used_mask);
2636 memset(node_order, 0, sizeof(node_order));
2637 j = 0;
2639 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2640 int distance = node_distance(local_node, node);
2643 * If another node is sufficiently far away then it is better
2644 * to reclaim pages in a zone before going off node.
2646 if (distance > RECLAIM_DISTANCE)
2647 zone_reclaim_mode = 1;
2650 * We don't want to pressure a particular node.
2651 * So adding penalty to the first node in same
2652 * distance group to make it round-robin.
2654 if (distance != node_distance(local_node, prev_node))
2655 node_load[node] = load;
2657 prev_node = node;
2658 load--;
2659 if (order == ZONELIST_ORDER_NODE)
2660 build_zonelists_in_node_order(pgdat, node);
2661 else
2662 node_order[j++] = node; /* remember order */
2665 if (order == ZONELIST_ORDER_ZONE) {
2666 /* calculate node order -- i.e., DMA last! */
2667 build_zonelists_in_zone_order(pgdat, j);
2670 build_thisnode_zonelists(pgdat);
2673 /* Construct the zonelist performance cache - see further mmzone.h */
2674 static void build_zonelist_cache(pg_data_t *pgdat)
2676 struct zonelist *zonelist;
2677 struct zonelist_cache *zlc;
2678 struct zoneref *z;
2680 zonelist = &pgdat->node_zonelists[0];
2681 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2682 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2683 for (z = zonelist->_zonerefs; z->zone; z++)
2684 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2688 #else /* CONFIG_NUMA */
2690 static void set_zonelist_order(void)
2692 current_zonelist_order = ZONELIST_ORDER_ZONE;
2695 static void build_zonelists(pg_data_t *pgdat)
2697 int node, local_node;
2698 enum zone_type j;
2699 struct zonelist *zonelist;
2701 local_node = pgdat->node_id;
2703 zonelist = &pgdat->node_zonelists[0];
2704 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2707 * Now we build the zonelist so that it contains the zones
2708 * of all the other nodes.
2709 * We don't want to pressure a particular node, so when
2710 * building the zones for node N, we make sure that the
2711 * zones coming right after the local ones are those from
2712 * node N+1 (modulo N)
2714 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2715 if (!node_online(node))
2716 continue;
2717 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2718 MAX_NR_ZONES - 1);
2720 for (node = 0; node < local_node; node++) {
2721 if (!node_online(node))
2722 continue;
2723 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2724 MAX_NR_ZONES - 1);
2727 zonelist->_zonerefs[j].zone = NULL;
2728 zonelist->_zonerefs[j].zone_idx = 0;
2731 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2732 static void build_zonelist_cache(pg_data_t *pgdat)
2734 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2737 #endif /* CONFIG_NUMA */
2739 /* return values int ....just for stop_machine() */
2740 static int __build_all_zonelists(void *dummy)
2742 int nid;
2744 #ifdef CONFIG_NUMA
2745 memset(node_load, 0, sizeof(node_load));
2746 #endif
2747 for_each_online_node(nid) {
2748 pg_data_t *pgdat = NODE_DATA(nid);
2750 build_zonelists(pgdat);
2751 build_zonelist_cache(pgdat);
2753 return 0;
2756 void build_all_zonelists(void)
2758 set_zonelist_order();
2760 if (system_state == SYSTEM_BOOTING) {
2761 __build_all_zonelists(NULL);
2762 mminit_verify_zonelist();
2763 cpuset_init_current_mems_allowed();
2764 } else {
2765 /* we have to stop all cpus to guarantee there is no user
2766 of zonelist */
2767 stop_machine(__build_all_zonelists, NULL, NULL);
2768 /* cpuset refresh routine should be here */
2770 vm_total_pages = nr_free_pagecache_pages();
2772 * Disable grouping by mobility if the number of pages in the
2773 * system is too low to allow the mechanism to work. It would be
2774 * more accurate, but expensive to check per-zone. This check is
2775 * made on memory-hotadd so a system can start with mobility
2776 * disabled and enable it later
2778 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2779 page_group_by_mobility_disabled = 1;
2780 else
2781 page_group_by_mobility_disabled = 0;
2783 printk("Built %i zonelists in %s order, mobility grouping %s. "
2784 "Total pages: %ld\n",
2785 nr_online_nodes,
2786 zonelist_order_name[current_zonelist_order],
2787 page_group_by_mobility_disabled ? "off" : "on",
2788 vm_total_pages);
2789 #ifdef CONFIG_NUMA
2790 printk("Policy zone: %s\n", zone_names[policy_zone]);
2791 #endif
2795 * Helper functions to size the waitqueue hash table.
2796 * Essentially these want to choose hash table sizes sufficiently
2797 * large so that collisions trying to wait on pages are rare.
2798 * But in fact, the number of active page waitqueues on typical
2799 * systems is ridiculously low, less than 200. So this is even
2800 * conservative, even though it seems large.
2802 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2803 * waitqueues, i.e. the size of the waitq table given the number of pages.
2805 #define PAGES_PER_WAITQUEUE 256
2807 #ifndef CONFIG_MEMORY_HOTPLUG
2808 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2810 unsigned long size = 1;
2812 pages /= PAGES_PER_WAITQUEUE;
2814 while (size < pages)
2815 size <<= 1;
2818 * Once we have dozens or even hundreds of threads sleeping
2819 * on IO we've got bigger problems than wait queue collision.
2820 * Limit the size of the wait table to a reasonable size.
2822 size = min(size, 4096UL);
2824 return max(size, 4UL);
2826 #else
2828 * A zone's size might be changed by hot-add, so it is not possible to determine
2829 * a suitable size for its wait_table. So we use the maximum size now.
2831 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2833 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2834 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2835 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2837 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2838 * or more by the traditional way. (See above). It equals:
2840 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2841 * ia64(16K page size) : = ( 8G + 4M)byte.
2842 * powerpc (64K page size) : = (32G +16M)byte.
2844 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2846 return 4096UL;
2848 #endif
2851 * This is an integer logarithm so that shifts can be used later
2852 * to extract the more random high bits from the multiplicative
2853 * hash function before the remainder is taken.
2855 static inline unsigned long wait_table_bits(unsigned long size)
2857 return ffz(~size);
2860 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2863 * Check if a pageblock contains reserved pages
2865 static int pageblock_is_reserved(unsigned long start_pfn)
2867 unsigned long end_pfn = start_pfn + pageblock_nr_pages;
2868 unsigned long pfn;
2870 for (pfn = start_pfn; pfn < end_pfn; pfn++)
2871 if (PageReserved(pfn_to_page(pfn)))
2872 return 1;
2873 return 0;
2877 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2878 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2879 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2880 * higher will lead to a bigger reserve which will get freed as contiguous
2881 * blocks as reclaim kicks in
2883 static void setup_zone_migrate_reserve(struct zone *zone)
2885 unsigned long start_pfn, pfn, end_pfn;
2886 struct page *page;
2887 unsigned long block_migratetype;
2888 int reserve;
2890 /* Get the start pfn, end pfn and the number of blocks to reserve */
2891 start_pfn = zone->zone_start_pfn;
2892 end_pfn = start_pfn + zone->spanned_pages;
2893 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2894 pageblock_order;
2897 * Reserve blocks are generally in place to help high-order atomic
2898 * allocations that are short-lived. A min_free_kbytes value that
2899 * would result in more than 2 reserve blocks for atomic allocations
2900 * is assumed to be in place to help anti-fragmentation for the
2901 * future allocation of hugepages at runtime.
2903 reserve = min(2, reserve);
2905 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2906 if (!pfn_valid(pfn))
2907 continue;
2908 page = pfn_to_page(pfn);
2910 /* Watch out for overlapping nodes */
2911 if (page_to_nid(page) != zone_to_nid(zone))
2912 continue;
2914 /* Blocks with reserved pages will never free, skip them. */
2915 if (pageblock_is_reserved(pfn))
2916 continue;
2918 block_migratetype = get_pageblock_migratetype(page);
2920 /* If this block is reserved, account for it */
2921 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2922 reserve--;
2923 continue;
2926 /* Suitable for reserving if this block is movable */
2927 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2928 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2929 move_freepages_block(zone, page, MIGRATE_RESERVE);
2930 reserve--;
2931 continue;
2935 * If the reserve is met and this is a previous reserved block,
2936 * take it back
2938 if (block_migratetype == MIGRATE_RESERVE) {
2939 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2940 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2946 * Initially all pages are reserved - free ones are freed
2947 * up by free_all_bootmem() once the early boot process is
2948 * done. Non-atomic initialization, single-pass.
2950 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2951 unsigned long start_pfn, enum memmap_context context)
2953 struct page *page;
2954 unsigned long end_pfn = start_pfn + size;
2955 unsigned long pfn;
2956 struct zone *z;
2958 if (highest_memmap_pfn < end_pfn - 1)
2959 highest_memmap_pfn = end_pfn - 1;
2961 z = &NODE_DATA(nid)->node_zones[zone];
2962 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2964 * There can be holes in boot-time mem_map[]s
2965 * handed to this function. They do not
2966 * exist on hotplugged memory.
2968 if (context == MEMMAP_EARLY) {
2969 if (!early_pfn_valid(pfn))
2970 continue;
2971 if (!early_pfn_in_nid(pfn, nid))
2972 continue;
2974 page = pfn_to_page(pfn);
2975 set_page_links(page, zone, nid, pfn);
2976 mminit_verify_page_links(page, zone, nid, pfn);
2977 init_page_count(page);
2978 reset_page_mapcount(page);
2979 SetPageReserved(page);
2981 * Mark the block movable so that blocks are reserved for
2982 * movable at startup. This will force kernel allocations
2983 * to reserve their blocks rather than leaking throughout
2984 * the address space during boot when many long-lived
2985 * kernel allocations are made. Later some blocks near
2986 * the start are marked MIGRATE_RESERVE by
2987 * setup_zone_migrate_reserve()
2989 * bitmap is created for zone's valid pfn range. but memmap
2990 * can be created for invalid pages (for alignment)
2991 * check here not to call set_pageblock_migratetype() against
2992 * pfn out of zone.
2994 if ((z->zone_start_pfn <= pfn)
2995 && (pfn < z->zone_start_pfn + z->spanned_pages)
2996 && !(pfn & (pageblock_nr_pages - 1)))
2997 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2999 INIT_LIST_HEAD(&page->lru);
3000 #ifdef WANT_PAGE_VIRTUAL
3001 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3002 if (!is_highmem_idx(zone))
3003 set_page_address(page, __va(pfn << PAGE_SHIFT));
3004 #endif
3008 static void __meminit zone_init_free_lists(struct zone *zone)
3010 int order, t;
3011 for_each_migratetype_order(order, t) {
3012 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3013 zone->free_area[order].nr_free = 0;
3017 #ifndef __HAVE_ARCH_MEMMAP_INIT
3018 #define memmap_init(size, nid, zone, start_pfn) \
3019 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3020 #endif
3022 static int zone_batchsize(struct zone *zone)
3024 #ifdef CONFIG_MMU
3025 int batch;
3028 * The per-cpu-pages pools are set to around 1000th of the
3029 * size of the zone. But no more than 1/2 of a meg.
3031 * OK, so we don't know how big the cache is. So guess.
3033 batch = zone->present_pages / 1024;
3034 if (batch * PAGE_SIZE > 512 * 1024)
3035 batch = (512 * 1024) / PAGE_SIZE;
3036 batch /= 4; /* We effectively *= 4 below */
3037 if (batch < 1)
3038 batch = 1;
3041 * Clamp the batch to a 2^n - 1 value. Having a power
3042 * of 2 value was found to be more likely to have
3043 * suboptimal cache aliasing properties in some cases.
3045 * For example if 2 tasks are alternately allocating
3046 * batches of pages, one task can end up with a lot
3047 * of pages of one half of the possible page colors
3048 * and the other with pages of the other colors.
3050 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3052 return batch;
3054 #else
3055 /* The deferral and batching of frees should be suppressed under NOMMU
3056 * conditions.
3058 * The problem is that NOMMU needs to be able to allocate large chunks
3059 * of contiguous memory as there's no hardware page translation to
3060 * assemble apparent contiguous memory from discontiguous pages.
3062 * Queueing large contiguous runs of pages for batching, however,
3063 * causes the pages to actually be freed in smaller chunks. As there
3064 * can be a significant delay between the individual batches being
3065 * recycled, this leads to the once large chunks of space being
3066 * fragmented and becoming unavailable for high-order allocations.
3068 return 0;
3069 #endif
3072 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3074 struct per_cpu_pages *pcp;
3075 int migratetype;
3077 memset(p, 0, sizeof(*p));
3079 pcp = &p->pcp;
3080 pcp->count = 0;
3081 pcp->high = 6 * batch;
3082 pcp->batch = max(1UL, 1 * batch);
3083 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3084 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3088 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3089 * to the value high for the pageset p.
3092 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3093 unsigned long high)
3095 struct per_cpu_pages *pcp;
3097 pcp = &p->pcp;
3098 pcp->high = high;
3099 pcp->batch = max(1UL, high/4);
3100 if ((high/4) > (PAGE_SHIFT * 8))
3101 pcp->batch = PAGE_SHIFT * 8;
3105 #ifdef CONFIG_NUMA
3107 * Boot pageset table. One per cpu which is going to be used for all
3108 * zones and all nodes. The parameters will be set in such a way
3109 * that an item put on a list will immediately be handed over to
3110 * the buddy list. This is safe since pageset manipulation is done
3111 * with interrupts disabled.
3113 * Some NUMA counter updates may also be caught by the boot pagesets.
3115 * The boot_pagesets must be kept even after bootup is complete for
3116 * unused processors and/or zones. They do play a role for bootstrapping
3117 * hotplugged processors.
3119 * zoneinfo_show() and maybe other functions do
3120 * not check if the processor is online before following the pageset pointer.
3121 * Other parts of the kernel may not check if the zone is available.
3123 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3126 * Dynamically allocate memory for the
3127 * per cpu pageset array in struct zone.
3129 static int __cpuinit process_zones(int cpu)
3131 struct zone *zone, *dzone;
3132 int node = cpu_to_node(cpu);
3134 node_set_state(node, N_CPU); /* this node has a cpu */
3136 for_each_populated_zone(zone) {
3137 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3138 GFP_KERNEL, node);
3139 if (!zone_pcp(zone, cpu))
3140 goto bad;
3142 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3144 if (percpu_pagelist_fraction)
3145 setup_pagelist_highmark(zone_pcp(zone, cpu),
3146 (zone->present_pages / percpu_pagelist_fraction));
3149 return 0;
3150 bad:
3151 for_each_zone(dzone) {
3152 if (!populated_zone(dzone))
3153 continue;
3154 if (dzone == zone)
3155 break;
3156 kfree(zone_pcp(dzone, cpu));
3157 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3159 return -ENOMEM;
3162 static inline void free_zone_pagesets(int cpu)
3164 struct zone *zone;
3166 for_each_zone(zone) {
3167 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3169 /* Free per_cpu_pageset if it is slab allocated */
3170 if (pset != &boot_pageset[cpu])
3171 kfree(pset);
3172 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3176 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3177 unsigned long action,
3178 void *hcpu)
3180 int cpu = (long)hcpu;
3181 int ret = NOTIFY_OK;
3183 switch (action) {
3184 case CPU_UP_PREPARE:
3185 case CPU_UP_PREPARE_FROZEN:
3186 if (process_zones(cpu))
3187 ret = NOTIFY_BAD;
3188 break;
3189 case CPU_UP_CANCELED:
3190 case CPU_UP_CANCELED_FROZEN:
3191 case CPU_DEAD:
3192 case CPU_DEAD_FROZEN:
3193 free_zone_pagesets(cpu);
3194 break;
3195 default:
3196 break;
3198 return ret;
3201 static struct notifier_block __cpuinitdata pageset_notifier =
3202 { &pageset_cpuup_callback, NULL, 0 };
3204 void __init setup_per_cpu_pageset(void)
3206 int err;
3208 /* Initialize per_cpu_pageset for cpu 0.
3209 * A cpuup callback will do this for every cpu
3210 * as it comes online
3212 err = process_zones(smp_processor_id());
3213 BUG_ON(err);
3214 register_cpu_notifier(&pageset_notifier);
3217 #endif
3219 static noinline __init_refok
3220 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3222 int i;
3223 struct pglist_data *pgdat = zone->zone_pgdat;
3224 size_t alloc_size;
3227 * The per-page waitqueue mechanism uses hashed waitqueues
3228 * per zone.
3230 zone->wait_table_hash_nr_entries =
3231 wait_table_hash_nr_entries(zone_size_pages);
3232 zone->wait_table_bits =
3233 wait_table_bits(zone->wait_table_hash_nr_entries);
3234 alloc_size = zone->wait_table_hash_nr_entries
3235 * sizeof(wait_queue_head_t);
3237 if (!slab_is_available()) {
3238 zone->wait_table = (wait_queue_head_t *)
3239 alloc_bootmem_node(pgdat, alloc_size);
3240 } else {
3242 * This case means that a zone whose size was 0 gets new memory
3243 * via memory hot-add.
3244 * But it may be the case that a new node was hot-added. In
3245 * this case vmalloc() will not be able to use this new node's
3246 * memory - this wait_table must be initialized to use this new
3247 * node itself as well.
3248 * To use this new node's memory, further consideration will be
3249 * necessary.
3251 zone->wait_table = vmalloc(alloc_size);
3253 if (!zone->wait_table)
3254 return -ENOMEM;
3256 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3257 init_waitqueue_head(zone->wait_table + i);
3259 return 0;
3262 static int __zone_pcp_update(void *data)
3264 struct zone *zone = data;
3265 int cpu;
3266 unsigned long batch = zone_batchsize(zone), flags;
3268 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3269 struct per_cpu_pageset *pset;
3270 struct per_cpu_pages *pcp;
3272 pset = zone_pcp(zone, cpu);
3273 pcp = &pset->pcp;
3275 local_irq_save(flags);
3276 free_pcppages_bulk(zone, pcp->count, pcp);
3277 setup_pageset(pset, batch);
3278 local_irq_restore(flags);
3280 return 0;
3283 void zone_pcp_update(struct zone *zone)
3285 stop_machine(__zone_pcp_update, zone, NULL);
3288 static __meminit void zone_pcp_init(struct zone *zone)
3290 int cpu;
3291 unsigned long batch = zone_batchsize(zone);
3293 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3294 #ifdef CONFIG_NUMA
3295 /* Early boot. Slab allocator not functional yet */
3296 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3297 setup_pageset(&boot_pageset[cpu],0);
3298 #else
3299 setup_pageset(zone_pcp(zone,cpu), batch);
3300 #endif
3302 if (zone->present_pages)
3303 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3304 zone->name, zone->present_pages, batch);
3307 __meminit int init_currently_empty_zone(struct zone *zone,
3308 unsigned long zone_start_pfn,
3309 unsigned long size,
3310 enum memmap_context context)
3312 struct pglist_data *pgdat = zone->zone_pgdat;
3313 int ret;
3314 ret = zone_wait_table_init(zone, size);
3315 if (ret)
3316 return ret;
3317 pgdat->nr_zones = zone_idx(zone) + 1;
3319 zone->zone_start_pfn = zone_start_pfn;
3321 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3322 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3323 pgdat->node_id,
3324 (unsigned long)zone_idx(zone),
3325 zone_start_pfn, (zone_start_pfn + size));
3327 zone_init_free_lists(zone);
3329 return 0;
3332 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3334 * Basic iterator support. Return the first range of PFNs for a node
3335 * Note: nid == MAX_NUMNODES returns first region regardless of node
3337 static int __meminit first_active_region_index_in_nid(int nid)
3339 int i;
3341 for (i = 0; i < nr_nodemap_entries; i++)
3342 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3343 return i;
3345 return -1;
3349 * Basic iterator support. Return the next active range of PFNs for a node
3350 * Note: nid == MAX_NUMNODES returns next region regardless of node
3352 static int __meminit next_active_region_index_in_nid(int index, int nid)
3354 for (index = index + 1; index < nr_nodemap_entries; index++)
3355 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3356 return index;
3358 return -1;
3361 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3363 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3364 * Architectures may implement their own version but if add_active_range()
3365 * was used and there are no special requirements, this is a convenient
3366 * alternative
3368 int __meminit __early_pfn_to_nid(unsigned long pfn)
3370 int i;
3372 for (i = 0; i < nr_nodemap_entries; i++) {
3373 unsigned long start_pfn = early_node_map[i].start_pfn;
3374 unsigned long end_pfn = early_node_map[i].end_pfn;
3376 if (start_pfn <= pfn && pfn < end_pfn)
3377 return early_node_map[i].nid;
3379 /* This is a memory hole */
3380 return -1;
3382 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3384 int __meminit early_pfn_to_nid(unsigned long pfn)
3386 int nid;
3388 nid = __early_pfn_to_nid(pfn);
3389 if (nid >= 0)
3390 return nid;
3391 /* just returns 0 */
3392 return 0;
3395 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3396 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3398 int nid;
3400 nid = __early_pfn_to_nid(pfn);
3401 if (nid >= 0 && nid != node)
3402 return false;
3403 return true;
3405 #endif
3407 /* Basic iterator support to walk early_node_map[] */
3408 #define for_each_active_range_index_in_nid(i, nid) \
3409 for (i = first_active_region_index_in_nid(nid); i != -1; \
3410 i = next_active_region_index_in_nid(i, nid))
3413 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3414 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3415 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3417 * If an architecture guarantees that all ranges registered with
3418 * add_active_ranges() contain no holes and may be freed, this
3419 * this function may be used instead of calling free_bootmem() manually.
3421 void __init free_bootmem_with_active_regions(int nid,
3422 unsigned long max_low_pfn)
3424 int i;
3426 for_each_active_range_index_in_nid(i, nid) {
3427 unsigned long size_pages = 0;
3428 unsigned long end_pfn = early_node_map[i].end_pfn;
3430 if (early_node_map[i].start_pfn >= max_low_pfn)
3431 continue;
3433 if (end_pfn > max_low_pfn)
3434 end_pfn = max_low_pfn;
3436 size_pages = end_pfn - early_node_map[i].start_pfn;
3437 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3438 PFN_PHYS(early_node_map[i].start_pfn),
3439 size_pages << PAGE_SHIFT);
3443 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3445 int i;
3446 int ret;
3448 for_each_active_range_index_in_nid(i, nid) {
3449 ret = work_fn(early_node_map[i].start_pfn,
3450 early_node_map[i].end_pfn, data);
3451 if (ret)
3452 break;
3456 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3457 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3459 * If an architecture guarantees that all ranges registered with
3460 * add_active_ranges() contain no holes and may be freed, this
3461 * function may be used instead of calling memory_present() manually.
3463 void __init sparse_memory_present_with_active_regions(int nid)
3465 int i;
3467 for_each_active_range_index_in_nid(i, nid)
3468 memory_present(early_node_map[i].nid,
3469 early_node_map[i].start_pfn,
3470 early_node_map[i].end_pfn);
3474 * get_pfn_range_for_nid - Return the start and end page frames for a node
3475 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3476 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3477 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3479 * It returns the start and end page frame of a node based on information
3480 * provided by an arch calling add_active_range(). If called for a node
3481 * with no available memory, a warning is printed and the start and end
3482 * PFNs will be 0.
3484 void __meminit get_pfn_range_for_nid(unsigned int nid,
3485 unsigned long *start_pfn, unsigned long *end_pfn)
3487 int i;
3488 *start_pfn = -1UL;
3489 *end_pfn = 0;
3491 for_each_active_range_index_in_nid(i, nid) {
3492 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3493 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3496 if (*start_pfn == -1UL)
3497 *start_pfn = 0;
3501 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3502 * assumption is made that zones within a node are ordered in monotonic
3503 * increasing memory addresses so that the "highest" populated zone is used
3505 static void __init find_usable_zone_for_movable(void)
3507 int zone_index;
3508 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3509 if (zone_index == ZONE_MOVABLE)
3510 continue;
3512 if (arch_zone_highest_possible_pfn[zone_index] >
3513 arch_zone_lowest_possible_pfn[zone_index])
3514 break;
3517 VM_BUG_ON(zone_index == -1);
3518 movable_zone = zone_index;
3522 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3523 * because it is sized independant of architecture. Unlike the other zones,
3524 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3525 * in each node depending on the size of each node and how evenly kernelcore
3526 * is distributed. This helper function adjusts the zone ranges
3527 * provided by the architecture for a given node by using the end of the
3528 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3529 * zones within a node are in order of monotonic increases memory addresses
3531 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3532 unsigned long zone_type,
3533 unsigned long node_start_pfn,
3534 unsigned long node_end_pfn,
3535 unsigned long *zone_start_pfn,
3536 unsigned long *zone_end_pfn)
3538 /* Only adjust if ZONE_MOVABLE is on this node */
3539 if (zone_movable_pfn[nid]) {
3540 /* Size ZONE_MOVABLE */
3541 if (zone_type == ZONE_MOVABLE) {
3542 *zone_start_pfn = zone_movable_pfn[nid];
3543 *zone_end_pfn = min(node_end_pfn,
3544 arch_zone_highest_possible_pfn[movable_zone]);
3546 /* Adjust for ZONE_MOVABLE starting within this range */
3547 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3548 *zone_end_pfn > zone_movable_pfn[nid]) {
3549 *zone_end_pfn = zone_movable_pfn[nid];
3551 /* Check if this whole range is within ZONE_MOVABLE */
3552 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3553 *zone_start_pfn = *zone_end_pfn;
3558 * Return the number of pages a zone spans in a node, including holes
3559 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3561 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3562 unsigned long zone_type,
3563 unsigned long *ignored)
3565 unsigned long node_start_pfn, node_end_pfn;
3566 unsigned long zone_start_pfn, zone_end_pfn;
3568 /* Get the start and end of the node and zone */
3569 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3570 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3571 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3572 adjust_zone_range_for_zone_movable(nid, zone_type,
3573 node_start_pfn, node_end_pfn,
3574 &zone_start_pfn, &zone_end_pfn);
3576 /* Check that this node has pages within the zone's required range */
3577 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3578 return 0;
3580 /* Move the zone boundaries inside the node if necessary */
3581 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3582 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3584 /* Return the spanned pages */
3585 return zone_end_pfn - zone_start_pfn;
3589 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3590 * then all holes in the requested range will be accounted for.
3592 static unsigned long __meminit __absent_pages_in_range(int nid,
3593 unsigned long range_start_pfn,
3594 unsigned long range_end_pfn)
3596 int i = 0;
3597 unsigned long prev_end_pfn = 0, hole_pages = 0;
3598 unsigned long start_pfn;
3600 /* Find the end_pfn of the first active range of pfns in the node */
3601 i = first_active_region_index_in_nid(nid);
3602 if (i == -1)
3603 return 0;
3605 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3607 /* Account for ranges before physical memory on this node */
3608 if (early_node_map[i].start_pfn > range_start_pfn)
3609 hole_pages = prev_end_pfn - range_start_pfn;
3611 /* Find all holes for the zone within the node */
3612 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3614 /* No need to continue if prev_end_pfn is outside the zone */
3615 if (prev_end_pfn >= range_end_pfn)
3616 break;
3618 /* Make sure the end of the zone is not within the hole */
3619 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3620 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3622 /* Update the hole size cound and move on */
3623 if (start_pfn > range_start_pfn) {
3624 BUG_ON(prev_end_pfn > start_pfn);
3625 hole_pages += start_pfn - prev_end_pfn;
3627 prev_end_pfn = early_node_map[i].end_pfn;
3630 /* Account for ranges past physical memory on this node */
3631 if (range_end_pfn > prev_end_pfn)
3632 hole_pages += range_end_pfn -
3633 max(range_start_pfn, prev_end_pfn);
3635 return hole_pages;
3639 * absent_pages_in_range - Return number of page frames in holes within a range
3640 * @start_pfn: The start PFN to start searching for holes
3641 * @end_pfn: The end PFN to stop searching for holes
3643 * It returns the number of pages frames in memory holes within a range.
3645 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3646 unsigned long end_pfn)
3648 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3651 /* Return the number of page frames in holes in a zone on a node */
3652 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3653 unsigned long zone_type,
3654 unsigned long *ignored)
3656 unsigned long node_start_pfn, node_end_pfn;
3657 unsigned long zone_start_pfn, zone_end_pfn;
3659 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3660 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3661 node_start_pfn);
3662 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3663 node_end_pfn);
3665 adjust_zone_range_for_zone_movable(nid, zone_type,
3666 node_start_pfn, node_end_pfn,
3667 &zone_start_pfn, &zone_end_pfn);
3668 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3671 #else
3672 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3673 unsigned long zone_type,
3674 unsigned long *zones_size)
3676 return zones_size[zone_type];
3679 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3680 unsigned long zone_type,
3681 unsigned long *zholes_size)
3683 if (!zholes_size)
3684 return 0;
3686 return zholes_size[zone_type];
3689 #endif
3691 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3692 unsigned long *zones_size, unsigned long *zholes_size)
3694 unsigned long realtotalpages, totalpages = 0;
3695 enum zone_type i;
3697 for (i = 0; i < MAX_NR_ZONES; i++)
3698 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3699 zones_size);
3700 pgdat->node_spanned_pages = totalpages;
3702 realtotalpages = totalpages;
3703 for (i = 0; i < MAX_NR_ZONES; i++)
3704 realtotalpages -=
3705 zone_absent_pages_in_node(pgdat->node_id, i,
3706 zholes_size);
3707 pgdat->node_present_pages = realtotalpages;
3708 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3709 realtotalpages);
3712 #ifndef CONFIG_SPARSEMEM
3714 * Calculate the size of the zone->blockflags rounded to an unsigned long
3715 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3716 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3717 * round what is now in bits to nearest long in bits, then return it in
3718 * bytes.
3720 static unsigned long __init usemap_size(unsigned long zonesize)
3722 unsigned long usemapsize;
3724 usemapsize = roundup(zonesize, pageblock_nr_pages);
3725 usemapsize = usemapsize >> pageblock_order;
3726 usemapsize *= NR_PAGEBLOCK_BITS;
3727 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3729 return usemapsize / 8;
3732 static void __init setup_usemap(struct pglist_data *pgdat,
3733 struct zone *zone, unsigned long zonesize)
3735 unsigned long usemapsize = usemap_size(zonesize);
3736 zone->pageblock_flags = NULL;
3737 if (usemapsize)
3738 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3740 #else
3741 static void inline setup_usemap(struct pglist_data *pgdat,
3742 struct zone *zone, unsigned long zonesize) {}
3743 #endif /* CONFIG_SPARSEMEM */
3745 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3747 /* Return a sensible default order for the pageblock size. */
3748 static inline int pageblock_default_order(void)
3750 if (HPAGE_SHIFT > PAGE_SHIFT)
3751 return HUGETLB_PAGE_ORDER;
3753 return MAX_ORDER-1;
3756 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3757 static inline void __init set_pageblock_order(unsigned int order)
3759 /* Check that pageblock_nr_pages has not already been setup */
3760 if (pageblock_order)
3761 return;
3764 * Assume the largest contiguous order of interest is a huge page.
3765 * This value may be variable depending on boot parameters on IA64
3767 pageblock_order = order;
3769 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3772 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3773 * and pageblock_default_order() are unused as pageblock_order is set
3774 * at compile-time. See include/linux/pageblock-flags.h for the values of
3775 * pageblock_order based on the kernel config
3777 static inline int pageblock_default_order(unsigned int order)
3779 return MAX_ORDER-1;
3781 #define set_pageblock_order(x) do {} while (0)
3783 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3786 * Set up the zone data structures:
3787 * - mark all pages reserved
3788 * - mark all memory queues empty
3789 * - clear the memory bitmaps
3791 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3792 unsigned long *zones_size, unsigned long *zholes_size)
3794 enum zone_type j;
3795 int nid = pgdat->node_id;
3796 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3797 int ret;
3799 pgdat_resize_init(pgdat);
3800 pgdat->nr_zones = 0;
3801 init_waitqueue_head(&pgdat->kswapd_wait);
3802 pgdat->kswapd_max_order = 0;
3803 pgdat_page_cgroup_init(pgdat);
3805 for (j = 0; j < MAX_NR_ZONES; j++) {
3806 struct zone *zone = pgdat->node_zones + j;
3807 unsigned long size, realsize, memmap_pages;
3808 enum lru_list l;
3810 size = zone_spanned_pages_in_node(nid, j, zones_size);
3811 realsize = size - zone_absent_pages_in_node(nid, j,
3812 zholes_size);
3815 * Adjust realsize so that it accounts for how much memory
3816 * is used by this zone for memmap. This affects the watermark
3817 * and per-cpu initialisations
3819 memmap_pages =
3820 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3821 if (realsize >= memmap_pages) {
3822 realsize -= memmap_pages;
3823 if (memmap_pages)
3824 printk(KERN_DEBUG
3825 " %s zone: %lu pages used for memmap\n",
3826 zone_names[j], memmap_pages);
3827 } else
3828 printk(KERN_WARNING
3829 " %s zone: %lu pages exceeds realsize %lu\n",
3830 zone_names[j], memmap_pages, realsize);
3832 /* Account for reserved pages */
3833 if (j == 0 && realsize > dma_reserve) {
3834 realsize -= dma_reserve;
3835 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3836 zone_names[0], dma_reserve);
3839 if (!is_highmem_idx(j))
3840 nr_kernel_pages += realsize;
3841 nr_all_pages += realsize;
3843 zone->spanned_pages = size;
3844 zone->present_pages = realsize;
3845 #ifdef CONFIG_NUMA
3846 zone->node = nid;
3847 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3848 / 100;
3849 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3850 #endif
3851 zone->name = zone_names[j];
3852 spin_lock_init(&zone->lock);
3853 spin_lock_init(&zone->lru_lock);
3854 zone_seqlock_init(zone);
3855 zone->zone_pgdat = pgdat;
3857 zone->prev_priority = DEF_PRIORITY;
3859 zone_pcp_init(zone);
3860 for_each_lru(l) {
3861 INIT_LIST_HEAD(&zone->lru[l].list);
3862 zone->reclaim_stat.nr_saved_scan[l] = 0;
3864 zone->reclaim_stat.recent_rotated[0] = 0;
3865 zone->reclaim_stat.recent_rotated[1] = 0;
3866 zone->reclaim_stat.recent_scanned[0] = 0;
3867 zone->reclaim_stat.recent_scanned[1] = 0;
3868 zap_zone_vm_stats(zone);
3869 zone->flags = 0;
3870 if (!size)
3871 continue;
3873 set_pageblock_order(pageblock_default_order());
3874 setup_usemap(pgdat, zone, size);
3875 ret = init_currently_empty_zone(zone, zone_start_pfn,
3876 size, MEMMAP_EARLY);
3877 BUG_ON(ret);
3878 memmap_init(size, nid, j, zone_start_pfn);
3879 zone_start_pfn += size;
3883 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3885 /* Skip empty nodes */
3886 if (!pgdat->node_spanned_pages)
3887 return;
3889 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3890 /* ia64 gets its own node_mem_map, before this, without bootmem */
3891 if (!pgdat->node_mem_map) {
3892 unsigned long size, start, end;
3893 struct page *map;
3896 * The zone's endpoints aren't required to be MAX_ORDER
3897 * aligned but the node_mem_map endpoints must be in order
3898 * for the buddy allocator to function correctly.
3900 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3901 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3902 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3903 size = (end - start) * sizeof(struct page);
3904 map = alloc_remap(pgdat->node_id, size);
3905 if (!map)
3906 map = alloc_bootmem_node(pgdat, size);
3907 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3909 #ifndef CONFIG_NEED_MULTIPLE_NODES
3911 * With no DISCONTIG, the global mem_map is just set as node 0's
3913 if (pgdat == NODE_DATA(0)) {
3914 mem_map = NODE_DATA(0)->node_mem_map;
3915 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3916 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3917 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3918 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3920 #endif
3921 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3924 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3925 unsigned long node_start_pfn, unsigned long *zholes_size)
3927 pg_data_t *pgdat = NODE_DATA(nid);
3929 pgdat->node_id = nid;
3930 pgdat->node_start_pfn = node_start_pfn;
3931 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3933 alloc_node_mem_map(pgdat);
3934 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3935 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3936 nid, (unsigned long)pgdat,
3937 (unsigned long)pgdat->node_mem_map);
3938 #endif
3940 free_area_init_core(pgdat, zones_size, zholes_size);
3943 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3945 #if MAX_NUMNODES > 1
3947 * Figure out the number of possible node ids.
3949 static void __init setup_nr_node_ids(void)
3951 unsigned int node;
3952 unsigned int highest = 0;
3954 for_each_node_mask(node, node_possible_map)
3955 highest = node;
3956 nr_node_ids = highest + 1;
3958 #else
3959 static inline void setup_nr_node_ids(void)
3962 #endif
3965 * add_active_range - Register a range of PFNs backed by physical memory
3966 * @nid: The node ID the range resides on
3967 * @start_pfn: The start PFN of the available physical memory
3968 * @end_pfn: The end PFN of the available physical memory
3970 * These ranges are stored in an early_node_map[] and later used by
3971 * free_area_init_nodes() to calculate zone sizes and holes. If the
3972 * range spans a memory hole, it is up to the architecture to ensure
3973 * the memory is not freed by the bootmem allocator. If possible
3974 * the range being registered will be merged with existing ranges.
3976 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3977 unsigned long end_pfn)
3979 int i;
3981 mminit_dprintk(MMINIT_TRACE, "memory_register",
3982 "Entering add_active_range(%d, %#lx, %#lx) "
3983 "%d entries of %d used\n",
3984 nid, start_pfn, end_pfn,
3985 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3987 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3989 /* Merge with existing active regions if possible */
3990 for (i = 0; i < nr_nodemap_entries; i++) {
3991 if (early_node_map[i].nid != nid)
3992 continue;
3994 /* Skip if an existing region covers this new one */
3995 if (start_pfn >= early_node_map[i].start_pfn &&
3996 end_pfn <= early_node_map[i].end_pfn)
3997 return;
3999 /* Merge forward if suitable */
4000 if (start_pfn <= early_node_map[i].end_pfn &&
4001 end_pfn > early_node_map[i].end_pfn) {
4002 early_node_map[i].end_pfn = end_pfn;
4003 return;
4006 /* Merge backward if suitable */
4007 if (start_pfn < early_node_map[i].end_pfn &&
4008 end_pfn >= early_node_map[i].start_pfn) {
4009 early_node_map[i].start_pfn = start_pfn;
4010 return;
4014 /* Check that early_node_map is large enough */
4015 if (i >= MAX_ACTIVE_REGIONS) {
4016 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4017 MAX_ACTIVE_REGIONS);
4018 return;
4021 early_node_map[i].nid = nid;
4022 early_node_map[i].start_pfn = start_pfn;
4023 early_node_map[i].end_pfn = end_pfn;
4024 nr_nodemap_entries = i + 1;
4028 * remove_active_range - Shrink an existing registered range of PFNs
4029 * @nid: The node id the range is on that should be shrunk
4030 * @start_pfn: The new PFN of the range
4031 * @end_pfn: The new PFN of the range
4033 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4034 * The map is kept near the end physical page range that has already been
4035 * registered. This function allows an arch to shrink an existing registered
4036 * range.
4038 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4039 unsigned long end_pfn)
4041 int i, j;
4042 int removed = 0;
4044 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4045 nid, start_pfn, end_pfn);
4047 /* Find the old active region end and shrink */
4048 for_each_active_range_index_in_nid(i, nid) {
4049 if (early_node_map[i].start_pfn >= start_pfn &&
4050 early_node_map[i].end_pfn <= end_pfn) {
4051 /* clear it */
4052 early_node_map[i].start_pfn = 0;
4053 early_node_map[i].end_pfn = 0;
4054 removed = 1;
4055 continue;
4057 if (early_node_map[i].start_pfn < start_pfn &&
4058 early_node_map[i].end_pfn > start_pfn) {
4059 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4060 early_node_map[i].end_pfn = start_pfn;
4061 if (temp_end_pfn > end_pfn)
4062 add_active_range(nid, end_pfn, temp_end_pfn);
4063 continue;
4065 if (early_node_map[i].start_pfn >= start_pfn &&
4066 early_node_map[i].end_pfn > end_pfn &&
4067 early_node_map[i].start_pfn < end_pfn) {
4068 early_node_map[i].start_pfn = end_pfn;
4069 continue;
4073 if (!removed)
4074 return;
4076 /* remove the blank ones */
4077 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4078 if (early_node_map[i].nid != nid)
4079 continue;
4080 if (early_node_map[i].end_pfn)
4081 continue;
4082 /* we found it, get rid of it */
4083 for (j = i; j < nr_nodemap_entries - 1; j++)
4084 memcpy(&early_node_map[j], &early_node_map[j+1],
4085 sizeof(early_node_map[j]));
4086 j = nr_nodemap_entries - 1;
4087 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4088 nr_nodemap_entries--;
4093 * remove_all_active_ranges - Remove all currently registered regions
4095 * During discovery, it may be found that a table like SRAT is invalid
4096 * and an alternative discovery method must be used. This function removes
4097 * all currently registered regions.
4099 void __init remove_all_active_ranges(void)
4101 memset(early_node_map, 0, sizeof(early_node_map));
4102 nr_nodemap_entries = 0;
4105 /* Compare two active node_active_regions */
4106 static int __init cmp_node_active_region(const void *a, const void *b)
4108 struct node_active_region *arange = (struct node_active_region *)a;
4109 struct node_active_region *brange = (struct node_active_region *)b;
4111 /* Done this way to avoid overflows */
4112 if (arange->start_pfn > brange->start_pfn)
4113 return 1;
4114 if (arange->start_pfn < brange->start_pfn)
4115 return -1;
4117 return 0;
4120 /* sort the node_map by start_pfn */
4121 static void __init sort_node_map(void)
4123 sort(early_node_map, (size_t)nr_nodemap_entries,
4124 sizeof(struct node_active_region),
4125 cmp_node_active_region, NULL);
4128 /* Find the lowest pfn for a node */
4129 static unsigned long __init find_min_pfn_for_node(int nid)
4131 int i;
4132 unsigned long min_pfn = ULONG_MAX;
4134 /* Assuming a sorted map, the first range found has the starting pfn */
4135 for_each_active_range_index_in_nid(i, nid)
4136 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4138 if (min_pfn == ULONG_MAX) {
4139 printk(KERN_WARNING
4140 "Could not find start_pfn for node %d\n", nid);
4141 return 0;
4144 return min_pfn;
4148 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4150 * It returns the minimum PFN based on information provided via
4151 * add_active_range().
4153 unsigned long __init find_min_pfn_with_active_regions(void)
4155 return find_min_pfn_for_node(MAX_NUMNODES);
4159 * early_calculate_totalpages()
4160 * Sum pages in active regions for movable zone.
4161 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4163 static unsigned long __init early_calculate_totalpages(void)
4165 int i;
4166 unsigned long totalpages = 0;
4168 for (i = 0; i < nr_nodemap_entries; i++) {
4169 unsigned long pages = early_node_map[i].end_pfn -
4170 early_node_map[i].start_pfn;
4171 totalpages += pages;
4172 if (pages)
4173 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4175 return totalpages;
4179 * Find the PFN the Movable zone begins in each node. Kernel memory
4180 * is spread evenly between nodes as long as the nodes have enough
4181 * memory. When they don't, some nodes will have more kernelcore than
4182 * others
4184 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4186 int i, nid;
4187 unsigned long usable_startpfn;
4188 unsigned long kernelcore_node, kernelcore_remaining;
4189 /* save the state before borrow the nodemask */
4190 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4191 unsigned long totalpages = early_calculate_totalpages();
4192 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4195 * If movablecore was specified, calculate what size of
4196 * kernelcore that corresponds so that memory usable for
4197 * any allocation type is evenly spread. If both kernelcore
4198 * and movablecore are specified, then the value of kernelcore
4199 * will be used for required_kernelcore if it's greater than
4200 * what movablecore would have allowed.
4202 if (required_movablecore) {
4203 unsigned long corepages;
4206 * Round-up so that ZONE_MOVABLE is at least as large as what
4207 * was requested by the user
4209 required_movablecore =
4210 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4211 corepages = totalpages - required_movablecore;
4213 required_kernelcore = max(required_kernelcore, corepages);
4216 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4217 if (!required_kernelcore)
4218 goto out;
4220 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4221 find_usable_zone_for_movable();
4222 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4224 restart:
4225 /* Spread kernelcore memory as evenly as possible throughout nodes */
4226 kernelcore_node = required_kernelcore / usable_nodes;
4227 for_each_node_state(nid, N_HIGH_MEMORY) {
4229 * Recalculate kernelcore_node if the division per node
4230 * now exceeds what is necessary to satisfy the requested
4231 * amount of memory for the kernel
4233 if (required_kernelcore < kernelcore_node)
4234 kernelcore_node = required_kernelcore / usable_nodes;
4237 * As the map is walked, we track how much memory is usable
4238 * by the kernel using kernelcore_remaining. When it is
4239 * 0, the rest of the node is usable by ZONE_MOVABLE
4241 kernelcore_remaining = kernelcore_node;
4243 /* Go through each range of PFNs within this node */
4244 for_each_active_range_index_in_nid(i, nid) {
4245 unsigned long start_pfn, end_pfn;
4246 unsigned long size_pages;
4248 start_pfn = max(early_node_map[i].start_pfn,
4249 zone_movable_pfn[nid]);
4250 end_pfn = early_node_map[i].end_pfn;
4251 if (start_pfn >= end_pfn)
4252 continue;
4254 /* Account for what is only usable for kernelcore */
4255 if (start_pfn < usable_startpfn) {
4256 unsigned long kernel_pages;
4257 kernel_pages = min(end_pfn, usable_startpfn)
4258 - start_pfn;
4260 kernelcore_remaining -= min(kernel_pages,
4261 kernelcore_remaining);
4262 required_kernelcore -= min(kernel_pages,
4263 required_kernelcore);
4265 /* Continue if range is now fully accounted */
4266 if (end_pfn <= usable_startpfn) {
4269 * Push zone_movable_pfn to the end so
4270 * that if we have to rebalance
4271 * kernelcore across nodes, we will
4272 * not double account here
4274 zone_movable_pfn[nid] = end_pfn;
4275 continue;
4277 start_pfn = usable_startpfn;
4281 * The usable PFN range for ZONE_MOVABLE is from
4282 * start_pfn->end_pfn. Calculate size_pages as the
4283 * number of pages used as kernelcore
4285 size_pages = end_pfn - start_pfn;
4286 if (size_pages > kernelcore_remaining)
4287 size_pages = kernelcore_remaining;
4288 zone_movable_pfn[nid] = start_pfn + size_pages;
4291 * Some kernelcore has been met, update counts and
4292 * break if the kernelcore for this node has been
4293 * satisified
4295 required_kernelcore -= min(required_kernelcore,
4296 size_pages);
4297 kernelcore_remaining -= size_pages;
4298 if (!kernelcore_remaining)
4299 break;
4304 * If there is still required_kernelcore, we do another pass with one
4305 * less node in the count. This will push zone_movable_pfn[nid] further
4306 * along on the nodes that still have memory until kernelcore is
4307 * satisified
4309 usable_nodes--;
4310 if (usable_nodes && required_kernelcore > usable_nodes)
4311 goto restart;
4313 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4314 for (nid = 0; nid < MAX_NUMNODES; nid++)
4315 zone_movable_pfn[nid] =
4316 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4318 out:
4319 /* restore the node_state */
4320 node_states[N_HIGH_MEMORY] = saved_node_state;
4323 /* Any regular memory on that node ? */
4324 static void check_for_regular_memory(pg_data_t *pgdat)
4326 #ifdef CONFIG_HIGHMEM
4327 enum zone_type zone_type;
4329 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4330 struct zone *zone = &pgdat->node_zones[zone_type];
4331 if (zone->present_pages)
4332 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4334 #endif
4338 * free_area_init_nodes - Initialise all pg_data_t and zone data
4339 * @max_zone_pfn: an array of max PFNs for each zone
4341 * This will call free_area_init_node() for each active node in the system.
4342 * Using the page ranges provided by add_active_range(), the size of each
4343 * zone in each node and their holes is calculated. If the maximum PFN
4344 * between two adjacent zones match, it is assumed that the zone is empty.
4345 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4346 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4347 * starts where the previous one ended. For example, ZONE_DMA32 starts
4348 * at arch_max_dma_pfn.
4350 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4352 unsigned long nid;
4353 int i;
4355 /* Sort early_node_map as initialisation assumes it is sorted */
4356 sort_node_map();
4358 /* Record where the zone boundaries are */
4359 memset(arch_zone_lowest_possible_pfn, 0,
4360 sizeof(arch_zone_lowest_possible_pfn));
4361 memset(arch_zone_highest_possible_pfn, 0,
4362 sizeof(arch_zone_highest_possible_pfn));
4363 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4364 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4365 for (i = 1; i < MAX_NR_ZONES; i++) {
4366 if (i == ZONE_MOVABLE)
4367 continue;
4368 arch_zone_lowest_possible_pfn[i] =
4369 arch_zone_highest_possible_pfn[i-1];
4370 arch_zone_highest_possible_pfn[i] =
4371 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4373 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4374 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4376 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4377 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4378 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4380 /* Print out the zone ranges */
4381 printk("Zone PFN ranges:\n");
4382 for (i = 0; i < MAX_NR_ZONES; i++) {
4383 if (i == ZONE_MOVABLE)
4384 continue;
4385 printk(" %-8s %0#10lx -> %0#10lx\n",
4386 zone_names[i],
4387 arch_zone_lowest_possible_pfn[i],
4388 arch_zone_highest_possible_pfn[i]);
4391 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4392 printk("Movable zone start PFN for each node\n");
4393 for (i = 0; i < MAX_NUMNODES; i++) {
4394 if (zone_movable_pfn[i])
4395 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4398 /* Print out the early_node_map[] */
4399 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4400 for (i = 0; i < nr_nodemap_entries; i++)
4401 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4402 early_node_map[i].start_pfn,
4403 early_node_map[i].end_pfn);
4405 /* Initialise every node */
4406 mminit_verify_pageflags_layout();
4407 setup_nr_node_ids();
4408 for_each_online_node(nid) {
4409 pg_data_t *pgdat = NODE_DATA(nid);
4410 free_area_init_node(nid, NULL,
4411 find_min_pfn_for_node(nid), NULL);
4413 /* Any memory on that node */
4414 if (pgdat->node_present_pages)
4415 node_set_state(nid, N_HIGH_MEMORY);
4416 check_for_regular_memory(pgdat);
4420 static int __init cmdline_parse_core(char *p, unsigned long *core)
4422 unsigned long long coremem;
4423 if (!p)
4424 return -EINVAL;
4426 coremem = memparse(p, &p);
4427 *core = coremem >> PAGE_SHIFT;
4429 /* Paranoid check that UL is enough for the coremem value */
4430 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4432 return 0;
4436 * kernelcore=size sets the amount of memory for use for allocations that
4437 * cannot be reclaimed or migrated.
4439 static int __init cmdline_parse_kernelcore(char *p)
4441 return cmdline_parse_core(p, &required_kernelcore);
4445 * movablecore=size sets the amount of memory for use for allocations that
4446 * can be reclaimed or migrated.
4448 static int __init cmdline_parse_movablecore(char *p)
4450 return cmdline_parse_core(p, &required_movablecore);
4453 early_param("kernelcore", cmdline_parse_kernelcore);
4454 early_param("movablecore", cmdline_parse_movablecore);
4456 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4459 * set_dma_reserve - set the specified number of pages reserved in the first zone
4460 * @new_dma_reserve: The number of pages to mark reserved
4462 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4463 * In the DMA zone, a significant percentage may be consumed by kernel image
4464 * and other unfreeable allocations which can skew the watermarks badly. This
4465 * function may optionally be used to account for unfreeable pages in the
4466 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4467 * smaller per-cpu batchsize.
4469 void __init set_dma_reserve(unsigned long new_dma_reserve)
4471 dma_reserve = new_dma_reserve;
4474 #ifndef CONFIG_NEED_MULTIPLE_NODES
4475 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4476 EXPORT_SYMBOL(contig_page_data);
4477 #endif
4479 void __init free_area_init(unsigned long *zones_size)
4481 free_area_init_node(0, zones_size,
4482 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4485 static int page_alloc_cpu_notify(struct notifier_block *self,
4486 unsigned long action, void *hcpu)
4488 int cpu = (unsigned long)hcpu;
4490 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4491 drain_pages(cpu);
4494 * Spill the event counters of the dead processor
4495 * into the current processors event counters.
4496 * This artificially elevates the count of the current
4497 * processor.
4499 vm_events_fold_cpu(cpu);
4502 * Zero the differential counters of the dead processor
4503 * so that the vm statistics are consistent.
4505 * This is only okay since the processor is dead and cannot
4506 * race with what we are doing.
4508 refresh_cpu_vm_stats(cpu);
4510 return NOTIFY_OK;
4513 void __init page_alloc_init(void)
4515 hotcpu_notifier(page_alloc_cpu_notify, 0);
4519 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4520 * or min_free_kbytes changes.
4522 static void calculate_totalreserve_pages(void)
4524 struct pglist_data *pgdat;
4525 unsigned long reserve_pages = 0;
4526 enum zone_type i, j;
4528 for_each_online_pgdat(pgdat) {
4529 for (i = 0; i < MAX_NR_ZONES; i++) {
4530 struct zone *zone = pgdat->node_zones + i;
4531 unsigned long max = 0;
4533 /* Find valid and maximum lowmem_reserve in the zone */
4534 for (j = i; j < MAX_NR_ZONES; j++) {
4535 if (zone->lowmem_reserve[j] > max)
4536 max = zone->lowmem_reserve[j];
4539 /* we treat the high watermark as reserved pages. */
4540 max += high_wmark_pages(zone);
4542 if (max > zone->present_pages)
4543 max = zone->present_pages;
4544 reserve_pages += max;
4547 totalreserve_pages = reserve_pages;
4551 * setup_per_zone_lowmem_reserve - called whenever
4552 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4553 * has a correct pages reserved value, so an adequate number of
4554 * pages are left in the zone after a successful __alloc_pages().
4556 static void setup_per_zone_lowmem_reserve(void)
4558 struct pglist_data *pgdat;
4559 enum zone_type j, idx;
4561 for_each_online_pgdat(pgdat) {
4562 for (j = 0; j < MAX_NR_ZONES; j++) {
4563 struct zone *zone = pgdat->node_zones + j;
4564 unsigned long present_pages = zone->present_pages;
4566 zone->lowmem_reserve[j] = 0;
4568 idx = j;
4569 while (idx) {
4570 struct zone *lower_zone;
4572 idx--;
4574 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4575 sysctl_lowmem_reserve_ratio[idx] = 1;
4577 lower_zone = pgdat->node_zones + idx;
4578 lower_zone->lowmem_reserve[j] = present_pages /
4579 sysctl_lowmem_reserve_ratio[idx];
4580 present_pages += lower_zone->present_pages;
4585 /* update totalreserve_pages */
4586 calculate_totalreserve_pages();
4590 * setup_per_zone_wmarks - called when min_free_kbytes changes
4591 * or when memory is hot-{added|removed}
4593 * Ensures that the watermark[min,low,high] values for each zone are set
4594 * correctly with respect to min_free_kbytes.
4596 void setup_per_zone_wmarks(void)
4598 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4599 unsigned long lowmem_pages = 0;
4600 struct zone *zone;
4601 unsigned long flags;
4603 /* Calculate total number of !ZONE_HIGHMEM pages */
4604 for_each_zone(zone) {
4605 if (!is_highmem(zone))
4606 lowmem_pages += zone->present_pages;
4609 for_each_zone(zone) {
4610 u64 tmp;
4612 spin_lock_irqsave(&zone->lock, flags);
4613 tmp = (u64)pages_min * zone->present_pages;
4614 do_div(tmp, lowmem_pages);
4615 if (is_highmem(zone)) {
4617 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4618 * need highmem pages, so cap pages_min to a small
4619 * value here.
4621 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4622 * deltas controls asynch page reclaim, and so should
4623 * not be capped for highmem.
4625 int min_pages;
4627 min_pages = zone->present_pages / 1024;
4628 if (min_pages < SWAP_CLUSTER_MAX)
4629 min_pages = SWAP_CLUSTER_MAX;
4630 if (min_pages > 128)
4631 min_pages = 128;
4632 zone->watermark[WMARK_MIN] = min_pages;
4633 } else {
4635 * If it's a lowmem zone, reserve a number of pages
4636 * proportionate to the zone's size.
4638 zone->watermark[WMARK_MIN] = tmp;
4641 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4642 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4643 setup_zone_migrate_reserve(zone);
4644 spin_unlock_irqrestore(&zone->lock, flags);
4647 /* update totalreserve_pages */
4648 calculate_totalreserve_pages();
4652 * The inactive anon list should be small enough that the VM never has to
4653 * do too much work, but large enough that each inactive page has a chance
4654 * to be referenced again before it is swapped out.
4656 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4657 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4658 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4659 * the anonymous pages are kept on the inactive list.
4661 * total target max
4662 * memory ratio inactive anon
4663 * -------------------------------------
4664 * 10MB 1 5MB
4665 * 100MB 1 50MB
4666 * 1GB 3 250MB
4667 * 10GB 10 0.9GB
4668 * 100GB 31 3GB
4669 * 1TB 101 10GB
4670 * 10TB 320 32GB
4672 void calculate_zone_inactive_ratio(struct zone *zone)
4674 unsigned int gb, ratio;
4676 /* Zone size in gigabytes */
4677 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4678 if (gb)
4679 ratio = int_sqrt(10 * gb);
4680 else
4681 ratio = 1;
4683 zone->inactive_ratio = ratio;
4686 static void __init setup_per_zone_inactive_ratio(void)
4688 struct zone *zone;
4690 for_each_zone(zone)
4691 calculate_zone_inactive_ratio(zone);
4695 * Initialise min_free_kbytes.
4697 * For small machines we want it small (128k min). For large machines
4698 * we want it large (64MB max). But it is not linear, because network
4699 * bandwidth does not increase linearly with machine size. We use
4701 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4702 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4704 * which yields
4706 * 16MB: 512k
4707 * 32MB: 724k
4708 * 64MB: 1024k
4709 * 128MB: 1448k
4710 * 256MB: 2048k
4711 * 512MB: 2896k
4712 * 1024MB: 4096k
4713 * 2048MB: 5792k
4714 * 4096MB: 8192k
4715 * 8192MB: 11584k
4716 * 16384MB: 16384k
4718 static int __init init_per_zone_wmark_min(void)
4720 unsigned long lowmem_kbytes;
4722 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4724 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4725 if (min_free_kbytes < 128)
4726 min_free_kbytes = 128;
4727 if (min_free_kbytes > 65536)
4728 min_free_kbytes = 65536;
4729 setup_per_zone_wmarks();
4730 setup_per_zone_lowmem_reserve();
4731 setup_per_zone_inactive_ratio();
4732 return 0;
4734 module_init(init_per_zone_wmark_min)
4737 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4738 * that we can call two helper functions whenever min_free_kbytes
4739 * changes.
4741 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4742 void __user *buffer, size_t *length, loff_t *ppos)
4744 proc_dointvec(table, write, buffer, length, ppos);
4745 if (write)
4746 setup_per_zone_wmarks();
4747 return 0;
4750 #ifdef CONFIG_NUMA
4751 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4752 void __user *buffer, size_t *length, loff_t *ppos)
4754 struct zone *zone;
4755 int rc;
4757 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4758 if (rc)
4759 return rc;
4761 for_each_zone(zone)
4762 zone->min_unmapped_pages = (zone->present_pages *
4763 sysctl_min_unmapped_ratio) / 100;
4764 return 0;
4767 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4768 void __user *buffer, size_t *length, loff_t *ppos)
4770 struct zone *zone;
4771 int rc;
4773 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4774 if (rc)
4775 return rc;
4777 for_each_zone(zone)
4778 zone->min_slab_pages = (zone->present_pages *
4779 sysctl_min_slab_ratio) / 100;
4780 return 0;
4782 #endif
4785 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4786 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4787 * whenever sysctl_lowmem_reserve_ratio changes.
4789 * The reserve ratio obviously has absolutely no relation with the
4790 * minimum watermarks. The lowmem reserve ratio can only make sense
4791 * if in function of the boot time zone sizes.
4793 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4794 void __user *buffer, size_t *length, loff_t *ppos)
4796 proc_dointvec_minmax(table, write, buffer, length, ppos);
4797 setup_per_zone_lowmem_reserve();
4798 return 0;
4802 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4803 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4804 * can have before it gets flushed back to buddy allocator.
4807 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4808 void __user *buffer, size_t *length, loff_t *ppos)
4810 struct zone *zone;
4811 unsigned int cpu;
4812 int ret;
4814 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4815 if (!write || (ret == -EINVAL))
4816 return ret;
4817 for_each_populated_zone(zone) {
4818 for_each_online_cpu(cpu) {
4819 unsigned long high;
4820 high = zone->present_pages / percpu_pagelist_fraction;
4821 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4824 return 0;
4827 int hashdist = HASHDIST_DEFAULT;
4829 #ifdef CONFIG_NUMA
4830 static int __init set_hashdist(char *str)
4832 if (!str)
4833 return 0;
4834 hashdist = simple_strtoul(str, &str, 0);
4835 return 1;
4837 __setup("hashdist=", set_hashdist);
4838 #endif
4841 * allocate a large system hash table from bootmem
4842 * - it is assumed that the hash table must contain an exact power-of-2
4843 * quantity of entries
4844 * - limit is the number of hash buckets, not the total allocation size
4846 void *__init alloc_large_system_hash(const char *tablename,
4847 unsigned long bucketsize,
4848 unsigned long numentries,
4849 int scale,
4850 int flags,
4851 unsigned int *_hash_shift,
4852 unsigned int *_hash_mask,
4853 unsigned long limit)
4855 unsigned long long max = limit;
4856 unsigned long log2qty, size;
4857 void *table = NULL;
4859 /* allow the kernel cmdline to have a say */
4860 if (!numentries) {
4861 /* round applicable memory size up to nearest megabyte */
4862 numentries = nr_kernel_pages;
4863 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4864 numentries >>= 20 - PAGE_SHIFT;
4865 numentries <<= 20 - PAGE_SHIFT;
4867 /* limit to 1 bucket per 2^scale bytes of low memory */
4868 if (scale > PAGE_SHIFT)
4869 numentries >>= (scale - PAGE_SHIFT);
4870 else
4871 numentries <<= (PAGE_SHIFT - scale);
4873 /* Make sure we've got at least a 0-order allocation.. */
4874 if (unlikely(flags & HASH_SMALL)) {
4875 /* Makes no sense without HASH_EARLY */
4876 WARN_ON(!(flags & HASH_EARLY));
4877 if (!(numentries >> *_hash_shift)) {
4878 numentries = 1UL << *_hash_shift;
4879 BUG_ON(!numentries);
4881 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4882 numentries = PAGE_SIZE / bucketsize;
4884 numentries = roundup_pow_of_two(numentries);
4886 /* limit allocation size to 1/16 total memory by default */
4887 if (max == 0) {
4888 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4889 do_div(max, bucketsize);
4892 if (numentries > max)
4893 numentries = max;
4895 log2qty = ilog2(numentries);
4897 do {
4898 size = bucketsize << log2qty;
4899 if (flags & HASH_EARLY)
4900 table = alloc_bootmem_nopanic(size);
4901 else if (hashdist)
4902 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4903 else {
4905 * If bucketsize is not a power-of-two, we may free
4906 * some pages at the end of hash table which
4907 * alloc_pages_exact() automatically does
4909 if (get_order(size) < MAX_ORDER) {
4910 table = alloc_pages_exact(size, GFP_ATOMIC);
4911 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4914 } while (!table && size > PAGE_SIZE && --log2qty);
4916 if (!table)
4917 panic("Failed to allocate %s hash table\n", tablename);
4919 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4920 tablename,
4921 (1U << log2qty),
4922 ilog2(size) - PAGE_SHIFT,
4923 size);
4925 if (_hash_shift)
4926 *_hash_shift = log2qty;
4927 if (_hash_mask)
4928 *_hash_mask = (1 << log2qty) - 1;
4930 return table;
4933 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4934 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4935 unsigned long pfn)
4937 #ifdef CONFIG_SPARSEMEM
4938 return __pfn_to_section(pfn)->pageblock_flags;
4939 #else
4940 return zone->pageblock_flags;
4941 #endif /* CONFIG_SPARSEMEM */
4944 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4946 #ifdef CONFIG_SPARSEMEM
4947 pfn &= (PAGES_PER_SECTION-1);
4948 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4949 #else
4950 pfn = pfn - zone->zone_start_pfn;
4951 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4952 #endif /* CONFIG_SPARSEMEM */
4956 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4957 * @page: The page within the block of interest
4958 * @start_bitidx: The first bit of interest to retrieve
4959 * @end_bitidx: The last bit of interest
4960 * returns pageblock_bits flags
4962 unsigned long get_pageblock_flags_group(struct page *page,
4963 int start_bitidx, int end_bitidx)
4965 struct zone *zone;
4966 unsigned long *bitmap;
4967 unsigned long pfn, bitidx;
4968 unsigned long flags = 0;
4969 unsigned long value = 1;
4971 zone = page_zone(page);
4972 pfn = page_to_pfn(page);
4973 bitmap = get_pageblock_bitmap(zone, pfn);
4974 bitidx = pfn_to_bitidx(zone, pfn);
4976 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4977 if (test_bit(bitidx + start_bitidx, bitmap))
4978 flags |= value;
4980 return flags;
4984 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4985 * @page: The page within the block of interest
4986 * @start_bitidx: The first bit of interest
4987 * @end_bitidx: The last bit of interest
4988 * @flags: The flags to set
4990 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4991 int start_bitidx, int end_bitidx)
4993 struct zone *zone;
4994 unsigned long *bitmap;
4995 unsigned long pfn, bitidx;
4996 unsigned long value = 1;
4998 zone = page_zone(page);
4999 pfn = page_to_pfn(page);
5000 bitmap = get_pageblock_bitmap(zone, pfn);
5001 bitidx = pfn_to_bitidx(zone, pfn);
5002 VM_BUG_ON(pfn < zone->zone_start_pfn);
5003 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5005 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5006 if (flags & value)
5007 __set_bit(bitidx + start_bitidx, bitmap);
5008 else
5009 __clear_bit(bitidx + start_bitidx, bitmap);
5013 * This is designed as sub function...plz see page_isolation.c also.
5014 * set/clear page block's type to be ISOLATE.
5015 * page allocater never alloc memory from ISOLATE block.
5018 int set_migratetype_isolate(struct page *page)
5020 struct zone *zone;
5021 unsigned long flags;
5022 int ret = -EBUSY;
5023 int zone_idx;
5025 zone = page_zone(page);
5026 zone_idx = zone_idx(zone);
5027 spin_lock_irqsave(&zone->lock, flags);
5029 * In future, more migrate types will be able to be isolation target.
5031 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5032 zone_idx != ZONE_MOVABLE)
5033 goto out;
5034 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5035 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5036 ret = 0;
5037 out:
5038 spin_unlock_irqrestore(&zone->lock, flags);
5039 if (!ret)
5040 drain_all_pages();
5041 return ret;
5044 void unset_migratetype_isolate(struct page *page)
5046 struct zone *zone;
5047 unsigned long flags;
5048 zone = page_zone(page);
5049 spin_lock_irqsave(&zone->lock, flags);
5050 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5051 goto out;
5052 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5053 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5054 out:
5055 spin_unlock_irqrestore(&zone->lock, flags);
5058 #ifdef CONFIG_MEMORY_HOTREMOVE
5060 * All pages in the range must be isolated before calling this.
5062 void
5063 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5065 struct page *page;
5066 struct zone *zone;
5067 int order, i;
5068 unsigned long pfn;
5069 unsigned long flags;
5070 /* find the first valid pfn */
5071 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5072 if (pfn_valid(pfn))
5073 break;
5074 if (pfn == end_pfn)
5075 return;
5076 zone = page_zone(pfn_to_page(pfn));
5077 spin_lock_irqsave(&zone->lock, flags);
5078 pfn = start_pfn;
5079 while (pfn < end_pfn) {
5080 if (!pfn_valid(pfn)) {
5081 pfn++;
5082 continue;
5084 page = pfn_to_page(pfn);
5085 BUG_ON(page_count(page));
5086 BUG_ON(!PageBuddy(page));
5087 order = page_order(page);
5088 #ifdef CONFIG_DEBUG_VM
5089 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5090 pfn, 1 << order, end_pfn);
5091 #endif
5092 list_del(&page->lru);
5093 rmv_page_order(page);
5094 zone->free_area[order].nr_free--;
5095 __mod_zone_page_state(zone, NR_FREE_PAGES,
5096 - (1UL << order));
5097 for (i = 0; i < (1 << order); i++)
5098 SetPageReserved((page+i));
5099 pfn += (1 << order);
5101 spin_unlock_irqrestore(&zone->lock, flags);
5103 #endif