usb: added usb-host functionality for MSM devices amd Leo config file
[htc-linux.git] / tools / perf / builtin-timechart.c
blob4101afeb46750eab8236cc2b5e1c1921f96d6421
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
15 #include "builtin.h"
17 #include "util/util.h"
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/string.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/svghelper.h"
34 static char const *input_name = "perf.data";
35 static char const *output_name = "output.svg";
38 static unsigned long page_size;
39 static unsigned long mmap_window = 32;
40 static u64 sample_type;
42 static unsigned int numcpus;
43 static u64 min_freq; /* Lowest CPU frequency seen */
44 static u64 max_freq; /* Highest CPU frequency seen */
45 static u64 turbo_frequency;
47 static u64 first_time, last_time;
49 static int power_only;
52 static struct perf_header *header;
54 struct per_pid;
55 struct per_pidcomm;
57 struct cpu_sample;
58 struct power_event;
59 struct wake_event;
61 struct sample_wrapper;
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
73 struct per_pid {
74 struct per_pid *next;
76 int pid;
77 int ppid;
79 u64 start_time;
80 u64 end_time;
81 u64 total_time;
82 int display;
84 struct per_pidcomm *all;
85 struct per_pidcomm *current;
87 int painted;
91 struct per_pidcomm {
92 struct per_pidcomm *next;
94 u64 start_time;
95 u64 end_time;
96 u64 total_time;
98 int Y;
99 int display;
101 long state;
102 u64 state_since;
104 char *comm;
106 struct cpu_sample *samples;
109 struct sample_wrapper {
110 struct sample_wrapper *next;
112 u64 timestamp;
113 unsigned char data[0];
116 #define TYPE_NONE 0
117 #define TYPE_RUNNING 1
118 #define TYPE_WAITING 2
119 #define TYPE_BLOCKED 3
121 struct cpu_sample {
122 struct cpu_sample *next;
124 u64 start_time;
125 u64 end_time;
126 int type;
127 int cpu;
130 static struct per_pid *all_data;
132 #define CSTATE 1
133 #define PSTATE 2
135 struct power_event {
136 struct power_event *next;
137 int type;
138 int state;
139 u64 start_time;
140 u64 end_time;
141 int cpu;
144 struct wake_event {
145 struct wake_event *next;
146 int waker;
147 int wakee;
148 u64 time;
151 static struct power_event *power_events;
152 static struct wake_event *wake_events;
154 struct sample_wrapper *all_samples;
156 static struct per_pid *find_create_pid(int pid)
158 struct per_pid *cursor = all_data;
160 while (cursor) {
161 if (cursor->pid == pid)
162 return cursor;
163 cursor = cursor->next;
165 cursor = malloc(sizeof(struct per_pid));
166 assert(cursor != NULL);
167 memset(cursor, 0, sizeof(struct per_pid));
168 cursor->pid = pid;
169 cursor->next = all_data;
170 all_data = cursor;
171 return cursor;
174 static void pid_set_comm(int pid, char *comm)
176 struct per_pid *p;
177 struct per_pidcomm *c;
178 p = find_create_pid(pid);
179 c = p->all;
180 while (c) {
181 if (c->comm && strcmp(c->comm, comm) == 0) {
182 p->current = c;
183 return;
185 if (!c->comm) {
186 c->comm = strdup(comm);
187 p->current = c;
188 return;
190 c = c->next;
192 c = malloc(sizeof(struct per_pidcomm));
193 assert(c != NULL);
194 memset(c, 0, sizeof(struct per_pidcomm));
195 c->comm = strdup(comm);
196 p->current = c;
197 c->next = p->all;
198 p->all = c;
201 static void pid_fork(int pid, int ppid, u64 timestamp)
203 struct per_pid *p, *pp;
204 p = find_create_pid(pid);
205 pp = find_create_pid(ppid);
206 p->ppid = ppid;
207 if (pp->current && pp->current->comm && !p->current)
208 pid_set_comm(pid, pp->current->comm);
210 p->start_time = timestamp;
211 if (p->current) {
212 p->current->start_time = timestamp;
213 p->current->state_since = timestamp;
217 static void pid_exit(int pid, u64 timestamp)
219 struct per_pid *p;
220 p = find_create_pid(pid);
221 p->end_time = timestamp;
222 if (p->current)
223 p->current->end_time = timestamp;
226 static void
227 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
229 struct per_pid *p;
230 struct per_pidcomm *c;
231 struct cpu_sample *sample;
233 p = find_create_pid(pid);
234 c = p->current;
235 if (!c) {
236 c = malloc(sizeof(struct per_pidcomm));
237 assert(c != NULL);
238 memset(c, 0, sizeof(struct per_pidcomm));
239 p->current = c;
240 c->next = p->all;
241 p->all = c;
244 sample = malloc(sizeof(struct cpu_sample));
245 assert(sample != NULL);
246 memset(sample, 0, sizeof(struct cpu_sample));
247 sample->start_time = start;
248 sample->end_time = end;
249 sample->type = type;
250 sample->next = c->samples;
251 sample->cpu = cpu;
252 c->samples = sample;
254 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
255 c->total_time += (end-start);
256 p->total_time += (end-start);
259 if (c->start_time == 0 || c->start_time > start)
260 c->start_time = start;
261 if (p->start_time == 0 || p->start_time > start)
262 p->start_time = start;
264 if (cpu > numcpus)
265 numcpus = cpu;
268 #define MAX_CPUS 4096
270 static u64 cpus_cstate_start_times[MAX_CPUS];
271 static int cpus_cstate_state[MAX_CPUS];
272 static u64 cpus_pstate_start_times[MAX_CPUS];
273 static u64 cpus_pstate_state[MAX_CPUS];
275 static int
276 process_comm_event(event_t *event)
278 pid_set_comm(event->comm.tid, event->comm.comm);
279 return 0;
281 static int
282 process_fork_event(event_t *event)
284 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
285 return 0;
288 static int
289 process_exit_event(event_t *event)
291 pid_exit(event->fork.pid, event->fork.time);
292 return 0;
295 struct trace_entry {
296 u32 size;
297 unsigned short type;
298 unsigned char flags;
299 unsigned char preempt_count;
300 int pid;
301 int tgid;
304 struct power_entry {
305 struct trace_entry te;
306 s64 type;
307 s64 value;
310 #define TASK_COMM_LEN 16
311 struct wakeup_entry {
312 struct trace_entry te;
313 char comm[TASK_COMM_LEN];
314 int pid;
315 int prio;
316 int success;
320 * trace_flag_type is an enumeration that holds different
321 * states when a trace occurs. These are:
322 * IRQS_OFF - interrupts were disabled
323 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
324 * NEED_RESCED - reschedule is requested
325 * HARDIRQ - inside an interrupt handler
326 * SOFTIRQ - inside a softirq handler
328 enum trace_flag_type {
329 TRACE_FLAG_IRQS_OFF = 0x01,
330 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
331 TRACE_FLAG_NEED_RESCHED = 0x04,
332 TRACE_FLAG_HARDIRQ = 0x08,
333 TRACE_FLAG_SOFTIRQ = 0x10,
338 struct sched_switch {
339 struct trace_entry te;
340 char prev_comm[TASK_COMM_LEN];
341 int prev_pid;
342 int prev_prio;
343 long prev_state; /* Arjan weeps. */
344 char next_comm[TASK_COMM_LEN];
345 int next_pid;
346 int next_prio;
349 static void c_state_start(int cpu, u64 timestamp, int state)
351 cpus_cstate_start_times[cpu] = timestamp;
352 cpus_cstate_state[cpu] = state;
355 static void c_state_end(int cpu, u64 timestamp)
357 struct power_event *pwr;
358 pwr = malloc(sizeof(struct power_event));
359 if (!pwr)
360 return;
361 memset(pwr, 0, sizeof(struct power_event));
363 pwr->state = cpus_cstate_state[cpu];
364 pwr->start_time = cpus_cstate_start_times[cpu];
365 pwr->end_time = timestamp;
366 pwr->cpu = cpu;
367 pwr->type = CSTATE;
368 pwr->next = power_events;
370 power_events = pwr;
373 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
375 struct power_event *pwr;
376 pwr = malloc(sizeof(struct power_event));
378 if (new_freq > 8000000) /* detect invalid data */
379 return;
381 if (!pwr)
382 return;
383 memset(pwr, 0, sizeof(struct power_event));
385 pwr->state = cpus_pstate_state[cpu];
386 pwr->start_time = cpus_pstate_start_times[cpu];
387 pwr->end_time = timestamp;
388 pwr->cpu = cpu;
389 pwr->type = PSTATE;
390 pwr->next = power_events;
392 if (!pwr->start_time)
393 pwr->start_time = first_time;
395 power_events = pwr;
397 cpus_pstate_state[cpu] = new_freq;
398 cpus_pstate_start_times[cpu] = timestamp;
400 if ((u64)new_freq > max_freq)
401 max_freq = new_freq;
403 if (new_freq < min_freq || min_freq == 0)
404 min_freq = new_freq;
406 if (new_freq == max_freq - 1000)
407 turbo_frequency = max_freq;
410 static void
411 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
413 struct wake_event *we;
414 struct per_pid *p;
415 struct wakeup_entry *wake = (void *)te;
417 we = malloc(sizeof(struct wake_event));
418 if (!we)
419 return;
421 memset(we, 0, sizeof(struct wake_event));
422 we->time = timestamp;
423 we->waker = pid;
425 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
426 we->waker = -1;
428 we->wakee = wake->pid;
429 we->next = wake_events;
430 wake_events = we;
431 p = find_create_pid(we->wakee);
433 if (p && p->current && p->current->state == TYPE_NONE) {
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
437 if (p && p->current && p->current->state == TYPE_BLOCKED) {
438 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
439 p->current->state_since = timestamp;
440 p->current->state = TYPE_WAITING;
444 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
446 struct per_pid *p = NULL, *prev_p;
447 struct sched_switch *sw = (void *)te;
450 prev_p = find_create_pid(sw->prev_pid);
452 p = find_create_pid(sw->next_pid);
454 if (prev_p->current && prev_p->current->state != TYPE_NONE)
455 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
456 if (p && p->current) {
457 if (p->current->state != TYPE_NONE)
458 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
460 p->current->state_since = timestamp;
461 p->current->state = TYPE_RUNNING;
464 if (prev_p->current) {
465 prev_p->current->state = TYPE_NONE;
466 prev_p->current->state_since = timestamp;
467 if (sw->prev_state & 2)
468 prev_p->current->state = TYPE_BLOCKED;
469 if (sw->prev_state == 0)
470 prev_p->current->state = TYPE_WAITING;
475 static int
476 process_sample_event(event_t *event)
478 int cursor = 0;
479 u64 addr = 0;
480 u64 stamp = 0;
481 u32 cpu = 0;
482 u32 pid = 0;
483 struct trace_entry *te;
485 if (sample_type & PERF_SAMPLE_IP)
486 cursor++;
488 if (sample_type & PERF_SAMPLE_TID) {
489 pid = event->sample.array[cursor]>>32;
490 cursor++;
492 if (sample_type & PERF_SAMPLE_TIME) {
493 stamp = event->sample.array[cursor++];
495 if (!first_time || first_time > stamp)
496 first_time = stamp;
497 if (last_time < stamp)
498 last_time = stamp;
501 if (sample_type & PERF_SAMPLE_ADDR)
502 addr = event->sample.array[cursor++];
503 if (sample_type & PERF_SAMPLE_ID)
504 cursor++;
505 if (sample_type & PERF_SAMPLE_STREAM_ID)
506 cursor++;
507 if (sample_type & PERF_SAMPLE_CPU)
508 cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
509 if (sample_type & PERF_SAMPLE_PERIOD)
510 cursor++;
512 te = (void *)&event->sample.array[cursor];
514 if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
515 char *event_str;
516 struct power_entry *pe;
518 pe = (void *)te;
520 event_str = perf_header__find_event(te->type);
522 if (!event_str)
523 return 0;
525 if (strcmp(event_str, "power:power_start") == 0)
526 c_state_start(cpu, stamp, pe->value);
528 if (strcmp(event_str, "power:power_end") == 0)
529 c_state_end(cpu, stamp);
531 if (strcmp(event_str, "power:power_frequency") == 0)
532 p_state_change(cpu, stamp, pe->value);
534 if (strcmp(event_str, "sched:sched_wakeup") == 0)
535 sched_wakeup(cpu, stamp, pid, te);
537 if (strcmp(event_str, "sched:sched_switch") == 0)
538 sched_switch(cpu, stamp, te);
540 return 0;
544 * After the last sample we need to wrap up the current C/P state
545 * and close out each CPU for these.
547 static void end_sample_processing(void)
549 u64 cpu;
550 struct power_event *pwr;
552 for (cpu = 0; cpu <= numcpus; cpu++) {
553 pwr = malloc(sizeof(struct power_event));
554 if (!pwr)
555 return;
556 memset(pwr, 0, sizeof(struct power_event));
558 /* C state */
559 #if 0
560 pwr->state = cpus_cstate_state[cpu];
561 pwr->start_time = cpus_cstate_start_times[cpu];
562 pwr->end_time = last_time;
563 pwr->cpu = cpu;
564 pwr->type = CSTATE;
565 pwr->next = power_events;
567 power_events = pwr;
568 #endif
569 /* P state */
571 pwr = malloc(sizeof(struct power_event));
572 if (!pwr)
573 return;
574 memset(pwr, 0, sizeof(struct power_event));
576 pwr->state = cpus_pstate_state[cpu];
577 pwr->start_time = cpus_pstate_start_times[cpu];
578 pwr->end_time = last_time;
579 pwr->cpu = cpu;
580 pwr->type = PSTATE;
581 pwr->next = power_events;
583 if (!pwr->start_time)
584 pwr->start_time = first_time;
585 if (!pwr->state)
586 pwr->state = min_freq;
587 power_events = pwr;
591 static u64 sample_time(event_t *event)
593 int cursor;
595 cursor = 0;
596 if (sample_type & PERF_SAMPLE_IP)
597 cursor++;
598 if (sample_type & PERF_SAMPLE_TID)
599 cursor++;
600 if (sample_type & PERF_SAMPLE_TIME)
601 return event->sample.array[cursor];
602 return 0;
607 * We first queue all events, sorted backwards by insertion.
608 * The order will get flipped later.
610 static int
611 queue_sample_event(event_t *event)
613 struct sample_wrapper *copy, *prev;
614 int size;
616 size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
618 copy = malloc(size);
619 if (!copy)
620 return 1;
622 memset(copy, 0, size);
624 copy->next = NULL;
625 copy->timestamp = sample_time(event);
627 memcpy(&copy->data, event, event->sample.header.size);
629 /* insert in the right place in the list */
631 if (!all_samples) {
632 /* first sample ever */
633 all_samples = copy;
634 return 0;
637 if (all_samples->timestamp < copy->timestamp) {
638 /* insert at the head of the list */
639 copy->next = all_samples;
640 all_samples = copy;
641 return 0;
644 prev = all_samples;
645 while (prev->next) {
646 if (prev->next->timestamp < copy->timestamp) {
647 copy->next = prev->next;
648 prev->next = copy;
649 return 0;
651 prev = prev->next;
653 /* insert at the end of the list */
654 prev->next = copy;
656 return 0;
659 static void sort_queued_samples(void)
661 struct sample_wrapper *cursor, *next;
663 cursor = all_samples;
664 all_samples = NULL;
666 while (cursor) {
667 next = cursor->next;
668 cursor->next = all_samples;
669 all_samples = cursor;
670 cursor = next;
675 * Sort the pid datastructure
677 static void sort_pids(void)
679 struct per_pid *new_list, *p, *cursor, *prev;
680 /* sort by ppid first, then by pid, lowest to highest */
682 new_list = NULL;
684 while (all_data) {
685 p = all_data;
686 all_data = p->next;
687 p->next = NULL;
689 if (new_list == NULL) {
690 new_list = p;
691 p->next = NULL;
692 continue;
694 prev = NULL;
695 cursor = new_list;
696 while (cursor) {
697 if (cursor->ppid > p->ppid ||
698 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
699 /* must insert before */
700 if (prev) {
701 p->next = prev->next;
702 prev->next = p;
703 cursor = NULL;
704 continue;
705 } else {
706 p->next = new_list;
707 new_list = p;
708 cursor = NULL;
709 continue;
713 prev = cursor;
714 cursor = cursor->next;
715 if (!cursor)
716 prev->next = p;
719 all_data = new_list;
723 static void draw_c_p_states(void)
725 struct power_event *pwr;
726 pwr = power_events;
729 * two pass drawing so that the P state bars are on top of the C state blocks
731 while (pwr) {
732 if (pwr->type == CSTATE)
733 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
734 pwr = pwr->next;
737 pwr = power_events;
738 while (pwr) {
739 if (pwr->type == PSTATE) {
740 if (!pwr->state)
741 pwr->state = min_freq;
742 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
744 pwr = pwr->next;
748 static void draw_wakeups(void)
750 struct wake_event *we;
751 struct per_pid *p;
752 struct per_pidcomm *c;
754 we = wake_events;
755 while (we) {
756 int from = 0, to = 0;
757 char *task_from = NULL, *task_to = NULL;
759 /* locate the column of the waker and wakee */
760 p = all_data;
761 while (p) {
762 if (p->pid == we->waker || p->pid == we->wakee) {
763 c = p->all;
764 while (c) {
765 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
766 if (p->pid == we->waker) {
767 from = c->Y;
768 task_from = strdup(c->comm);
770 if (p->pid == we->wakee) {
771 to = c->Y;
772 task_to = strdup(c->comm);
775 c = c->next;
777 c = p->all;
778 while (c) {
779 if (p->pid == we->waker && !from) {
780 from = c->Y;
781 task_from = strdup(c->comm);
783 if (p->pid == we->wakee && !to) {
784 to = c->Y;
785 task_to = strdup(c->comm);
787 c = c->next;
790 p = p->next;
793 if (!task_from) {
794 task_from = malloc(40);
795 sprintf(task_from, "[%i]", we->waker);
797 if (!task_to) {
798 task_to = malloc(40);
799 sprintf(task_to, "[%i]", we->wakee);
802 if (we->waker == -1)
803 svg_interrupt(we->time, to);
804 else if (from && to && abs(from - to) == 1)
805 svg_wakeline(we->time, from, to);
806 else
807 svg_partial_wakeline(we->time, from, task_from, to, task_to);
808 we = we->next;
810 free(task_from);
811 free(task_to);
815 static void draw_cpu_usage(void)
817 struct per_pid *p;
818 struct per_pidcomm *c;
819 struct cpu_sample *sample;
820 p = all_data;
821 while (p) {
822 c = p->all;
823 while (c) {
824 sample = c->samples;
825 while (sample) {
826 if (sample->type == TYPE_RUNNING)
827 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
829 sample = sample->next;
831 c = c->next;
833 p = p->next;
837 static void draw_process_bars(void)
839 struct per_pid *p;
840 struct per_pidcomm *c;
841 struct cpu_sample *sample;
842 int Y = 0;
844 Y = 2 * numcpus + 2;
846 p = all_data;
847 while (p) {
848 c = p->all;
849 while (c) {
850 if (!c->display) {
851 c->Y = 0;
852 c = c->next;
853 continue;
856 svg_box(Y, c->start_time, c->end_time, "process");
857 sample = c->samples;
858 while (sample) {
859 if (sample->type == TYPE_RUNNING)
860 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
861 if (sample->type == TYPE_BLOCKED)
862 svg_box(Y, sample->start_time, sample->end_time, "blocked");
863 if (sample->type == TYPE_WAITING)
864 svg_waiting(Y, sample->start_time, sample->end_time);
865 sample = sample->next;
868 if (c->comm) {
869 char comm[256];
870 if (c->total_time > 5000000000) /* 5 seconds */
871 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
872 else
873 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
875 svg_text(Y, c->start_time, comm);
877 c->Y = Y;
878 Y++;
879 c = c->next;
881 p = p->next;
885 static int determine_display_tasks(u64 threshold)
887 struct per_pid *p;
888 struct per_pidcomm *c;
889 int count = 0;
891 p = all_data;
892 while (p) {
893 p->display = 0;
894 if (p->start_time == 1)
895 p->start_time = first_time;
897 /* no exit marker, task kept running to the end */
898 if (p->end_time == 0)
899 p->end_time = last_time;
900 if (p->total_time >= threshold && !power_only)
901 p->display = 1;
903 c = p->all;
905 while (c) {
906 c->display = 0;
908 if (c->start_time == 1)
909 c->start_time = first_time;
911 if (c->total_time >= threshold && !power_only) {
912 c->display = 1;
913 count++;
916 if (c->end_time == 0)
917 c->end_time = last_time;
919 c = c->next;
921 p = p->next;
923 return count;
928 #define TIME_THRESH 10000000
930 static void write_svg_file(const char *filename)
932 u64 i;
933 int count;
935 numcpus++;
938 count = determine_display_tasks(TIME_THRESH);
940 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
941 if (count < 15)
942 count = determine_display_tasks(TIME_THRESH / 10);
944 open_svg(filename, numcpus, count, first_time, last_time);
946 svg_time_grid();
947 svg_legenda();
949 for (i = 0; i < numcpus; i++)
950 svg_cpu_box(i, max_freq, turbo_frequency);
952 draw_cpu_usage();
953 draw_process_bars();
954 draw_c_p_states();
955 draw_wakeups();
957 svg_close();
960 static int
961 process_event(event_t *event)
964 switch (event->header.type) {
966 case PERF_RECORD_COMM:
967 return process_comm_event(event);
968 case PERF_RECORD_FORK:
969 return process_fork_event(event);
970 case PERF_RECORD_EXIT:
971 return process_exit_event(event);
972 case PERF_RECORD_SAMPLE:
973 return queue_sample_event(event);
976 * We dont process them right now but they are fine:
978 case PERF_RECORD_MMAP:
979 case PERF_RECORD_THROTTLE:
980 case PERF_RECORD_UNTHROTTLE:
981 return 0;
983 default:
984 return -1;
987 return 0;
990 static void process_samples(void)
992 struct sample_wrapper *cursor;
993 event_t *event;
995 sort_queued_samples();
997 cursor = all_samples;
998 while (cursor) {
999 event = (void *)&cursor->data;
1000 cursor = cursor->next;
1001 process_sample_event(event);
1006 static int __cmd_timechart(void)
1008 int ret, rc = EXIT_FAILURE;
1009 unsigned long offset = 0;
1010 unsigned long head, shift;
1011 struct stat statbuf;
1012 event_t *event;
1013 uint32_t size;
1014 char *buf;
1015 int input;
1017 input = open(input_name, O_RDONLY);
1018 if (input < 0) {
1019 fprintf(stderr, " failed to open file: %s", input_name);
1020 if (!strcmp(input_name, "perf.data"))
1021 fprintf(stderr, " (try 'perf record' first)");
1022 fprintf(stderr, "\n");
1023 exit(-1);
1026 ret = fstat(input, &statbuf);
1027 if (ret < 0) {
1028 perror("failed to stat file");
1029 exit(-1);
1032 if (!statbuf.st_size) {
1033 fprintf(stderr, "zero-sized file, nothing to do!\n");
1034 exit(0);
1037 header = perf_header__read(input);
1038 head = header->data_offset;
1040 sample_type = perf_header__sample_type(header);
1042 shift = page_size * (head / page_size);
1043 offset += shift;
1044 head -= shift;
1046 remap:
1047 buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1048 MAP_SHARED, input, offset);
1049 if (buf == MAP_FAILED) {
1050 perror("failed to mmap file");
1051 exit(-1);
1054 more:
1055 event = (event_t *)(buf + head);
1057 size = event->header.size;
1058 if (!size)
1059 size = 8;
1061 if (head + event->header.size >= page_size * mmap_window) {
1062 int ret2;
1064 shift = page_size * (head / page_size);
1066 ret2 = munmap(buf, page_size * mmap_window);
1067 assert(ret2 == 0);
1069 offset += shift;
1070 head -= shift;
1071 goto remap;
1074 size = event->header.size;
1076 if (!size || process_event(event) < 0) {
1078 printf("%p [%p]: skipping unknown header type: %d\n",
1079 (void *)(offset + head),
1080 (void *)(long)(event->header.size),
1081 event->header.type);
1084 * assume we lost track of the stream, check alignment, and
1085 * increment a single u64 in the hope to catch on again 'soon'.
1088 if (unlikely(head & 7))
1089 head &= ~7ULL;
1091 size = 8;
1094 head += size;
1096 if (offset + head >= header->data_offset + header->data_size)
1097 goto done;
1099 if (offset + head < (unsigned long)statbuf.st_size)
1100 goto more;
1102 done:
1103 rc = EXIT_SUCCESS;
1104 close(input);
1107 process_samples();
1109 end_sample_processing();
1111 sort_pids();
1113 write_svg_file(output_name);
1115 printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name);
1117 return rc;
1120 static const char * const timechart_usage[] = {
1121 "perf timechart [<options>] {record}",
1122 NULL
1125 static const char *record_args[] = {
1126 "record",
1127 "-a",
1128 "-R",
1129 "-M",
1130 "-f",
1131 "-c", "1",
1132 "-e", "power:power_start",
1133 "-e", "power:power_end",
1134 "-e", "power:power_frequency",
1135 "-e", "sched:sched_wakeup",
1136 "-e", "sched:sched_switch",
1139 static int __cmd_record(int argc, const char **argv)
1141 unsigned int rec_argc, i, j;
1142 const char **rec_argv;
1144 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1145 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1147 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1148 rec_argv[i] = strdup(record_args[i]);
1150 for (j = 1; j < (unsigned int)argc; j++, i++)
1151 rec_argv[i] = argv[j];
1153 return cmd_record(i, rec_argv, NULL);
1156 static const struct option options[] = {
1157 OPT_STRING('i', "input", &input_name, "file",
1158 "input file name"),
1159 OPT_STRING('o', "output", &output_name, "file",
1160 "output file name"),
1161 OPT_INTEGER('w', "width", &svg_page_width,
1162 "page width"),
1163 OPT_BOOLEAN('p', "power-only", &power_only,
1164 "output power data only"),
1165 OPT_END()
1169 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1171 symbol__init();
1173 page_size = getpagesize();
1175 argc = parse_options(argc, argv, options, timechart_usage,
1176 PARSE_OPT_STOP_AT_NON_OPTION);
1178 if (argc && !strncmp(argv[0], "rec", 3))
1179 return __cmd_record(argc, argv);
1180 else if (argc)
1181 usage_with_options(timechart_usage, options);
1183 setup_pager();
1185 return __cmd_timechart();