1 --% ft| TRAJECTORY_T0_V0_A1_O0 sn| Closed-curve~orbit n| #0 d| 0.1 n| #1 d| 0.2 n| #2 d| 0.3 n| #3 d| 0 n| #4 d| 0 n| #5 d| 0 n| #6 d| 0 n| #7 d| 0 n| #8 d| 0 n| #9 d| 1.2 n| #10 d| 0 n| #11 d| 4 n| #12 d| 0 n| #13 d| 1.1 n| #14 d| 1 n| #15 d| 0 n| #16 d| 30000 n| #17 d| 30000 n| #18 d| x1 n| #19 d| x3
2 --% ft| BIFURCATION_1 sn| x1:~0.1~~x2:~0.2~~x3:~0.3~~n_1:~0~~n_2:~0~~U1:~0~~U2:~0~~g_1:~0~~ n| #0 d| 0.1 n| #1 d| 0.2 n| #2 d| 0.3 n| #3 d| 0 n| #4 d| 0 n| #5 d| 0 n| #6 d| 0 n| #7 d| 0 n| #8 d| 0 n| #9 d| 1.2 n| #10 d| 0 n| #11 d| 4 n| #12 d| 1.15 n| #13 d| 1 n| #14 d| w n| #15 d| 0.25 n| #16 d| 0.6 n| #17 d| -0.1 n| #18 d| 2.3 n| #19 d| 500 n| #20 d| 200 n| #21 d| x1
5 description
= "See Model refs in user's guide"
7 parameters
= {"g_1", "b_1", "g_2", "b_2", "beta", "w", "R", "C"}
8 variables
= {"x1", "x2", "x3", "n_1", "n_2","U1","U2"}
10 function f( g_1
, b_1
, g_2
, b_2
, beta
, w
, R
, C
, x1
, x2
, x3
, n_1
, n_2
, U1
, U2
)
15 U1
= (x1
- R
* x2
) * (g_1
* x3
+ b_1
- R
* x2
) + w
* U1
- C
16 U2
= (x1
- R
* x2
) * (g_2
* x3
+ b_2
- R
* x2
) + w
* U2
20 n1
= 1 / ( 1 + math
.exp( beta
* dU
) )
23 x0
= ( n1
* e1
+ n2
* e2
) / R
25 return x0
, x1
, x2
, n1
, n2
, U1
, U2