[GYRO] Refactor gyro driver for dual-gyro support
[inav.git] / lib / main / MAVLink / common / mavlink_msg_optical_flow_rad.h
blobc4326eb046d9a186d03c0b7a2c8b1b1606c68c20
1 #pragma once
2 // MESSAGE OPTICAL_FLOW_RAD PACKING
4 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD 106
6 MAVPACKED(
7 typedef struct __mavlink_optical_flow_rad_t {
8 uint64_t time_usec; /*< Timestamp (microseconds, synced to UNIX time or since system boot)*/
9 uint32_t integration_time_us; /*< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.*/
10 float integrated_x; /*< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)*/
11 float integrated_y; /*< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)*/
12 float integrated_xgyro; /*< RH rotation around X axis (rad)*/
13 float integrated_ygyro; /*< RH rotation around Y axis (rad)*/
14 float integrated_zgyro; /*< RH rotation around Z axis (rad)*/
15 uint32_t time_delta_distance_us; /*< Time in microseconds since the distance was sampled.*/
16 float distance; /*< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.*/
17 int16_t temperature; /*< Temperature * 100 in centi-degrees Celsius*/
18 uint8_t sensor_id; /*< Sensor ID*/
19 uint8_t quality; /*< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality*/
20 }) mavlink_optical_flow_rad_t;
22 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN 44
23 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN 44
24 #define MAVLINK_MSG_ID_106_LEN 44
25 #define MAVLINK_MSG_ID_106_MIN_LEN 44
27 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC 138
28 #define MAVLINK_MSG_ID_106_CRC 138
32 #if MAVLINK_COMMAND_24BIT
33 #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \
34 106, \
35 "OPTICAL_FLOW_RAD", \
36 12, \
37 { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \
38 { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \
39 { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \
40 { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \
41 { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \
42 { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \
43 { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \
44 { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \
45 { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \
46 { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \
47 { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \
48 { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \
49 } \
51 #else
52 #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \
53 "OPTICAL_FLOW_RAD", \
54 12, \
55 { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \
56 { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \
57 { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \
58 { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \
59 { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \
60 { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \
61 { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \
62 { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \
63 { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \
64 { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \
65 { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \
66 { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \
67 } \
69 #endif
71 /**
72 * @brief Pack a optical_flow_rad message
73 * @param system_id ID of this system
74 * @param component_id ID of this component (e.g. 200 for IMU)
75 * @param msg The MAVLink message to compress the data into
77 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
78 * @param sensor_id Sensor ID
79 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
80 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
81 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
82 * @param integrated_xgyro RH rotation around X axis (rad)
83 * @param integrated_ygyro RH rotation around Y axis (rad)
84 * @param integrated_zgyro RH rotation around Z axis (rad)
85 * @param temperature Temperature * 100 in centi-degrees Celsius
86 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
87 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
88 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
89 * @return length of the message in bytes (excluding serial stream start sign)
91 static inline uint16_t mavlink_msg_optical_flow_rad_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
92 uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
94 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
95 char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
96 _mav_put_uint64_t(buf, 0, time_usec);
97 _mav_put_uint32_t(buf, 8, integration_time_us);
98 _mav_put_float(buf, 12, integrated_x);
99 _mav_put_float(buf, 16, integrated_y);
100 _mav_put_float(buf, 20, integrated_xgyro);
101 _mav_put_float(buf, 24, integrated_ygyro);
102 _mav_put_float(buf, 28, integrated_zgyro);
103 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
104 _mav_put_float(buf, 36, distance);
105 _mav_put_int16_t(buf, 40, temperature);
106 _mav_put_uint8_t(buf, 42, sensor_id);
107 _mav_put_uint8_t(buf, 43, quality);
109 memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
110 #else
111 mavlink_optical_flow_rad_t packet;
112 packet.time_usec = time_usec;
113 packet.integration_time_us = integration_time_us;
114 packet.integrated_x = integrated_x;
115 packet.integrated_y = integrated_y;
116 packet.integrated_xgyro = integrated_xgyro;
117 packet.integrated_ygyro = integrated_ygyro;
118 packet.integrated_zgyro = integrated_zgyro;
119 packet.time_delta_distance_us = time_delta_distance_us;
120 packet.distance = distance;
121 packet.temperature = temperature;
122 packet.sensor_id = sensor_id;
123 packet.quality = quality;
125 memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
126 #endif
128 msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
129 return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
133 * @brief Pack a optical_flow_rad message on a channel
134 * @param system_id ID of this system
135 * @param component_id ID of this component (e.g. 200 for IMU)
136 * @param chan The MAVLink channel this message will be sent over
137 * @param msg The MAVLink message to compress the data into
138 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
139 * @param sensor_id Sensor ID
140 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
141 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
142 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
143 * @param integrated_xgyro RH rotation around X axis (rad)
144 * @param integrated_ygyro RH rotation around Y axis (rad)
145 * @param integrated_zgyro RH rotation around Z axis (rad)
146 * @param temperature Temperature * 100 in centi-degrees Celsius
147 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
148 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
149 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
150 * @return length of the message in bytes (excluding serial stream start sign)
152 static inline uint16_t mavlink_msg_optical_flow_rad_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
153 mavlink_message_t* msg,
154 uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance)
156 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
157 char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
158 _mav_put_uint64_t(buf, 0, time_usec);
159 _mav_put_uint32_t(buf, 8, integration_time_us);
160 _mav_put_float(buf, 12, integrated_x);
161 _mav_put_float(buf, 16, integrated_y);
162 _mav_put_float(buf, 20, integrated_xgyro);
163 _mav_put_float(buf, 24, integrated_ygyro);
164 _mav_put_float(buf, 28, integrated_zgyro);
165 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
166 _mav_put_float(buf, 36, distance);
167 _mav_put_int16_t(buf, 40, temperature);
168 _mav_put_uint8_t(buf, 42, sensor_id);
169 _mav_put_uint8_t(buf, 43, quality);
171 memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
172 #else
173 mavlink_optical_flow_rad_t packet;
174 packet.time_usec = time_usec;
175 packet.integration_time_us = integration_time_us;
176 packet.integrated_x = integrated_x;
177 packet.integrated_y = integrated_y;
178 packet.integrated_xgyro = integrated_xgyro;
179 packet.integrated_ygyro = integrated_ygyro;
180 packet.integrated_zgyro = integrated_zgyro;
181 packet.time_delta_distance_us = time_delta_distance_us;
182 packet.distance = distance;
183 packet.temperature = temperature;
184 packet.sensor_id = sensor_id;
185 packet.quality = quality;
187 memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
188 #endif
190 msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD;
191 return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
195 * @brief Encode a optical_flow_rad struct
197 * @param system_id ID of this system
198 * @param component_id ID of this component (e.g. 200 for IMU)
199 * @param msg The MAVLink message to compress the data into
200 * @param optical_flow_rad C-struct to read the message contents from
202 static inline uint16_t mavlink_msg_optical_flow_rad_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
204 return mavlink_msg_optical_flow_rad_pack(system_id, component_id, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
208 * @brief Encode a optical_flow_rad struct on a channel
210 * @param system_id ID of this system
211 * @param component_id ID of this component (e.g. 200 for IMU)
212 * @param chan The MAVLink channel this message will be sent over
213 * @param msg The MAVLink message to compress the data into
214 * @param optical_flow_rad C-struct to read the message contents from
216 static inline uint16_t mavlink_msg_optical_flow_rad_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad)
218 return mavlink_msg_optical_flow_rad_pack_chan(system_id, component_id, chan, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
222 * @brief Send a optical_flow_rad message
223 * @param chan MAVLink channel to send the message
225 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
226 * @param sensor_id Sensor ID
227 * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
228 * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
229 * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
230 * @param integrated_xgyro RH rotation around X axis (rad)
231 * @param integrated_ygyro RH rotation around Y axis (rad)
232 * @param integrated_zgyro RH rotation around Z axis (rad)
233 * @param temperature Temperature * 100 in centi-degrees Celsius
234 * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
235 * @param time_delta_distance_us Time in microseconds since the distance was sampled.
236 * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
238 #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
240 static inline void mavlink_msg_optical_flow_rad_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
242 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
243 char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN];
244 _mav_put_uint64_t(buf, 0, time_usec);
245 _mav_put_uint32_t(buf, 8, integration_time_us);
246 _mav_put_float(buf, 12, integrated_x);
247 _mav_put_float(buf, 16, integrated_y);
248 _mav_put_float(buf, 20, integrated_xgyro);
249 _mav_put_float(buf, 24, integrated_ygyro);
250 _mav_put_float(buf, 28, integrated_zgyro);
251 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
252 _mav_put_float(buf, 36, distance);
253 _mav_put_int16_t(buf, 40, temperature);
254 _mav_put_uint8_t(buf, 42, sensor_id);
255 _mav_put_uint8_t(buf, 43, quality);
257 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
258 #else
259 mavlink_optical_flow_rad_t packet;
260 packet.time_usec = time_usec;
261 packet.integration_time_us = integration_time_us;
262 packet.integrated_x = integrated_x;
263 packet.integrated_y = integrated_y;
264 packet.integrated_xgyro = integrated_xgyro;
265 packet.integrated_ygyro = integrated_ygyro;
266 packet.integrated_zgyro = integrated_zgyro;
267 packet.time_delta_distance_us = time_delta_distance_us;
268 packet.distance = distance;
269 packet.temperature = temperature;
270 packet.sensor_id = sensor_id;
271 packet.quality = quality;
273 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
274 #endif
278 * @brief Send a optical_flow_rad message
279 * @param chan MAVLink channel to send the message
280 * @param struct The MAVLink struct to serialize
282 static inline void mavlink_msg_optical_flow_rad_send_struct(mavlink_channel_t chan, const mavlink_optical_flow_rad_t* optical_flow_rad)
284 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
285 mavlink_msg_optical_flow_rad_send(chan, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance);
286 #else
287 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)optical_flow_rad, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
288 #endif
291 #if MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN <= MAVLINK_MAX_PAYLOAD_LEN
293 This varient of _send() can be used to save stack space by re-using
294 memory from the receive buffer. The caller provides a
295 mavlink_message_t which is the size of a full mavlink message. This
296 is usually the receive buffer for the channel, and allows a reply to an
297 incoming message with minimum stack space usage.
299 static inline void mavlink_msg_optical_flow_rad_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance)
301 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
302 char *buf = (char *)msgbuf;
303 _mav_put_uint64_t(buf, 0, time_usec);
304 _mav_put_uint32_t(buf, 8, integration_time_us);
305 _mav_put_float(buf, 12, integrated_x);
306 _mav_put_float(buf, 16, integrated_y);
307 _mav_put_float(buf, 20, integrated_xgyro);
308 _mav_put_float(buf, 24, integrated_ygyro);
309 _mav_put_float(buf, 28, integrated_zgyro);
310 _mav_put_uint32_t(buf, 32, time_delta_distance_us);
311 _mav_put_float(buf, 36, distance);
312 _mav_put_int16_t(buf, 40, temperature);
313 _mav_put_uint8_t(buf, 42, sensor_id);
314 _mav_put_uint8_t(buf, 43, quality);
316 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
317 #else
318 mavlink_optical_flow_rad_t *packet = (mavlink_optical_flow_rad_t *)msgbuf;
319 packet->time_usec = time_usec;
320 packet->integration_time_us = integration_time_us;
321 packet->integrated_x = integrated_x;
322 packet->integrated_y = integrated_y;
323 packet->integrated_xgyro = integrated_xgyro;
324 packet->integrated_ygyro = integrated_ygyro;
325 packet->integrated_zgyro = integrated_zgyro;
326 packet->time_delta_distance_us = time_delta_distance_us;
327 packet->distance = distance;
328 packet->temperature = temperature;
329 packet->sensor_id = sensor_id;
330 packet->quality = quality;
332 _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC);
333 #endif
335 #endif
337 #endif
339 // MESSAGE OPTICAL_FLOW_RAD UNPACKING
343 * @brief Get field time_usec from optical_flow_rad message
345 * @return Timestamp (microseconds, synced to UNIX time or since system boot)
347 static inline uint64_t mavlink_msg_optical_flow_rad_get_time_usec(const mavlink_message_t* msg)
349 return _MAV_RETURN_uint64_t(msg, 0);
353 * @brief Get field sensor_id from optical_flow_rad message
355 * @return Sensor ID
357 static inline uint8_t mavlink_msg_optical_flow_rad_get_sensor_id(const mavlink_message_t* msg)
359 return _MAV_RETURN_uint8_t(msg, 42);
363 * @brief Get field integration_time_us from optical_flow_rad message
365 * @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
367 static inline uint32_t mavlink_msg_optical_flow_rad_get_integration_time_us(const mavlink_message_t* msg)
369 return _MAV_RETURN_uint32_t(msg, 8);
373 * @brief Get field integrated_x from optical_flow_rad message
375 * @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
377 static inline float mavlink_msg_optical_flow_rad_get_integrated_x(const mavlink_message_t* msg)
379 return _MAV_RETURN_float(msg, 12);
383 * @brief Get field integrated_y from optical_flow_rad message
385 * @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
387 static inline float mavlink_msg_optical_flow_rad_get_integrated_y(const mavlink_message_t* msg)
389 return _MAV_RETURN_float(msg, 16);
393 * @brief Get field integrated_xgyro from optical_flow_rad message
395 * @return RH rotation around X axis (rad)
397 static inline float mavlink_msg_optical_flow_rad_get_integrated_xgyro(const mavlink_message_t* msg)
399 return _MAV_RETURN_float(msg, 20);
403 * @brief Get field integrated_ygyro from optical_flow_rad message
405 * @return RH rotation around Y axis (rad)
407 static inline float mavlink_msg_optical_flow_rad_get_integrated_ygyro(const mavlink_message_t* msg)
409 return _MAV_RETURN_float(msg, 24);
413 * @brief Get field integrated_zgyro from optical_flow_rad message
415 * @return RH rotation around Z axis (rad)
417 static inline float mavlink_msg_optical_flow_rad_get_integrated_zgyro(const mavlink_message_t* msg)
419 return _MAV_RETURN_float(msg, 28);
423 * @brief Get field temperature from optical_flow_rad message
425 * @return Temperature * 100 in centi-degrees Celsius
427 static inline int16_t mavlink_msg_optical_flow_rad_get_temperature(const mavlink_message_t* msg)
429 return _MAV_RETURN_int16_t(msg, 40);
433 * @brief Get field quality from optical_flow_rad message
435 * @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
437 static inline uint8_t mavlink_msg_optical_flow_rad_get_quality(const mavlink_message_t* msg)
439 return _MAV_RETURN_uint8_t(msg, 43);
443 * @brief Get field time_delta_distance_us from optical_flow_rad message
445 * @return Time in microseconds since the distance was sampled.
447 static inline uint32_t mavlink_msg_optical_flow_rad_get_time_delta_distance_us(const mavlink_message_t* msg)
449 return _MAV_RETURN_uint32_t(msg, 32);
453 * @brief Get field distance from optical_flow_rad message
455 * @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
457 static inline float mavlink_msg_optical_flow_rad_get_distance(const mavlink_message_t* msg)
459 return _MAV_RETURN_float(msg, 36);
463 * @brief Decode a optical_flow_rad message into a struct
465 * @param msg The message to decode
466 * @param optical_flow_rad C-struct to decode the message contents into
468 static inline void mavlink_msg_optical_flow_rad_decode(const mavlink_message_t* msg, mavlink_optical_flow_rad_t* optical_flow_rad)
470 #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
471 optical_flow_rad->time_usec = mavlink_msg_optical_flow_rad_get_time_usec(msg);
472 optical_flow_rad->integration_time_us = mavlink_msg_optical_flow_rad_get_integration_time_us(msg);
473 optical_flow_rad->integrated_x = mavlink_msg_optical_flow_rad_get_integrated_x(msg);
474 optical_flow_rad->integrated_y = mavlink_msg_optical_flow_rad_get_integrated_y(msg);
475 optical_flow_rad->integrated_xgyro = mavlink_msg_optical_flow_rad_get_integrated_xgyro(msg);
476 optical_flow_rad->integrated_ygyro = mavlink_msg_optical_flow_rad_get_integrated_ygyro(msg);
477 optical_flow_rad->integrated_zgyro = mavlink_msg_optical_flow_rad_get_integrated_zgyro(msg);
478 optical_flow_rad->time_delta_distance_us = mavlink_msg_optical_flow_rad_get_time_delta_distance_us(msg);
479 optical_flow_rad->distance = mavlink_msg_optical_flow_rad_get_distance(msg);
480 optical_flow_rad->temperature = mavlink_msg_optical_flow_rad_get_temperature(msg);
481 optical_flow_rad->sensor_id = mavlink_msg_optical_flow_rad_get_sensor_id(msg);
482 optical_flow_rad->quality = mavlink_msg_optical_flow_rad_get_quality(msg);
483 #else
484 uint8_t len = msg->len < MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN? msg->len : MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN;
485 memset(optical_flow_rad, 0, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN);
486 memcpy(optical_flow_rad, _MAV_PAYLOAD(msg), len);
487 #endif