Update navigation_fixedwing.c
[inav.git] / src / main / navigation / navigation_fixedwing.c
blobe1f184f431d60eb689a95f78c42bed0de49f5a28
1 /*
2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
18 #include <stdbool.h>
19 #include <stdint.h>
20 #include <math.h>
22 #include "platform.h"
24 #include "build/build_config.h"
25 #include "build/debug.h"
27 #include "common/axis.h"
28 #include "common/maths.h"
29 #include "common/filter.h"
31 #include "drivers/time.h"
33 #include "sensors/sensors.h"
34 #include "sensors/acceleration.h"
35 #include "sensors/boardalignment.h"
36 #include "sensors/gyro.h"
37 #include "sensors/pitotmeter.h"
39 #include "flight/pid.h"
40 #include "flight/imu.h"
41 #include "flight/mixer.h"
43 #include "fc/config.h"
44 #include "fc/controlrate_profile.h"
45 #include "fc/rc_controls.h"
46 #include "fc/rc_modes.h"
47 #include "fc/runtime_config.h"
49 #include "navigation/navigation.h"
50 #include "navigation/navigation_private.h"
52 #include "programming/logic_condition.h"
54 #include "rx/rx.h"
56 #include "sensors/battery.h"
58 // Base frequencies for smoothing pitch and roll
59 #define NAV_FW_BASE_PITCH_CUTOFF_FREQUENCY_HZ 2.0f
60 #define NAV_FW_BASE_ROLL_CUTOFF_FREQUENCY_HZ 10.0f
62 // If we are going slower than NAV_FW_MIN_VEL_SPEED_BOOST - boost throttle to fight against the wind
63 #define NAV_FW_THROTTLE_SPEED_BOOST_GAIN 1.5f
64 #define NAV_FW_MIN_VEL_SPEED_BOOST 700.0f // 7 m/s
66 // If this is enabled navigation won't be applied if velocity is below 3 m/s
67 //#define NAV_FW_LIMIT_MIN_FLY_VELOCITY
69 static bool isPitchAdjustmentValid = false;
70 static bool isRollAdjustmentValid = false;
71 static bool isYawAdjustmentValid = false;
72 static float throttleSpeedAdjustment = 0;
73 static bool isAutoThrottleManuallyIncreased = false;
74 static int32_t navHeadingError;
75 static float navCrossTrackError;
76 static int8_t loiterDirYaw = 1;
77 bool needToCalculateCircularLoiter;
79 // Calculates the cutoff frequency for smoothing out roll/pitch commands
80 // control_smoothness valid range from 0 to 9
81 // resulting cutoff_freq ranging from baseFreq downwards to ~0.11Hz
82 static float getSmoothnessCutoffFreq(float baseFreq)
84 uint16_t smoothness = 10 - navConfig()->fw.control_smoothness;
85 return 0.001f * baseFreq * (float)(smoothness*smoothness*smoothness) + 0.1f;
88 // Calculates the cutoff frequency for smoothing out pitchToThrottleCorrection
89 // pitch_to_throttle_smooth valid range from 0 to 9
90 // resulting cutoff_freq ranging from baseFreq downwards to ~0.01Hz
91 static float getPitchToThrottleSmoothnessCutoffFreq(float baseFreq)
93 uint16_t smoothness = 10 - navConfig()->fw.pitch_to_throttle_smooth;
94 return 0.001f * baseFreq * (float)(smoothness*smoothness*smoothness) + 0.01f;
97 /*-----------------------------------------------------------
98 * Altitude controller
99 *-----------------------------------------------------------*/
100 void setupFixedWingAltitudeController(void)
102 // TODO
105 void resetFixedWingAltitudeController(void)
107 navPidReset(&posControl.pids.fw_alt);
108 posControl.rcAdjustment[PITCH] = 0;
109 isPitchAdjustmentValid = false;
110 throttleSpeedAdjustment = 0;
113 bool adjustFixedWingAltitudeFromRCInput(void)
115 int16_t rcAdjustment = applyDeadbandRescaled(rcCommand[PITCH], rcControlsConfig()->alt_hold_deadband, -500, 500);
117 if (rcAdjustment) {
118 // set velocity proportional to stick movement
119 float rcClimbRate = -rcAdjustment * navConfig()->general.max_manual_climb_rate / (500.0f - rcControlsConfig()->alt_hold_deadband);
120 updateClimbRateToAltitudeController(rcClimbRate, ROC_TO_ALT_NORMAL);
121 return true;
123 else {
124 // Adjusting finished - reset desired position to stay exactly where pilot released the stick
125 if (posControl.flags.isAdjustingAltitude) {
126 updateClimbRateToAltitudeController(0, ROC_TO_ALT_RESET);
128 return false;
132 // Position to velocity controller for Z axis
133 static void updateAltitudeVelocityAndPitchController_FW(timeDelta_t deltaMicros)
135 static pt1Filter_t velzFilterState;
137 // On a fixed wing we might not have a reliable climb rate source (if no BARO available), so we can't apply PID controller to
138 // velocity error. We use PID controller on altitude error and calculate desired pitch angle
140 // Update energies
141 const float demSPE = (posControl.desiredState.pos.z * 0.01f) * GRAVITY_MSS;
142 const float demSKE = 0.0f;
144 const float estSPE = (navGetCurrentActualPositionAndVelocity()->pos.z * 0.01f) * GRAVITY_MSS;
145 const float estSKE = 0.0f;
147 // speedWeight controls balance between potential and kinetic energy used for pitch controller
148 // speedWeight = 1.0 : pitch will only control airspeed and won't control altitude
149 // speedWeight = 0.5 : pitch will be used to control both airspeed and altitude
150 // speedWeight = 0.0 : pitch will only control altitude
151 const float speedWeight = 0.0f; // no speed sensing for now
153 const float demSEB = demSPE * (1.0f - speedWeight) - demSKE * speedWeight;
154 const float estSEB = estSPE * (1.0f - speedWeight) - estSKE * speedWeight;
156 // SEB to pitch angle gain to account for airspeed (with respect to specified reference (tuning) speed
157 const float pitchGainInv = 1.0f / 1.0f;
159 // Here we use negative values for dive for better clarity
160 const float maxClimbDeciDeg = DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle);
161 const float minDiveDeciDeg = -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle);
163 // PID controller to translate energy balance error [J] into pitch angle [decideg]
164 float targetPitchAngle = navPidApply3(&posControl.pids.fw_alt, demSEB, estSEB, US2S(deltaMicros), minDiveDeciDeg, maxClimbDeciDeg, 0, pitchGainInv, 1.0f);
166 // Apply low-pass filter to prevent rapid correction
167 targetPitchAngle = pt1FilterApply4(&velzFilterState, targetPitchAngle, getSmoothnessCutoffFreq(NAV_FW_BASE_PITCH_CUTOFF_FREQUENCY_HZ), US2S(deltaMicros));
169 // Reconstrain pitch angle ( >0 - climb, <0 - dive)
170 targetPitchAngle = constrainf(targetPitchAngle, minDiveDeciDeg, maxClimbDeciDeg);
171 posControl.rcAdjustment[PITCH] = targetPitchAngle;
174 void applyFixedWingAltitudeAndThrottleController(timeUs_t currentTimeUs)
176 static timeUs_t previousTimePositionUpdate = 0; // Occurs @ altitude sensor update rate (max MAX_ALTITUDE_UPDATE_RATE_HZ)
178 if ((posControl.flags.estAltStatus >= EST_USABLE)) {
179 if (posControl.flags.verticalPositionDataNew) {
180 const timeDeltaLarge_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
181 previousTimePositionUpdate = currentTimeUs;
183 // Check if last correction was not too long ago
184 if (deltaMicrosPositionUpdate < MAX_POSITION_UPDATE_INTERVAL_US) {
185 updateAltitudeVelocityAndPitchController_FW(deltaMicrosPositionUpdate);
187 else {
188 // Position update has not occurred in time (first iteration or glitch), reset altitude controller
189 resetFixedWingAltitudeController();
192 // Indicate that information is no longer usable
193 posControl.flags.verticalPositionDataConsumed = true;
196 isPitchAdjustmentValid = true;
198 else {
199 // No valid altitude sensor data, don't adjust pitch automatically, rcCommand[PITCH] is passed through to PID controller
200 isPitchAdjustmentValid = false;
204 /*-----------------------------------------------------------
205 * Adjusts desired heading from pilot's input
206 *-----------------------------------------------------------*/
207 bool adjustFixedWingHeadingFromRCInput(void)
209 if (ABS(rcCommand[YAW]) > rcControlsConfig()->pos_hold_deadband) {
210 return true;
213 return false;
216 /*-----------------------------------------------------------
217 * XY-position controller for multicopter aircraft
218 *-----------------------------------------------------------*/
219 static fpVector3_t virtualDesiredPosition;
220 static pt1Filter_t fwPosControllerCorrectionFilterState;
223 * TODO Currently this function resets both FixedWing and Rover & Boat position controller
225 void resetFixedWingPositionController(void)
227 virtualDesiredPosition.x = 0;
228 virtualDesiredPosition.y = 0;
229 virtualDesiredPosition.z = 0;
231 navPidReset(&posControl.pids.fw_nav);
232 navPidReset(&posControl.pids.fw_heading);
233 posControl.rcAdjustment[ROLL] = 0;
234 posControl.rcAdjustment[YAW] = 0;
235 isRollAdjustmentValid = false;
236 isYawAdjustmentValid = false;
238 pt1FilterReset(&fwPosControllerCorrectionFilterState, 0.0f);
241 static int8_t loiterDirection(void) {
242 int8_t dir = 1; //NAV_LOITER_RIGHT
244 if (navConfig()->fw.loiter_direction == NAV_LOITER_LEFT) {
245 dir = -1;
248 if (navConfig()->fw.loiter_direction == NAV_LOITER_YAW) {
250 if (rcCommand[YAW] < -250) {
251 loiterDirYaw = 1; //RIGHT //yaw is contrariwise
254 if (rcCommand[YAW] > 250) {
255 loiterDirYaw = -1; //LEFT //see annexCode in fc_core.c
258 dir = loiterDirYaw;
261 if (IS_RC_MODE_ACTIVE(BOXLOITERDIRCHN)) {
262 dir *= -1;
265 return dir;
268 static void calculateVirtualPositionTarget_FW(float trackingPeriod)
270 float posErrorX = posControl.desiredState.pos.x - navGetCurrentActualPositionAndVelocity()->pos.x;
271 float posErrorY = posControl.desiredState.pos.y - navGetCurrentActualPositionAndVelocity()->pos.y;
273 float distanceToActualTarget = calc_length_pythagorean_2D(posErrorX, posErrorY);
275 // Limit minimum forward velocity to 1 m/s
276 float trackingDistance = trackingPeriod * MAX(posControl.actualState.velXY, 100.0f);
278 uint32_t navLoiterRadius = getLoiterRadius(navConfig()->fw.loiter_radius);
279 fpVector3_t loiterCenterPos = posControl.desiredState.pos;
280 int8_t loiterTurnDirection = loiterDirection();
282 // Detemine if a circular loiter is required.
283 // For waypoints only use circular loiter when angular visibility is > 30 degs, otherwise head straight toward target
284 #define TAN_15DEG 0.26795f
285 needToCalculateCircularLoiter = isNavHoldPositionActive() &&
286 (distanceToActualTarget <= (navLoiterRadius / TAN_15DEG)) &&
287 (distanceToActualTarget > 50.0f);
289 /* WP turn smoothing with 2 options, 1: pass through WP, 2: cut inside turn missing WP
290 * Works for turns > 30 degs and < 160 degs.
291 * Option 1 switches to loiter path around waypoint using navLoiterRadius.
292 * Loiter centered on point inside turn at required distance from waypoint and
293 * on a bearing midway between current and next waypoint course bearings.
294 * Option 2 simply uses a normal turn once the turn initiation point is reached */
295 int32_t waypointTurnAngle = posControl.activeWaypoint.nextTurnAngle == -1 ? -1 : ABS(posControl.activeWaypoint.nextTurnAngle);
296 posControl.flags.wpTurnSmoothingActive = false;
297 if (waypointTurnAngle > 3000 && waypointTurnAngle < 16000 && isWaypointNavTrackingActive() && !needToCalculateCircularLoiter) {
298 // turnStartFactor adjusts start of loiter based on turn angle
299 float turnStartFactor;
300 if (navConfig()->fw.wp_turn_smoothing == WP_TURN_SMOOTHING_ON) { // passes through WP
301 turnStartFactor = waypointTurnAngle / 6000.0f;
302 } else { // // cut inside turn missing WP
303 turnStartFactor = constrainf(tan_approx(CENTIDEGREES_TO_RADIANS(waypointTurnAngle / 2.0f)), 1.0f, 2.0f);
305 // velXY provides additional turn initiation distance based on an assumed 1 second delayed turn response time
306 if (posControl.wpDistance < (posControl.actualState.velXY + navLoiterRadius * turnStartFactor)) {
307 if (navConfig()->fw.wp_turn_smoothing == WP_TURN_SMOOTHING_ON) {
308 int32_t loiterCenterBearing = wrap_36000(((wrap_18000(posControl.activeWaypoint.nextTurnAngle - 18000)) / 2) + posControl.activeWaypoint.yaw + 18000);
309 loiterCenterPos.x = posControl.activeWaypoint.pos.x + navLoiterRadius * cos_approx(CENTIDEGREES_TO_RADIANS(loiterCenterBearing));
310 loiterCenterPos.y = posControl.activeWaypoint.pos.y + navLoiterRadius * sin_approx(CENTIDEGREES_TO_RADIANS(loiterCenterBearing));
312 posErrorX = loiterCenterPos.x - navGetCurrentActualPositionAndVelocity()->pos.x;
313 posErrorY = loiterCenterPos.y - navGetCurrentActualPositionAndVelocity()->pos.y;
315 // turn direction to next waypoint
316 loiterTurnDirection = posControl.activeWaypoint.nextTurnAngle > 0 ? 1 : -1; // 1 = right
318 needToCalculateCircularLoiter = true;
320 posControl.flags.wpTurnSmoothingActive = true;
324 // We are closing in on a waypoint, calculate circular loiter if required
325 if (needToCalculateCircularLoiter) {
326 float loiterAngle = atan2_approx(-posErrorY, -posErrorX) + DEGREES_TO_RADIANS(loiterTurnDirection * 45.0f);
327 float loiterTargetX = loiterCenterPos.x + navLoiterRadius * cos_approx(loiterAngle);
328 float loiterTargetY = loiterCenterPos.y + navLoiterRadius * sin_approx(loiterAngle);
330 // We have temporary loiter target. Recalculate distance and position error
331 posErrorX = loiterTargetX - navGetCurrentActualPositionAndVelocity()->pos.x;
332 posErrorY = loiterTargetY - navGetCurrentActualPositionAndVelocity()->pos.y;
333 distanceToActualTarget = calc_length_pythagorean_2D(posErrorX, posErrorY);
336 // Calculate virtual waypoint
337 virtualDesiredPosition.x = navGetCurrentActualPositionAndVelocity()->pos.x + posErrorX * (trackingDistance / distanceToActualTarget);
338 virtualDesiredPosition.y = navGetCurrentActualPositionAndVelocity()->pos.y + posErrorY * (trackingDistance / distanceToActualTarget);
340 // Shift position according to pilot's ROLL input (up to max_manual_speed velocity)
341 if (posControl.flags.isAdjustingPosition) {
342 int16_t rcRollAdjustment = applyDeadbandRescaled(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband, -500, 500);
344 if (rcRollAdjustment) {
345 float rcShiftY = rcRollAdjustment * navConfig()->general.max_manual_speed / 500.0f * trackingPeriod;
347 // Rotate this target shift from body frame to to earth frame and apply to position target
348 virtualDesiredPosition.x += -rcShiftY * posControl.actualState.sinYaw;
349 virtualDesiredPosition.y += rcShiftY * posControl.actualState.cosYaw;
354 bool adjustFixedWingPositionFromRCInput(void)
356 int16_t rcRollAdjustment = applyDeadbandRescaled(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband, -500, 500);
357 return (rcRollAdjustment);
360 float processHeadingYawController(timeDelta_t deltaMicros, int32_t navHeadingError, bool errorIsDecreasing) {
361 static float limit = 0.0f;
363 if (limit == 0.0f) {
364 limit = pidProfile()->navFwPosHdgPidsumLimit * 100.0f;
367 const pidControllerFlags_e yawPidFlags = errorIsDecreasing ? PID_SHRINK_INTEGRATOR : 0;
369 const float yawAdjustment = navPidApply2(
370 &posControl.pids.fw_heading,
372 applyDeadband(navHeadingError, navConfig()->fw.yawControlDeadband * 100),
373 US2S(deltaMicros),
374 -limit,
375 limit,
376 yawPidFlags
377 ) * 0.01f;
379 DEBUG_SET(DEBUG_NAV_YAW, 0, posControl.pids.fw_heading.proportional);
380 DEBUG_SET(DEBUG_NAV_YAW, 1, posControl.pids.fw_heading.integral);
381 DEBUG_SET(DEBUG_NAV_YAW, 2, posControl.pids.fw_heading.derivative);
382 DEBUG_SET(DEBUG_NAV_YAW, 3, navHeadingError);
383 DEBUG_SET(DEBUG_NAV_YAW, 4, posControl.pids.fw_heading.output_constrained);
385 return yawAdjustment;
388 static void updatePositionHeadingController_FW(timeUs_t currentTimeUs, timeDelta_t deltaMicros)
390 static timeUs_t previousTimeMonitoringUpdate;
391 static int32_t previousHeadingError;
392 static bool errorIsDecreasing;
393 static bool forceTurnDirection = false;
395 // We have virtual position target, calculate heading error
396 int32_t virtualTargetBearing = calculateBearingToDestination(&virtualDesiredPosition);
398 /* If waypoint tracking enabled quickly force craft toward waypoint course line and closely track along it */
399 if (navConfig()->fw.wp_tracking_accuracy && isWaypointNavTrackingActive() && !needToCalculateCircularLoiter) {
400 // courseVirtualCorrection initially used to determine current position relative to course line for later use
401 int32_t courseVirtualCorrection = wrap_18000(posControl.activeWaypoint.yaw - virtualTargetBearing);
402 navCrossTrackError = ABS(posControl.wpDistance * sin_approx(CENTIDEGREES_TO_RADIANS(courseVirtualCorrection)));
404 // tracking only active when certain distance and heading conditions are met
405 if ((ABS(wrap_18000(virtualTargetBearing - posControl.actualState.yaw)) < 9000 || posControl.wpDistance < 1000.0f) && navCrossTrackError > 200) {
406 int32_t courseHeadingError = wrap_18000(posControl.activeWaypoint.yaw - posControl.actualState.yaw);
408 // captureFactor adjusts distance/heading sensitivity balance when closing in on course line.
409 // Closing distance threashold based on speed and an assumed 1 second response time.
410 float captureFactor = navCrossTrackError < posControl.actualState.velXY ? constrainf(2.0f - ABS(courseHeadingError) / 500.0f, 0.0f, 2.0f) : 1.0f;
412 // bias between reducing distance to course line and aligning with course heading adjusted by waypoint_tracking_accuracy
413 // initial courseCorrectionFactor based on distance to course line
414 float courseCorrectionFactor = constrainf(captureFactor * navCrossTrackError / (1000.0f * navConfig()->fw.wp_tracking_accuracy), 0.0f, 1.0f);
415 courseCorrectionFactor = courseVirtualCorrection < 0 ? -courseCorrectionFactor : courseCorrectionFactor;
417 // course heading alignment factor
418 float courseHeadingFactor = constrainf(courseHeadingError / 18000.0f, 0.0f, 1.0f);
419 courseHeadingFactor = courseHeadingError < 0 ? -courseHeadingFactor : courseHeadingFactor;
421 // final courseCorrectionFactor combining distance and heading factors
422 courseCorrectionFactor = constrainf(courseCorrectionFactor - courseHeadingFactor, -1.0f, 1.0f);
424 // final courseVirtualCorrection value
425 courseVirtualCorrection = DEGREES_TO_CENTIDEGREES(navConfig()->fw.wp_tracking_max_angle) * courseCorrectionFactor;
426 virtualTargetBearing = wrap_36000(posControl.activeWaypoint.yaw - courseVirtualCorrection);
431 * Calculate NAV heading error
432 * Units are centidegrees
434 navHeadingError = wrap_18000(virtualTargetBearing - posControl.actualState.yaw);
436 // Forced turn direction
437 // If heading error is close to 180 deg we initiate forced turn and only disable it when heading error goes below 90 deg
438 if (ABS(navHeadingError) > 17000) {
439 forceTurnDirection = true;
441 else if (ABS(navHeadingError) < 9000 && forceTurnDirection) {
442 forceTurnDirection = false;
445 // If forced turn direction flag is enabled we fix the sign of the direction
446 if (forceTurnDirection) {
447 navHeadingError = loiterDirection() * ABS(navHeadingError);
450 // Slow error monitoring (2Hz rate)
451 if ((currentTimeUs - previousTimeMonitoringUpdate) >= HZ2US(NAV_FW_CONTROL_MONITORING_RATE)) {
452 // Check if error is decreasing over time
453 errorIsDecreasing = (ABS(previousHeadingError) > ABS(navHeadingError));
455 // Save values for next iteration
456 previousHeadingError = navHeadingError;
457 previousTimeMonitoringUpdate = currentTimeUs;
460 // Only allow PID integrator to shrink if error is decreasing over time
461 const pidControllerFlags_e pidFlags = PID_DTERM_FROM_ERROR | (errorIsDecreasing ? PID_SHRINK_INTEGRATOR : 0);
463 // Input error in (deg*100), output roll angle (deg*100)
464 float rollAdjustment = navPidApply2(&posControl.pids.fw_nav, posControl.actualState.yaw + navHeadingError, posControl.actualState.yaw, US2S(deltaMicros),
465 -DEGREES_TO_CENTIDEGREES(navConfig()->fw.max_bank_angle),
466 DEGREES_TO_CENTIDEGREES(navConfig()->fw.max_bank_angle),
467 pidFlags);
469 // Apply low-pass filter to prevent rapid correction
470 rollAdjustment = pt1FilterApply4(&fwPosControllerCorrectionFilterState, rollAdjustment, getSmoothnessCutoffFreq(NAV_FW_BASE_ROLL_CUTOFF_FREQUENCY_HZ), US2S(deltaMicros));
472 // Convert rollAdjustment to decidegrees (rcAdjustment holds decidegrees)
473 posControl.rcAdjustment[ROLL] = CENTIDEGREES_TO_DECIDEGREES(rollAdjustment);
476 * Yaw adjustment
477 * It is working in relative mode and we aim to keep error at zero
479 if (STATE(FW_HEADING_USE_YAW)) {
480 posControl.rcAdjustment[YAW] = processHeadingYawController(deltaMicros, navHeadingError, errorIsDecreasing);
481 } else {
482 posControl.rcAdjustment[YAW] = 0;
486 void applyFixedWingPositionController(timeUs_t currentTimeUs)
488 static timeUs_t previousTimePositionUpdate = 0; // Occurs @ GPS update rate
490 // Apply controller only if position source is valid. In absence of valid pos sensor (GPS loss), we'd stick in forced ANGLE mode
491 if ((posControl.flags.estPosStatus >= EST_USABLE)) {
492 // If we have new position - update velocity and acceleration controllers
493 if (posControl.flags.horizontalPositionDataNew) {
494 const timeDeltaLarge_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
495 previousTimePositionUpdate = currentTimeUs;
497 if (deltaMicrosPositionUpdate < MAX_POSITION_UPDATE_INTERVAL_US) {
498 // Calculate virtual position target at a distance of forwardVelocity * HZ2S(POSITION_TARGET_UPDATE_RATE_HZ)
499 // Account for pilot's roll input (move position target left/right at max of max_manual_speed)
500 // POSITION_TARGET_UPDATE_RATE_HZ should be chosen keeping in mind that position target shouldn't be reached until next pos update occurs
501 // FIXME: verify the above
502 calculateVirtualPositionTarget_FW(HZ2S(MIN_POSITION_UPDATE_RATE_HZ) * 2);
504 updatePositionHeadingController_FW(currentTimeUs, deltaMicrosPositionUpdate);
506 else {
507 // Position update has not occurred in time (first iteration or glitch), reset altitude controller
508 resetFixedWingPositionController();
511 // Indicate that information is no longer usable
512 posControl.flags.horizontalPositionDataConsumed = true;
515 isRollAdjustmentValid = true;
516 isYawAdjustmentValid = true;
518 else {
519 // No valid pos sensor data, don't adjust pitch automatically, rcCommand[ROLL] is passed through to PID controller
520 isRollAdjustmentValid = false;
521 isYawAdjustmentValid = false;
525 int16_t applyFixedWingMinSpeedController(timeUs_t currentTimeUs)
527 static timeUs_t previousTimePositionUpdate = 0; // Occurs @ GPS update rate
529 // Apply controller only if position source is valid
530 if ((posControl.flags.estPosStatus >= EST_USABLE)) {
531 // If we have new position - update velocity and acceleration controllers
532 if (posControl.flags.horizontalPositionDataNew) {
533 const timeDeltaLarge_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
534 previousTimePositionUpdate = currentTimeUs;
536 if (deltaMicrosPositionUpdate < MAX_POSITION_UPDATE_INTERVAL_US) {
537 float velThrottleBoost = (NAV_FW_MIN_VEL_SPEED_BOOST - posControl.actualState.velXY) * NAV_FW_THROTTLE_SPEED_BOOST_GAIN * US2S(deltaMicrosPositionUpdate);
539 // If we are in the deadband of 50cm/s - don't update speed boost
540 if (fabsf(posControl.actualState.velXY - NAV_FW_MIN_VEL_SPEED_BOOST) > 50) {
541 throttleSpeedAdjustment += velThrottleBoost;
544 throttleSpeedAdjustment = constrainf(throttleSpeedAdjustment, 0.0f, 500.0f);
546 else {
547 // Position update has not occurred in time (first iteration or glitch), reset altitude controller
548 throttleSpeedAdjustment = 0;
551 // Indicate that information is no longer usable
552 posControl.flags.horizontalPositionDataConsumed = true;
555 else {
556 // No valid pos sensor data, we can't calculate speed
557 throttleSpeedAdjustment = 0;
560 return throttleSpeedAdjustment;
563 int16_t fixedWingPitchToThrottleCorrection(int16_t pitch, timeUs_t currentTimeUs)
565 static timeUs_t previousTimePitchToThrCorr = 0;
566 const timeDeltaLarge_t deltaMicrosPitchToThrCorr = currentTimeUs - previousTimePitchToThrCorr;
567 previousTimePitchToThrCorr = currentTimeUs;
569 static pt1Filter_t pitchToThrFilterState;
571 // Apply low-pass filter to pitch angle to smooth throttle correction
572 int16_t filteredPitch = (int16_t)pt1FilterApply4(&pitchToThrFilterState, pitch, getPitchToThrottleSmoothnessCutoffFreq(NAV_FW_BASE_PITCH_CUTOFF_FREQUENCY_HZ), US2S(deltaMicrosPitchToThrCorr));
574 if (ABS(pitch - filteredPitch) > navConfig()->fw.pitch_to_throttle_thresh) {
575 // Unfiltered throttle correction outside of pitch deadband
576 return DECIDEGREES_TO_DEGREES(pitch) * currentBatteryProfile->nav.fw.pitch_to_throttle;
578 else {
579 // Filtered throttle correction inside of pitch deadband
580 return DECIDEGREES_TO_DEGREES(filteredPitch) * currentBatteryProfile->nav.fw.pitch_to_throttle;
584 void applyFixedWingPitchRollThrottleController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
586 int16_t minThrottleCorrection = currentBatteryProfile->nav.fw.min_throttle - currentBatteryProfile->nav.fw.cruise_throttle;
587 int16_t maxThrottleCorrection = currentBatteryProfile->nav.fw.max_throttle - currentBatteryProfile->nav.fw.cruise_throttle;
589 if (isRollAdjustmentValid && (navStateFlags & NAV_CTL_POS)) {
590 // ROLL >0 right, <0 left
591 int16_t rollCorrection = constrain(posControl.rcAdjustment[ROLL], -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_bank_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_bank_angle));
592 rcCommand[ROLL] = pidAngleToRcCommand(rollCorrection, pidProfile()->max_angle_inclination[FD_ROLL]);
595 if (isYawAdjustmentValid && (navStateFlags & NAV_CTL_POS)) {
596 rcCommand[YAW] = posControl.rcAdjustment[YAW];
599 if (isPitchAdjustmentValid && (navStateFlags & NAV_CTL_ALT)) {
600 // PITCH >0 dive, <0 climb
601 int16_t pitchCorrection = constrain(posControl.rcAdjustment[PITCH], -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle));
602 rcCommand[PITCH] = -pidAngleToRcCommand(pitchCorrection, pidProfile()->max_angle_inclination[FD_PITCH]);
603 int16_t throttleCorrection = fixedWingPitchToThrottleCorrection(pitchCorrection, currentTimeUs);
605 #ifdef NAV_FIXED_WING_LANDING
606 if (navStateFlags & NAV_CTL_LAND) {
607 // During LAND we do not allow to raise THROTTLE when nose is up to reduce speed
608 throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, 0);
609 } else {
610 #endif
611 throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, maxThrottleCorrection);
612 #ifdef NAV_FIXED_WING_LANDING
614 #endif
616 // Speed controller - only apply in POS mode when NOT NAV_CTL_LAND
617 if ((navStateFlags & NAV_CTL_POS) && !(navStateFlags & NAV_CTL_LAND)) {
618 throttleCorrection += applyFixedWingMinSpeedController(currentTimeUs);
619 throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, maxThrottleCorrection);
622 uint16_t correctedThrottleValue = constrain(currentBatteryProfile->nav.fw.cruise_throttle + throttleCorrection, currentBatteryProfile->nav.fw.min_throttle, currentBatteryProfile->nav.fw.max_throttle);
624 // Manual throttle increase
625 if (navConfig()->fw.allow_manual_thr_increase && !FLIGHT_MODE(FAILSAFE_MODE)) {
626 if (rcCommand[THROTTLE] < PWM_RANGE_MIN + (PWM_RANGE_MAX - PWM_RANGE_MIN) * 0.95){
627 correctedThrottleValue += MAX(0, rcCommand[THROTTLE] - currentBatteryProfile->nav.fw.cruise_throttle);
628 } else {
629 correctedThrottleValue = motorConfig()->maxthrottle;
631 isAutoThrottleManuallyIncreased = (rcCommand[THROTTLE] > currentBatteryProfile->nav.fw.cruise_throttle);
632 } else {
633 isAutoThrottleManuallyIncreased = false;
636 rcCommand[THROTTLE] = constrain(correctedThrottleValue, getThrottleIdleValue(), motorConfig()->maxthrottle);
639 #ifdef NAV_FIXED_WING_LANDING
641 * Then altitude is below landing slowdown min. altitude, enable final approach procedure
642 * TODO refactor conditions in this metod if logic is proven to be correct
644 if (navStateFlags & NAV_CTL_LAND || STATE(LANDING_DETECTED)) {
645 int32_t finalAltitude = navConfig()->general.land_slowdown_minalt + posControl.rthState.homeTmpWaypoint.z;
647 if ((posControl.flags.estAltStatus >= EST_USABLE && navGetCurrentActualPositionAndVelocity()->pos.z <= finalAltitude) ||
648 (posControl.flags.estAglStatus == EST_TRUSTED && posControl.actualState.agl.pos.z <= navConfig()->general.land_slowdown_minalt)) {
650 // Set motor to min. throttle and stop it when MOTOR_STOP feature is enabled
651 rcCommand[THROTTLE] = getThrottleIdleValue();
652 ENABLE_STATE(NAV_MOTOR_STOP_OR_IDLE);
654 // Stabilize ROLL axis on 0 degrees banking regardless of loiter radius and position
655 rcCommand[ROLL] = 0;
657 // Stabilize PITCH angle into shallow dive as specified by the nav_fw_land_dive_angle setting (default value is 2 - defined in navigation.c).
658 rcCommand[PITCH] = pidAngleToRcCommand(DEGREES_TO_DECIDEGREES(navConfig()->fw.land_dive_angle), pidProfile()->max_angle_inclination[FD_PITCH]);
661 #endif
664 bool isFixedWingAutoThrottleManuallyIncreased()
666 return isAutoThrottleManuallyIncreased;
669 bool isFixedWingFlying(void)
671 float airspeed = 0.0f;
672 #ifdef USE_PITOT
673 airspeed = getAirspeedEstimate();
674 #endif
675 bool throttleCondition = getMotorCount() == 0 || rcCommand[THROTTLE] > currentBatteryProfile->nav.fw.cruise_throttle;
676 bool velCondition = posControl.actualState.velXY > 250.0f || airspeed > 250.0f;
677 bool launchCondition = isNavLaunchEnabled() && fixedWingLaunchStatus() == FW_LAUNCH_FLYING;
679 return (isImuHeadingValid() && throttleCondition && velCondition) || launchCondition;
682 /*-----------------------------------------------------------
683 * FixedWing land detector
684 *-----------------------------------------------------------*/
685 bool isFixedWingLandingDetected(void)
687 DEBUG_SET(DEBUG_LANDING, 4, 0);
688 static bool fixAxisCheck = false;
689 const bool throttleIsLow = calculateThrottleStatus(THROTTLE_STATUS_TYPE_RC) == THROTTLE_LOW;
691 // Basic condition to start looking for landing
692 bool startCondition = (navGetCurrentStateFlags() & (NAV_CTL_LAND | NAV_CTL_EMERG))
693 || FLIGHT_MODE(FAILSAFE_MODE)
694 || (!navigationIsControllingThrottle() && throttleIsLow);
696 if (!startCondition || posControl.flags.resetLandingDetector) {
697 return fixAxisCheck = posControl.flags.resetLandingDetector = false;
699 DEBUG_SET(DEBUG_LANDING, 4, 1);
701 static timeMs_t fwLandingTimerStartAt;
702 static int16_t fwLandSetRollDatum;
703 static int16_t fwLandSetPitchDatum;
704 const float sensitivity = navConfig()->general.land_detect_sensitivity / 5.0f;
706 timeMs_t currentTimeMs = millis();
708 // Check horizontal and vertical velocities are low (cm/s)
709 bool velCondition = fabsf(navGetCurrentActualPositionAndVelocity()->vel.z) < (50.0f * sensitivity) &&
710 posControl.actualState.velXY < (100.0f * sensitivity);
711 // Check angular rates are low (degs/s)
712 bool gyroCondition = averageAbsGyroRates() < (2.0f * sensitivity);
713 DEBUG_SET(DEBUG_LANDING, 2, velCondition);
714 DEBUG_SET(DEBUG_LANDING, 3, gyroCondition);
716 if (velCondition && gyroCondition){
717 DEBUG_SET(DEBUG_LANDING, 4, 2);
718 DEBUG_SET(DEBUG_LANDING, 5, fixAxisCheck);
719 if (!fixAxisCheck) { // capture roll and pitch angles to be used as datums to check for absolute change
720 fwLandSetRollDatum = attitude.values.roll; //0.1 deg increments
721 fwLandSetPitchDatum = attitude.values.pitch;
722 fixAxisCheck = true;
723 fwLandingTimerStartAt = currentTimeMs;
724 } else {
725 const uint8_t angleLimit = 5 * sensitivity;
726 bool isRollAxisStatic = ABS(fwLandSetRollDatum - attitude.values.roll) < angleLimit;
727 bool isPitchAxisStatic = ABS(fwLandSetPitchDatum - attitude.values.pitch) < angleLimit;
728 DEBUG_SET(DEBUG_LANDING, 6, isRollAxisStatic);
729 DEBUG_SET(DEBUG_LANDING, 7, isPitchAxisStatic);
730 if (isRollAxisStatic && isPitchAxisStatic) {
731 // Probably landed, low horizontal and vertical velocities and no axis rotation in Roll and Pitch
732 timeMs_t safetyTimeDelay = 2000 + navConfig()->general.auto_disarm_delay;
733 return currentTimeMs - fwLandingTimerStartAt > safetyTimeDelay; // check conditions stable for 2s + optional extra delay
734 } else {
735 fixAxisCheck = false;
739 return false;
742 /*-----------------------------------------------------------
743 * FixedWing emergency landing
744 *-----------------------------------------------------------*/
745 void applyFixedWingEmergencyLandingController(timeUs_t currentTimeUs)
747 rcCommand[ROLL] = pidAngleToRcCommand(failsafeConfig()->failsafe_fw_roll_angle, pidProfile()->max_angle_inclination[FD_ROLL]);
748 rcCommand[YAW] = -pidRateToRcCommand(failsafeConfig()->failsafe_fw_yaw_rate, currentControlRateProfile->stabilized.rates[FD_YAW]);
749 rcCommand[THROTTLE] = currentBatteryProfile->failsafe_throttle;
751 if (posControl.flags.estAltStatus >= EST_USABLE) {
752 updateClimbRateToAltitudeController(-1.0f * navConfig()->general.emerg_descent_rate, ROC_TO_ALT_NORMAL);
753 applyFixedWingAltitudeAndThrottleController(currentTimeUs);
755 int16_t pitchCorrection = constrain(posControl.rcAdjustment[PITCH], -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle));
756 rcCommand[PITCH] = -pidAngleToRcCommand(pitchCorrection, pidProfile()->max_angle_inclination[FD_PITCH]);
757 } else {
758 rcCommand[PITCH] = pidAngleToRcCommand(failsafeConfig()->failsafe_fw_pitch_angle, pidProfile()->max_angle_inclination[FD_PITCH]);
762 /*-----------------------------------------------------------
763 * Calculate loiter target based on current position and velocity
764 *-----------------------------------------------------------*/
765 void calculateFixedWingInitialHoldPosition(fpVector3_t * pos)
767 // TODO: stub, this should account for velocity and target loiter radius
768 *pos = navGetCurrentActualPositionAndVelocity()->pos;
771 void resetFixedWingHeadingController(void)
773 updateHeadingHoldTarget(CENTIDEGREES_TO_DEGREES(posControl.actualState.yaw));
776 void applyFixedWingNavigationController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
778 if (navStateFlags & NAV_CTL_LAUNCH) {
779 applyFixedWingLaunchController(currentTimeUs);
781 else if (navStateFlags & NAV_CTL_EMERG) {
782 applyFixedWingEmergencyLandingController(currentTimeUs);
784 else {
785 #ifdef NAV_FW_LIMIT_MIN_FLY_VELOCITY
786 // Don't apply anything if ground speed is too low (<3m/s)
787 if (posControl.actualState.velXY > 300) {
788 #else
789 if (true) {
790 #endif
791 if (navStateFlags & NAV_CTL_ALT) {
792 if (getMotorStatus() == MOTOR_STOPPED_USER || FLIGHT_MODE(SOARING_MODE)) {
793 // Motor has been stopped by user or soaring mode enabled to override altitude control
794 resetFixedWingAltitudeController();
795 setDesiredPosition(&navGetCurrentActualPositionAndVelocity()->pos, posControl.actualState.yaw, NAV_POS_UPDATE_Z);
796 } else {
797 applyFixedWingAltitudeAndThrottleController(currentTimeUs);
801 if (navStateFlags & NAV_CTL_POS) {
802 applyFixedWingPositionController(currentTimeUs);
805 } else {
806 posControl.rcAdjustment[PITCH] = 0;
807 posControl.rcAdjustment[ROLL] = 0;
810 if (FLIGHT_MODE(NAV_COURSE_HOLD_MODE) && posControl.flags.isAdjustingPosition) {
811 rcCommand[ROLL] = applyDeadbandRescaled(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband, -500, 500);
814 //if (navStateFlags & NAV_CTL_YAW)
815 if ((navStateFlags & NAV_CTL_ALT) || (navStateFlags & NAV_CTL_POS)) {
816 applyFixedWingPitchRollThrottleController(navStateFlags, currentTimeUs);
819 if (FLIGHT_MODE(SOARING_MODE) && navConfig()->general.flags.soaring_motor_stop) {
820 ENABLE_STATE(NAV_MOTOR_STOP_OR_IDLE);
825 int32_t navigationGetHeadingError(void)
827 return navHeadingError;
830 float navigationGetCrossTrackError(void)
832 return navCrossTrackError;