Merge remote-tracking branch 'upstream/master' into abo_fw_alt_vel_control
[inav.git] / lib / main / MAVLink / mavlink_conversions.h
blob85a79d3dbf4c6ea63200d486429acd64e63d2b33
1 #pragma once
3 #ifndef MAVLINK_NO_CONVERSION_HELPERS
5 /* enable math defines on Windows */
6 #ifdef _MSC_VER
7 #ifndef _USE_MATH_DEFINES
8 #define _USE_MATH_DEFINES
9 #endif
10 #endif
11 #include <math.h>
13 #ifndef M_PI_2
14 #define M_PI_2 ((float)asin(1))
15 #endif
17 /**
18 * @file mavlink_conversions.h
20 * These conversion functions follow the NASA rotation standards definition file
21 * available online.
23 * Their intent is to lower the barrier for MAVLink adopters to use gimbal-lock free
24 * (both rotation matrices, sometimes called DCM, and quaternions are gimbal-lock free)
25 * rotation representations. Euler angles (roll, pitch, yaw) will be phased out of the
26 * protocol as widely as possible.
28 * @author James Goppert
29 * @author Thomas Gubler <thomasgubler@gmail.com>
33 /**
34 * Converts a quaternion to a rotation matrix
36 * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
37 * @param dcm a 3x3 rotation matrix
39 MAVLINK_HELPER void mavlink_quaternion_to_dcm(const float quaternion[4], float dcm[3][3])
41 double a = (double)quaternion[0];
42 double b = (double)quaternion[1];
43 double c = (double)quaternion[2];
44 double d = (double)quaternion[3];
45 double aSq = a * a;
46 double bSq = b * b;
47 double cSq = c * c;
48 double dSq = d * d;
49 dcm[0][0] = aSq + bSq - cSq - dSq;
50 dcm[0][1] = 2 * (b * c - a * d);
51 dcm[0][2] = 2 * (a * c + b * d);
52 dcm[1][0] = 2 * (b * c + a * d);
53 dcm[1][1] = aSq - bSq + cSq - dSq;
54 dcm[1][2] = 2 * (c * d - a * b);
55 dcm[2][0] = 2 * (b * d - a * c);
56 dcm[2][1] = 2 * (a * b + c * d);
57 dcm[2][2] = aSq - bSq - cSq + dSq;
61 /**
62 * Converts a rotation matrix to euler angles
64 * @param dcm a 3x3 rotation matrix
65 * @param roll the roll angle in radians
66 * @param pitch the pitch angle in radians
67 * @param yaw the yaw angle in radians
69 MAVLINK_HELPER void mavlink_dcm_to_euler(const float dcm[3][3], float* roll, float* pitch, float* yaw)
71 float phi, theta, psi;
72 theta = asinf(-dcm[2][0]);
74 if (fabsf(theta - (float)M_PI_2) < 1.0e-3f) {
75 phi = 0.0f;
76 psi = (atan2f(dcm[1][2] - dcm[0][1],
77 dcm[0][2] + dcm[1][1]) + phi);
79 } else if (fabsf(theta + (float)M_PI_2) < 1.0e-3f) {
80 phi = 0.0f;
81 psi = atan2f(dcm[1][2] - dcm[0][1],
82 dcm[0][2] + dcm[1][1] - phi);
84 } else {
85 phi = atan2f(dcm[2][1], dcm[2][2]);
86 psi = atan2f(dcm[1][0], dcm[0][0]);
89 *roll = phi;
90 *pitch = theta;
91 *yaw = psi;
95 /**
96 * Converts a quaternion to euler angles
98 * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
99 * @param roll the roll angle in radians
100 * @param pitch the pitch angle in radians
101 * @param yaw the yaw angle in radians
103 MAVLINK_HELPER void mavlink_quaternion_to_euler(const float quaternion[4], float* roll, float* pitch, float* yaw)
105 float dcm[3][3];
106 mavlink_quaternion_to_dcm(quaternion, dcm);
107 mavlink_dcm_to_euler((const float(*)[3])dcm, roll, pitch, yaw);
112 * Converts euler angles to a quaternion
114 * @param roll the roll angle in radians
115 * @param pitch the pitch angle in radians
116 * @param yaw the yaw angle in radians
117 * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
119 MAVLINK_HELPER void mavlink_euler_to_quaternion(float roll, float pitch, float yaw, float quaternion[4])
121 float cosPhi_2 = cosf(roll / 2);
122 float sinPhi_2 = sinf(roll / 2);
123 float cosTheta_2 = cosf(pitch / 2);
124 float sinTheta_2 = sinf(pitch / 2);
125 float cosPsi_2 = cosf(yaw / 2);
126 float sinPsi_2 = sinf(yaw / 2);
127 quaternion[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 +
128 sinPhi_2 * sinTheta_2 * sinPsi_2);
129 quaternion[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 -
130 cosPhi_2 * sinTheta_2 * sinPsi_2);
131 quaternion[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 +
132 sinPhi_2 * cosTheta_2 * sinPsi_2);
133 quaternion[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 -
134 sinPhi_2 * sinTheta_2 * cosPsi_2);
139 * Converts a rotation matrix to a quaternion
140 * Reference:
141 * - Shoemake, Quaternions,
142 * http://www.cs.ucr.edu/~vbz/resources/quatut.pdf
144 * @param dcm a 3x3 rotation matrix
145 * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
147 MAVLINK_HELPER void mavlink_dcm_to_quaternion(const float dcm[3][3], float quaternion[4])
149 float tr = dcm[0][0] + dcm[1][1] + dcm[2][2];
150 if (tr > 0.0f) {
151 float s = sqrtf(tr + 1.0f);
152 quaternion[0] = s * 0.5f;
153 s = 0.5f / s;
154 quaternion[1] = (dcm[2][1] - dcm[1][2]) * s;
155 quaternion[2] = (dcm[0][2] - dcm[2][0]) * s;
156 quaternion[3] = (dcm[1][0] - dcm[0][1]) * s;
157 } else {
158 /* Find maximum diagonal element in dcm
159 * store index in dcm_i */
160 int dcm_i = 0;
161 int i;
162 for (i = 1; i < 3; i++) {
163 if (dcm[i][i] > dcm[dcm_i][dcm_i]) {
164 dcm_i = i;
168 int dcm_j = (dcm_i + 1) % 3;
169 int dcm_k = (dcm_i + 2) % 3;
171 float s = sqrtf((dcm[dcm_i][dcm_i] - dcm[dcm_j][dcm_j] -
172 dcm[dcm_k][dcm_k]) + 1.0f);
173 quaternion[dcm_i + 1] = s * 0.5f;
174 s = 0.5f / s;
175 quaternion[dcm_j + 1] = (dcm[dcm_i][dcm_j] + dcm[dcm_j][dcm_i]) * s;
176 quaternion[dcm_k + 1] = (dcm[dcm_k][dcm_i] + dcm[dcm_i][dcm_k]) * s;
177 quaternion[0] = (dcm[dcm_k][dcm_j] - dcm[dcm_j][dcm_k]) * s;
183 * Converts euler angles to a rotation matrix
185 * @param roll the roll angle in radians
186 * @param pitch the pitch angle in radians
187 * @param yaw the yaw angle in radians
188 * @param dcm a 3x3 rotation matrix
190 MAVLINK_HELPER void mavlink_euler_to_dcm(float roll, float pitch, float yaw, float dcm[3][3])
192 float cosPhi = cosf(roll);
193 float sinPhi = sinf(roll);
194 float cosThe = cosf(pitch);
195 float sinThe = sinf(pitch);
196 float cosPsi = cosf(yaw);
197 float sinPsi = sinf(yaw);
199 dcm[0][0] = cosThe * cosPsi;
200 dcm[0][1] = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi;
201 dcm[0][2] = sinPhi * sinPsi + cosPhi * sinThe * cosPsi;
203 dcm[1][0] = cosThe * sinPsi;
204 dcm[1][1] = cosPhi * cosPsi + sinPhi * sinThe * sinPsi;
205 dcm[1][2] = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi;
207 dcm[2][0] = -sinThe;
208 dcm[2][1] = sinPhi * cosThe;
209 dcm[2][2] = cosPhi * cosThe;
212 #endif // MAVLINK_NO_CONVERSION_HELPERS