Merge pull request #10417 from HGLRC-T/HGLRCF405V2
[inav.git] / lib / main / CMSIS / DSP / Source / MatrixFunctions / arm_mat_scale_q31.c
blobd190cf157931b5c0ba2f063fe49afdc5c43ef82b
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_mat_scale_q31.c
4 * Description: Multiplies a Q31 matrix by a scalar
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
31 /**
32 * @ingroup groupMatrix
35 /**
36 * @addtogroup MatrixScale
37 * @{
40 /**
41 * @brief Q31 matrix scaling.
42 * @param[in] *pSrc points to input matrix
43 * @param[in] scaleFract fractional portion of the scale factor
44 * @param[in] shift number of bits to shift the result by
45 * @param[out] *pDst points to output matrix structure
46 * @return The function returns either
47 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
49 * @details
50 * <b>Scaling and Overflow Behavior:</b>
51 * \par
52 * The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
53 * These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
56 arm_status arm_mat_scale_q31(
57 const arm_matrix_instance_q31 * pSrc,
58 q31_t scaleFract,
59 int32_t shift,
60 arm_matrix_instance_q31 * pDst)
62 q31_t *pIn = pSrc->pData; /* input data matrix pointer */
63 q31_t *pOut = pDst->pData; /* output data matrix pointer */
64 uint32_t numSamples; /* total number of elements in the matrix */
65 int32_t totShift = shift + 1; /* shift to apply after scaling */
66 uint32_t blkCnt; /* loop counters */
67 arm_status status; /* status of matrix scaling */
68 q31_t in1, in2, out1; /* temporary variabels */
70 #if defined (ARM_MATH_DSP)
72 q31_t in3, in4, out2, out3, out4; /* temporary variables */
74 #endif // #ifndef ARM_MAT_CM0
76 #ifdef ARM_MATH_MATRIX_CHECK
77 /* Check for matrix mismatch */
78 if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
80 /* Set status as ARM_MATH_SIZE_MISMATCH */
81 status = ARM_MATH_SIZE_MISMATCH;
83 else
84 #endif // #ifdef ARM_MATH_MATRIX_CHECK
86 /* Total number of samples in the input matrix */
87 numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
89 #if defined (ARM_MATH_DSP)
91 /* Run the below code for Cortex-M4 and Cortex-M3 */
93 /* Loop Unrolling */
94 blkCnt = numSamples >> 2U;
96 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
97 ** a second loop below computes the remaining 1 to 3 samples. */
98 while (blkCnt > 0U)
100 /* C(m,n) = A(m,n) * k */
101 /* Read values from input */
102 in1 = *pIn;
103 in2 = *(pIn + 1);
104 in3 = *(pIn + 2);
105 in4 = *(pIn + 3);
107 /* multiply input with scaler value */
108 in1 = ((q63_t) in1 * scaleFract) >> 32;
109 in2 = ((q63_t) in2 * scaleFract) >> 32;
110 in3 = ((q63_t) in3 * scaleFract) >> 32;
111 in4 = ((q63_t) in4 * scaleFract) >> 32;
113 /* apply shifting */
114 out1 = in1 << totShift;
115 out2 = in2 << totShift;
117 /* saturate the results. */
118 if (in1 != (out1 >> totShift))
119 out1 = 0x7FFFFFFF ^ (in1 >> 31);
121 if (in2 != (out2 >> totShift))
122 out2 = 0x7FFFFFFF ^ (in2 >> 31);
124 out3 = in3 << totShift;
125 out4 = in4 << totShift;
127 *pOut = out1;
128 *(pOut + 1) = out2;
130 if (in3 != (out3 >> totShift))
131 out3 = 0x7FFFFFFF ^ (in3 >> 31);
133 if (in4 != (out4 >> totShift))
134 out4 = 0x7FFFFFFF ^ (in4 >> 31);
137 *(pOut + 2) = out3;
138 *(pOut + 3) = out4;
140 /* update pointers to process next sampels */
141 pIn += 4U;
142 pOut += 4U;
145 /* Decrement the numSamples loop counter */
146 blkCnt--;
149 /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
150 ** No loop unrolling is used. */
151 blkCnt = numSamples % 0x4U;
153 #else
155 /* Run the below code for Cortex-M0 */
157 /* Initialize blkCnt with number of samples */
158 blkCnt = numSamples;
160 #endif /* #if defined (ARM_MATH_DSP) */
162 while (blkCnt > 0U)
164 /* C(m,n) = A(m,n) * k */
165 /* Scale, saturate and then store the results in the destination buffer. */
166 in1 = *pIn++;
168 in2 = ((q63_t) in1 * scaleFract) >> 32;
170 out1 = in2 << totShift;
172 if (in2 != (out1 >> totShift))
173 out1 = 0x7FFFFFFF ^ (in2 >> 31);
175 *pOut++ = out1;
177 /* Decrement the numSamples loop counter */
178 blkCnt--;
181 /* Set status as ARM_MATH_SUCCESS */
182 status = ARM_MATH_SUCCESS;
185 /* Return to application */
186 return (status);
190 * @} end of MatrixScale group