Merge pull request #10612 from iNavFlight/MrD_Fix-negative-altitude
[inav.git] / lib / main / CMSIS / DSP / Source / TransformFunctions / arm_cfft_radix2_q31.c
blobc9b15371c83bca829553a78e9ea10658530113a3
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_cfft_radix2_q31.c
4 * Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
31 void arm_radix2_butterfly_q31(
32 q31_t * pSrc,
33 uint32_t fftLen,
34 q31_t * pCoef,
35 uint16_t twidCoefModifier);
37 void arm_radix2_butterfly_inverse_q31(
38 q31_t * pSrc,
39 uint32_t fftLen,
40 q31_t * pCoef,
41 uint16_t twidCoefModifier);
43 void arm_bitreversal_q31(
44 q31_t * pSrc,
45 uint32_t fftLen,
46 uint16_t bitRevFactor,
47 uint16_t * pBitRevTab);
49 /**
50 * @ingroup groupTransforms
53 /**
54 * @addtogroup ComplexFFT
55 * @{
58 /**
59 * @details
60 * @brief Processing function for the fixed-point CFFT/CIFFT.
61 * @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q31 and will be removed
62 * @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure.
63 * @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
64 * @return none.
67 void arm_cfft_radix2_q31(
68 const arm_cfft_radix2_instance_q31 * S,
69 q31_t * pSrc)
72 if (S->ifftFlag == 1U)
74 arm_radix2_butterfly_inverse_q31(pSrc, S->fftLen,
75 S->pTwiddle, S->twidCoefModifier);
77 else
79 arm_radix2_butterfly_q31(pSrc, S->fftLen,
80 S->pTwiddle, S->twidCoefModifier);
83 arm_bitreversal_q31(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
86 /**
87 * @} end of ComplexFFT group
90 void arm_radix2_butterfly_q31(
91 q31_t * pSrc,
92 uint32_t fftLen,
93 q31_t * pCoef,
94 uint16_t twidCoefModifier)
97 unsigned i, j, k, l, m;
98 unsigned n1, n2, ia;
99 q31_t xt, yt, cosVal, sinVal;
100 q31_t p0, p1;
102 //N = fftLen;
103 n2 = fftLen;
105 n1 = n2;
106 n2 = n2 >> 1;
107 ia = 0;
109 // loop for groups
110 for (i = 0; i < n2; i++)
112 cosVal = pCoef[ia * 2];
113 sinVal = pCoef[(ia * 2) + 1];
114 ia = ia + twidCoefModifier;
116 l = i + n2;
117 xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
118 pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
120 yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
121 pSrc[2 * i + 1] =
122 ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
124 mult_32x32_keep32_R(p0, xt, cosVal);
125 mult_32x32_keep32_R(p1, yt, cosVal);
126 multAcc_32x32_keep32_R(p0, yt, sinVal);
127 multSub_32x32_keep32_R(p1, xt, sinVal);
129 pSrc[2U * l] = p0;
130 pSrc[2U * l + 1U] = p1;
132 } // groups loop end
134 twidCoefModifier <<= 1U;
136 // loop for stage
137 for (k = fftLen / 2; k > 2; k = k >> 1)
139 n1 = n2;
140 n2 = n2 >> 1;
141 ia = 0;
143 // loop for groups
144 for (j = 0; j < n2; j++)
146 cosVal = pCoef[ia * 2];
147 sinVal = pCoef[(ia * 2) + 1];
148 ia = ia + twidCoefModifier;
150 // loop for butterfly
151 i = j;
152 m = fftLen / n1;
155 l = i + n2;
156 xt = pSrc[2 * i] - pSrc[2 * l];
157 pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1U;
159 yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
160 pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1U;
162 mult_32x32_keep32_R(p0, xt, cosVal);
163 mult_32x32_keep32_R(p1, yt, cosVal);
164 multAcc_32x32_keep32_R(p0, yt, sinVal);
165 multSub_32x32_keep32_R(p1, xt, sinVal);
167 pSrc[2U * l] = p0;
168 pSrc[2U * l + 1U] = p1;
169 i += n1;
170 m--;
171 } while ( m > 0); // butterfly loop end
173 } // groups loop end
175 twidCoefModifier <<= 1U;
176 } // stages loop end
178 n1 = n2;
179 n2 = n2 >> 1;
180 ia = 0;
182 cosVal = pCoef[ia * 2];
183 sinVal = pCoef[(ia * 2) + 1];
184 ia = ia + twidCoefModifier;
186 // loop for butterfly
187 for (i = 0; i < fftLen; i += n1)
189 l = i + n2;
190 xt = pSrc[2 * i] - pSrc[2 * l];
191 pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
193 yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
194 pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
196 pSrc[2U * l] = xt;
198 pSrc[2U * l + 1U] = yt;
200 i += n1;
201 l = i + n2;
203 xt = pSrc[2 * i] - pSrc[2 * l];
204 pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
206 yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
207 pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
209 pSrc[2U * l] = xt;
211 pSrc[2U * l + 1U] = yt;
213 } // butterfly loop end
218 void arm_radix2_butterfly_inverse_q31(
219 q31_t * pSrc,
220 uint32_t fftLen,
221 q31_t * pCoef,
222 uint16_t twidCoefModifier)
225 unsigned i, j, k, l;
226 unsigned n1, n2, ia;
227 q31_t xt, yt, cosVal, sinVal;
228 q31_t p0, p1;
230 //N = fftLen;
231 n2 = fftLen;
233 n1 = n2;
234 n2 = n2 >> 1;
235 ia = 0;
237 // loop for groups
238 for (i = 0; i < n2; i++)
240 cosVal = pCoef[ia * 2];
241 sinVal = pCoef[(ia * 2) + 1];
242 ia = ia + twidCoefModifier;
244 l = i + n2;
245 xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
246 pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
248 yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
249 pSrc[2 * i + 1] =
250 ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
252 mult_32x32_keep32_R(p0, xt, cosVal);
253 mult_32x32_keep32_R(p1, yt, cosVal);
254 multSub_32x32_keep32_R(p0, yt, sinVal);
255 multAcc_32x32_keep32_R(p1, xt, sinVal);
257 pSrc[2U * l] = p0;
258 pSrc[2U * l + 1U] = p1;
259 } // groups loop end
261 twidCoefModifier = twidCoefModifier << 1U;
263 // loop for stage
264 for (k = fftLen / 2; k > 2; k = k >> 1)
266 n1 = n2;
267 n2 = n2 >> 1;
268 ia = 0;
270 // loop for groups
271 for (j = 0; j < n2; j++)
273 cosVal = pCoef[ia * 2];
274 sinVal = pCoef[(ia * 2) + 1];
275 ia = ia + twidCoefModifier;
277 // loop for butterfly
278 for (i = j; i < fftLen; i += n1)
280 l = i + n2;
281 xt = pSrc[2 * i] - pSrc[2 * l];
282 pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1U;
284 yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
285 pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1U;
287 mult_32x32_keep32_R(p0, xt, cosVal);
288 mult_32x32_keep32_R(p1, yt, cosVal);
289 multSub_32x32_keep32_R(p0, yt, sinVal);
290 multAcc_32x32_keep32_R(p1, xt, sinVal);
292 pSrc[2U * l] = p0;
293 pSrc[2U * l + 1U] = p1;
294 } // butterfly loop end
296 } // groups loop end
298 twidCoefModifier = twidCoefModifier << 1U;
299 } // stages loop end
301 n1 = n2;
302 n2 = n2 >> 1;
303 ia = 0;
305 cosVal = pCoef[ia * 2];
306 sinVal = pCoef[(ia * 2) + 1];
307 ia = ia + twidCoefModifier;
309 // loop for butterfly
310 for (i = 0; i < fftLen; i += n1)
312 l = i + n2;
313 xt = pSrc[2 * i] - pSrc[2 * l];
314 pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
316 yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
317 pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
319 pSrc[2U * l] = xt;
321 pSrc[2U * l + 1U] = yt;
323 i += n1;
324 l = i + n2;
326 xt = pSrc[2 * i] - pSrc[2 * l];
327 pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
329 yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
330 pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
332 pSrc[2U * l] = xt;
334 pSrc[2U * l + 1U] = yt;
336 } // butterfly loop end