Merge pull request #10417 from HGLRC-T/HGLRCF405V2
[inav.git] / lib / main / CMSIS / DSP / Source / TransformFunctions / arm_rfft_q15.c
blobf85cf3023373b7625c984eb40134a0aea7f1dc3b
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_rfft_q15.c
4 * Description: RFFT & RIFFT Q15 process function
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
31 /* ----------------------------------------------------------------------
32 * Internal functions prototypes
33 * -------------------------------------------------------------------- */
35 void arm_split_rfft_q15(
36 q15_t * pSrc,
37 uint32_t fftLen,
38 q15_t * pATable,
39 q15_t * pBTable,
40 q15_t * pDst,
41 uint32_t modifier);
43 void arm_split_rifft_q15(
44 q15_t * pSrc,
45 uint32_t fftLen,
46 q15_t * pATable,
47 q15_t * pBTable,
48 q15_t * pDst,
49 uint32_t modifier);
51 /**
52 * @addtogroup RealFFT
53 * @{
56 /**
57 * @brief Processing function for the Q15 RFFT/RIFFT.
58 * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
59 * @param[in] *pSrc points to the input buffer.
60 * @param[out] *pDst points to the output buffer.
61 * @return none.
63 * \par Input an output formats:
64 * \par
65 * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
66 * Hence the output format is different for different RFFT sizes.
67 * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
68 * \par
69 * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
70 * \par
71 * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
74 void arm_rfft_q15(
75 const arm_rfft_instance_q15 * S,
76 q15_t * pSrc,
77 q15_t * pDst)
79 const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
80 uint32_t i;
81 uint32_t L2 = S->fftLenReal >> 1;
83 /* Calculation of RIFFT of input */
84 if (S->ifftFlagR == 1U)
86 /* Real IFFT core process */
87 arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
88 S->pTwiddleBReal, pDst, S->twidCoefRModifier);
90 /* Complex IFFT process */
91 arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
93 for(i=0;i<S->fftLenReal;i++)
95 pDst[i] = pDst[i] << 1;
98 else
100 /* Calculation of RFFT of input */
102 /* Complex FFT process */
103 arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
105 /* Real FFT core process */
106 arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
107 S->pTwiddleBReal, pDst, S->twidCoefRModifier);
112 * @} end of RealFFT group
116 * @brief Core Real FFT process
117 * @param *pSrc points to the input buffer.
118 * @param fftLen length of FFT.
119 * @param *pATable points to the A twiddle Coef buffer.
120 * @param *pBTable points to the B twiddle Coef buffer.
121 * @param *pDst points to the output buffer.
122 * @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
123 * @return none.
124 * The function implements a Real FFT
127 void arm_split_rfft_q15(
128 q15_t * pSrc,
129 uint32_t fftLen,
130 q15_t * pATable,
131 q15_t * pBTable,
132 q15_t * pDst,
133 uint32_t modifier)
135 uint32_t i; /* Loop Counter */
136 q31_t outR, outI; /* Temporary variables for output */
137 q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
138 q15_t *pSrc1, *pSrc2;
139 #if defined (ARM_MATH_DSP)
140 q15_t *pD1, *pD2;
141 #endif
143 // pSrc[2U * fftLen] = pSrc[0];
144 // pSrc[(2U * fftLen) + 1U] = pSrc[1];
146 pCoefA = &pATable[modifier * 2U];
147 pCoefB = &pBTable[modifier * 2U];
149 pSrc1 = &pSrc[2];
150 pSrc2 = &pSrc[(2U * fftLen) - 2U];
152 #if defined (ARM_MATH_DSP)
154 /* Run the below code for Cortex-M4 and Cortex-M3 */
155 i = 1U;
156 pD1 = pDst + 2;
157 pD2 = pDst + (4U * fftLen) - 2;
159 for(i = fftLen - 1; i > 0; i--)
162 outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
163 + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
164 pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
167 /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
168 pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
169 pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
172 #ifndef ARM_MATH_BIG_ENDIAN
174 /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
175 outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
177 #else
179 /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
180 outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
182 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
184 /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
185 pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
186 outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U;
188 /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
189 pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
191 #ifndef ARM_MATH_BIG_ENDIAN
193 outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
195 #else
197 outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
199 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
201 /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
202 outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
204 /* write output */
205 *pD1++ = (q15_t) outR;
206 *pD1++ = outI >> 16U;
208 /* write complex conjugate output */
209 pD2[0] = (q15_t) outR;
210 pD2[1] = -(outI >> 16U);
211 pD2 -= 2;
213 /* update coefficient pointer */
214 pCoefB = pCoefB + (2U * modifier);
215 pCoefA = pCoefA + (2U * modifier);
218 pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
219 pDst[(2U * fftLen) + 1U] = 0;
221 pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
222 pDst[1] = 0;
224 #else
226 /* Run the below code for Cortex-M0 */
227 i = 1U;
229 while (i < fftLen)
232 outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
233 + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
234 pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
237 outR = *pSrc1 * *pCoefA;
238 outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
239 outR = outR + (*pSrc2 * *pCoefB);
240 outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
243 /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
244 pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
245 pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
248 outI = *pSrc2 * *(pCoefB + 1);
249 outI = outI - (*(pSrc2 + 1) * *pCoefB);
250 outI = outI + (*(pSrc1 + 1) * *pCoefA);
251 outI = outI + (*pSrc1 * *(pCoefA + 1));
253 /* update input pointers */
254 pSrc1 += 2U;
255 pSrc2 -= 2U;
257 /* write output */
258 pDst[2U * i] = (q15_t) outR;
259 pDst[(2U * i) + 1U] = outI >> 16U;
261 /* write complex conjugate output */
262 pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR;
263 pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U);
265 /* update coefficient pointer */
266 pCoefB = pCoefB + (2U * modifier);
267 pCoefA = pCoefA + (2U * modifier);
269 i++;
272 pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
273 pDst[(2U * fftLen) + 1U] = 0;
275 pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
276 pDst[1] = 0;
278 #endif /* #if defined (ARM_MATH_DSP) */
283 * @brief Core Real IFFT process
284 * @param[in] *pSrc points to the input buffer.
285 * @param[in] fftLen length of FFT.
286 * @param[in] *pATable points to the twiddle Coef A buffer.
287 * @param[in] *pBTable points to the twiddle Coef B buffer.
288 * @param[out] *pDst points to the output buffer.
289 * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
290 * @return none.
291 * The function implements a Real IFFT
293 void arm_split_rifft_q15(
294 q15_t * pSrc,
295 uint32_t fftLen,
296 q15_t * pATable,
297 q15_t * pBTable,
298 q15_t * pDst,
299 uint32_t modifier)
301 uint32_t i; /* Loop Counter */
302 q31_t outR, outI; /* Temporary variables for output */
303 q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
304 q15_t *pSrc1, *pSrc2;
305 q15_t *pDst1 = &pDst[0];
307 pCoefA = &pATable[0];
308 pCoefB = &pBTable[0];
310 pSrc1 = &pSrc[0];
311 pSrc2 = &pSrc[2U * fftLen];
313 #if defined (ARM_MATH_DSP)
315 /* Run the below code for Cortex-M4 and Cortex-M3 */
316 i = fftLen;
318 while (i > 0U)
321 outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
322 pIn[2 * n - 2 * i] * pBTable[2 * i] -
323 pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
325 outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
326 pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
327 pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
331 #ifndef ARM_MATH_BIG_ENDIAN
333 /* pIn[2 * n - 2 * i] * pBTable[2 * i] -
334 pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
335 outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
337 #else
339 /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
340 pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
341 outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
343 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
345 /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
346 pIn[2 * n - 2 * i] * pBTable[2 * i] */
347 outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U;
350 -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
351 pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
352 outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
354 /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
356 #ifndef ARM_MATH_BIG_ENDIAN
358 outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
360 #else
362 outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
364 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
365 /* write output */
367 #ifndef ARM_MATH_BIG_ENDIAN
369 *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16);
371 #else
373 *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16);
375 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
377 /* update coefficient pointer */
378 pCoefB = pCoefB + (2U * modifier);
379 pCoefA = pCoefA + (2U * modifier);
381 i--;
383 #else
384 /* Run the below code for Cortex-M0 */
385 i = fftLen;
387 while (i > 0U)
390 outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
391 pIn[2 * n - 2 * i] * pBTable[2 * i] -
392 pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
395 outR = *pSrc2 * *pCoefB;
396 outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
397 outR = outR + (*pSrc1 * *pCoefA);
398 outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
401 outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
402 pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
403 pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
406 outI = *(pSrc1 + 1) * *pCoefA;
407 outI = outI - (*pSrc1 * *(pCoefA + 1));
408 outI = outI - (*pSrc2 * *(pCoefB + 1));
409 outI = outI - (*(pSrc2 + 1) * *(pCoefB));
411 /* update input pointers */
412 pSrc1 += 2U;
413 pSrc2 -= 2U;
415 /* write output */
416 *pDst1++ = (q15_t) outR;
417 *pDst1++ = (q15_t) (outI >> 16);
419 /* update coefficient pointer */
420 pCoefB = pCoefB + (2U * modifier);
421 pCoefA = pCoefA + (2U * modifier);
423 i--;
425 #endif /* #if defined (ARM_MATH_DSP) */