Merge pull request #10558 from iNavFlight/MrD_Correct-comments-on-OSD-symbols
[inav.git] / src / main / drivers / barometer / barometer_dps310.c
blob663dcb27117d9978cd9952fbc7ad1f2de9072703
1 /*
2 * This file is part of INAV.
4 * This Source Code Form is subject to the terms of the Mozilla Public
5 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
6 * You can obtain one at http://mozilla.org/MPL/2.0/.
8 * Alternatively, the contents of this file may be used under the terms
9 * of the GNU General Public License Version 3, as described below:
11 * This file is free software: you may copy, redistribute and/or modify
12 * it under the terms of the GNU General Public License as published by the
13 * Free Software Foundation, either version 3 of the License, or (at your
14 * option) any later version.
16 * This file is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program. If not, see http://www.gnu.org/licenses/.
25 #include <stdbool.h>
26 #include <stdint.h>
27 #include <string.h>
29 #include <platform.h>
31 #include "build/build_config.h"
32 #include "build/debug.h"
33 #include "common/utils.h"
35 #include "drivers/io.h"
36 #include "drivers/bus.h"
37 #include "drivers/time.h"
38 #include "drivers/barometer/barometer.h"
39 #include "drivers/barometer/barometer_dps310.h"
41 // See datasheet at https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
43 #if defined(USE_BARO) && defined(USE_BARO_DPS310)
45 #define DPS310_REG_PSR_B2 0x00
46 #define DPS310_REG_PSR_B1 0x01
47 #define DPS310_REG_PSR_B0 0x02
48 #define DPS310_REG_TMP_B2 0x03
49 #define DPS310_REG_TMP_B1 0x04
50 #define DPS310_REG_TMP_B0 0x05
51 #define DPS310_REG_PRS_CFG 0x06
52 #define DPS310_REG_TMP_CFG 0x07
53 #define DPS310_REG_MEAS_CFG 0x08
54 #define DPS310_REG_CFG_REG 0x09
56 #define DPS310_REG_RESET 0x0C
57 #define DPS310_REG_ID 0x0D
59 #define DPS310_REG_COEF 0x10
60 #define DPS310_REG_COEF_SRCE 0x28
63 #define DPS310_ID_REV_AND_PROD_ID (0x10)
64 #define SPL07_003_CHIP_ID (0x11)
66 #define DPS310_RESET_BIT_SOFT_RST (0x09) // 0b1001
68 #define DPS310_MEAS_CFG_COEF_RDY (1 << 7)
69 #define DPS310_MEAS_CFG_SENSOR_RDY (1 << 6)
70 #define DPS310_MEAS_CFG_TMP_RDY (1 << 5)
71 #define DPS310_MEAS_CFG_PRS_RDY (1 << 4)
73 #define DPS310_MEAS_CFG_MEAS_CTRL_MASK (0x7)
74 #define DPS310_MEAS_CFG_MEAS_CTRL_CONT (0x7)
75 #define DPS310_MEAS_CFG_MEAS_TEMP_SING (0x2)
76 #define DPS310_MEAS_CFG_MEAS_IDLE (0x0)
78 #define DPS310_PRS_CFG_BIT_PM_RATE_32HZ (0x50) // 101 - 32 measurements pr. sec.
79 #define DPS310_PRS_CFG_BIT_PM_PRC_16 (0x04) // 0100 - 16 times (Standard).
81 #define DPS310_TMP_CFG_BIT_TMP_EXT (0x80)
82 #define DPS310_TMP_CFG_BIT_TMP_RATE_32HZ (0x50) // 101 - 32 measurements pr. sec.
83 #define DPS310_TMP_CFG_BIT_TMP_PRC_16 (0x04) // 0100 - 16 times (Standard).
85 #define DPS310_CFG_REG_BIT_P_SHIFT (0x04)
86 #define DPS310_CFG_REG_BIT_T_SHIFT (0x08)
88 #define DPS310_COEF_SRCE_BIT_TMP_COEF_SRCE (0x80)
90 typedef struct {
91 int16_t c0; // 12bit
92 int16_t c1; // 12bit
93 int32_t c00; // 20bit
94 int32_t c10; // 20bit
95 int16_t c01; // 16bit
96 int16_t c11; // 16bit
97 int16_t c20; // 16bit
98 int16_t c21; // 16bit
99 int16_t c30; // 16bit
100 int16_t c31; // 12bit
101 int16_t c40; // 12bit
102 } calibrationCoefficients_t;
104 typedef struct {
105 calibrationCoefficients_t calib;
106 float pressure; // Pa
107 float temperature; // DegC
108 } baroState_t;
110 static baroState_t baroState;
111 static uint8_t chipId[1];
114 // Helper functions
115 static uint8_t registerRead(busDevice_t * busDev, uint8_t reg)
117 uint8_t buf;
118 busRead(busDev, reg, &buf);
119 return buf;
122 static void registerWrite(busDevice_t * busDev, uint8_t reg, uint8_t value)
124 busWrite(busDev, reg, value);
127 static void registerWriteBits(busDevice_t * busDev, uint8_t reg, uint8_t mask, uint8_t bits)
129 uint8_t val = registerRead(busDev, reg);
131 if ((val & mask) != bits) {
132 val = (val & (~mask)) | bits;
133 registerWrite(busDev, reg, val);
137 static void registerSetBits(busDevice_t * busDev, uint8_t reg, uint8_t setbits)
139 registerWriteBits(busDev, reg, setbits, setbits);
142 static int32_t getTwosComplement(uint32_t raw, uint8_t length)
144 if (raw & ((int)1 << (length - 1))) {
145 return ((int32_t)raw) - ((int32_t)1 << length);
147 else {
148 return raw;
152 static bool deviceConfigure(busDevice_t * busDev)
154 // Trigger a chip reset
155 registerSetBits(busDev, DPS310_REG_RESET, DPS310_RESET_BIT_SOFT_RST);
157 // Sleep 40ms
158 delay(40);
160 uint8_t status = registerRead(busDev, DPS310_REG_MEAS_CFG);
162 // Check if coefficients are available
163 if ((status & DPS310_MEAS_CFG_COEF_RDY) == 0) {
164 return false;
167 // Check if sensor initialization is complete
168 if ((status & DPS310_MEAS_CFG_SENSOR_RDY) == 0) {
169 return false;
172 // 1. Read the pressure calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration Coefficient register.
173 // Note: The coefficients read from the coefficient register are 2's complement numbers.
175 unsigned coefficientLength = chipId[0] == SPL07_003_CHIP_ID ? 21 : 18;
176 uint8_t coef[coefficientLength];
178 if (!busReadBuf(busDev, DPS310_REG_COEF, coef, sizeof(coef))) {
179 return false;
182 // 0x11 c0 [3:0] + 0x10 c0 [11:4]
183 baroState.calib.c0 = getTwosComplement(((uint32_t)coef[0] << 4) | (((uint32_t)coef[1] >> 4) & 0x0F), 12);
185 // 0x11 c1 [11:8] + 0x12 c1 [7:0]
186 baroState.calib.c1 = getTwosComplement((((uint32_t)coef[1] & 0x0F) << 8) | (uint32_t)coef[2], 12);
188 // 0x13 c00 [19:12] + 0x14 c00 [11:4] + 0x15 c00 [3:0]
189 baroState.calib.c00 = getTwosComplement(((uint32_t)coef[3] << 12) | ((uint32_t)coef[4] << 4) | (((uint32_t)coef[5] >> 4) & 0x0F), 20);
191 // 0x15 c10 [19:16] + 0x16 c10 [15:8] + 0x17 c10 [7:0]
192 baroState.calib.c10 = getTwosComplement((((uint32_t)coef[5] & 0x0F) << 16) | ((uint32_t)coef[6] << 8) | (uint32_t)coef[7], 20);
194 // 0x18 c01 [15:8] + 0x19 c01 [7:0]
195 baroState.calib.c01 = getTwosComplement(((uint32_t)coef[8] << 8) | (uint32_t)coef[9], 16);
197 // 0x1A c11 [15:8] + 0x1B c11 [7:0]
198 baroState.calib.c11 = getTwosComplement(((uint32_t)coef[10] << 8) | (uint32_t)coef[11], 16);
200 // 0x1C c20 [15:8] + 0x1D c20 [7:0]
201 baroState.calib.c20 = getTwosComplement(((uint32_t)coef[12] << 8) | (uint32_t)coef[13], 16);
203 // 0x1E c21 [15:8] + 0x1F c21 [7:0]
204 baroState.calib.c21 = getTwosComplement(((uint32_t)coef[14] << 8) | (uint32_t)coef[15], 16);
206 // 0x20 c30 [15:8] + 0x21 c30 [7:0]
207 baroState.calib.c30 = getTwosComplement(((uint32_t)coef[16] << 8) | (uint32_t)coef[17], 16);
209 if (chipId[0] == SPL07_003_CHIP_ID) {
210 // 0x23 c31 [3:0] + 0x22 c31 [11:4]
211 baroState.calib.c31 = getTwosComplement(((uint32_t)coef[18] << 4) | (((uint32_t)coef[19] >> 4) & 0x0F), 12);
213 // 0x23 c40 [11:8] + 0x24 c40 [7:0]
214 baroState.calib.c40 = getTwosComplement((((uint32_t)coef[19] & 0x0F) << 8) | (uint32_t)coef[20], 12);
215 } else {
216 baroState.calib.c31 = 0;
217 baroState.calib.c40 = 0;
220 // MEAS_CFG: Make sure the device is in IDLE mode
221 registerWriteBits(busDev, DPS310_REG_MEAS_CFG, DPS310_MEAS_CFG_MEAS_CTRL_MASK, DPS310_MEAS_CFG_MEAS_IDLE);
223 // Fix IC with a fuse bit problem, which lead to a wrong temperature
224 // Should not affect ICs without this problem
225 registerWrite(busDev, 0x0E, 0xA5);
226 registerWrite(busDev, 0x0F, 0x96);
227 registerWrite(busDev, 0x62, 0x02);
228 registerWrite(busDev, 0x0E, 0x00);
229 registerWrite(busDev, 0x0F, 0x00);
231 // Make ONE temperature measurement and flush it
232 registerWriteBits(busDev, DPS310_REG_MEAS_CFG, DPS310_MEAS_CFG_MEAS_CTRL_MASK, DPS310_MEAS_CFG_MEAS_TEMP_SING);
233 delay(40);
235 // PRS_CFG: pressure measurement rate (32 Hz) and oversampling (16 time standard)
236 registerSetBits(busDev, DPS310_REG_PRS_CFG, DPS310_PRS_CFG_BIT_PM_RATE_32HZ | DPS310_PRS_CFG_BIT_PM_PRC_16);
238 // TMP_CFG: temperature measurement rate (32 Hz) and oversampling (16 times)
239 if (chipId[0] == SPL07_003_CHIP_ID) {
240 registerSetBits(busDev, DPS310_REG_TMP_CFG, DPS310_TMP_CFG_BIT_TMP_RATE_32HZ | DPS310_TMP_CFG_BIT_TMP_PRC_16);
241 } else {
242 const uint8_t TMP_COEF_SRCE = registerRead(busDev, DPS310_REG_COEF_SRCE) & DPS310_COEF_SRCE_BIT_TMP_COEF_SRCE;
243 registerSetBits(busDev, DPS310_REG_TMP_CFG, DPS310_TMP_CFG_BIT_TMP_RATE_32HZ | DPS310_TMP_CFG_BIT_TMP_PRC_16 | TMP_COEF_SRCE);
246 // CFG_REG: set pressure and temperature result bit-shift (required when the oversampling rate is >8 times)
247 registerSetBits(busDev, DPS310_REG_CFG_REG, DPS310_CFG_REG_BIT_T_SHIFT | DPS310_CFG_REG_BIT_P_SHIFT);
249 // MEAS_CFG: Continuous pressure and temperature measurement
250 registerWriteBits(busDev, DPS310_REG_MEAS_CFG, DPS310_MEAS_CFG_MEAS_CTRL_MASK, DPS310_MEAS_CFG_MEAS_CTRL_CONT);
252 return true;
255 static bool deviceReadMeasurement(baroDev_t *baro)
257 // 1. Check if pressure is ready
258 bool pressure_ready = registerRead(baro->busDev, DPS310_REG_MEAS_CFG) & DPS310_MEAS_CFG_PRS_RDY;
259 if (!pressure_ready) {
260 return false;
263 // 2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate.
264 // The scaling factors are listed in Table 9.
265 static float kT = 253952; // 16 times (Standard)
266 static float kP = 253952; // 16 times (Standard)
268 // 3. Read the pressure and temperature result from the registers
269 // Read PSR_B2, PSR_B1, PSR_B0, TMP_B2, TMP_B1, TMP_B0
270 uint8_t buf[6];
271 if (!busReadBuf(baro->busDev, DPS310_REG_PSR_B2, buf, 6)) {
272 return false;
275 const int32_t Praw = getTwosComplement((buf[0] << 16) + (buf[1] << 8) + buf[2], 24);
276 const int32_t Traw = getTwosComplement((buf[3] << 16) + (buf[4] << 8) + buf[5], 24);
278 // 4. Calculate scaled measurement results.
279 const float Praw_sc = Praw / kP;
280 const float Traw_sc = Traw / kT;
282 // 5. Calculate compensated measurement results.
283 const float c00 = baroState.calib.c00;
284 const float c01 = baroState.calib.c01;
285 const float c10 = baroState.calib.c10;
286 const float c11 = baroState.calib.c11;
287 const float c20 = baroState.calib.c20;
288 const float c21 = baroState.calib.c21;
289 const float c30 = baroState.calib.c30;
290 const float c31 = baroState.calib.c31;
291 const float c40 = baroState.calib.c40;
293 // See section 4.9.1, How to Calculate Compensated Pressure Values, of datasheet
294 // baroState.pressure = c00 + Praw_sc * (c10 + Praw_sc * (c20 + Praw_sc * c30)) + Traw_sc * c01 + Traw_sc * Praw_sc * (c11 + Praw_sc * c21);
295 if (chipId[0] == SPL07_003_CHIP_ID) {
296 baroState.pressure = c00 + Praw_sc * (c10 + Praw_sc * (c20 + Praw_sc * (c30 + Praw_sc * c40))) + Traw_sc * c01 + Traw_sc * Praw_sc * (c11 + Praw_sc * (c21 + Praw_sc * c31));
297 } else {
298 baroState.pressure = c00 + Praw_sc * (c10 + Praw_sc * (c20 + Praw_sc * c30)) + Traw_sc * c01 + Traw_sc * Praw_sc * (c11 + Praw_sc * c21);
302 const float c0 = baroState.calib.c0;
303 const float c1 = baroState.calib.c1;
305 // See section 4.9.2, How to Calculate Compensated Temperature Values, of datasheet
306 baroState.temperature = c0 * 0.5f + c1 * Traw_sc;
308 return true;
311 static bool deviceCalculate(baroDev_t *baro, int32_t *pressure, int32_t *temperature)
313 UNUSED(baro);
315 if (pressure) {
316 *pressure = baroState.pressure;
319 if (temperature) {
320 *temperature = (baroState.temperature * 100); // to centidegrees
323 return true;
328 #define DETECTION_MAX_RETRY_COUNT 5
329 static bool deviceDetect(busDevice_t * busDev)
331 for (int retry = 0; retry < DETECTION_MAX_RETRY_COUNT; retry++) {
332 delay(100);
334 bool ack = busReadBuf(busDev, DPS310_REG_ID, chipId, 1);
336 if (ack && (chipId[0] == DPS310_ID_REV_AND_PROD_ID || chipId[0] == SPL07_003_CHIP_ID)) {
337 return true;
341 return false;
344 bool baroDPS310Detect(baroDev_t *baro)
346 baro->busDev = busDeviceInit(BUSTYPE_ANY, DEVHW_DPS310, 0, OWNER_BARO);
347 if (baro->busDev == NULL) {
348 return false;
351 if (!deviceDetect(baro->busDev)) {
352 busDeviceDeInit(baro->busDev);
353 return false;
356 if (!deviceConfigure(baro->busDev)) {
357 busDeviceDeInit(baro->busDev);
358 return false;
361 const uint32_t baroDelay = 1000000 / 32 / 2; // twice the sample rate to capture all new data
363 baro->ut_delay = 0;
364 baro->start_ut = NULL;
365 baro->get_ut = NULL;
367 baro->up_delay = baroDelay;
368 baro->start_up = NULL;
369 baro->get_up = deviceReadMeasurement;
371 baro->calculate = deviceCalculate;
373 return true;
376 #endif