wip
[inav.git] / src / main / drivers / sdcard / sdmmc_sdio_h7xx.c
blobf5e82da2218473552ed0b0b1b4a8e85df6b55cde
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
22 * Original author: Alain (https://github.com/aroyer-qc)
23 * Modified for BF source: Chris Hockuba (https://github.com/conkerkh)
26 /* Include(s) -------------------------------------------------------------------------------------------------------*/
28 #include "stdbool.h"
29 #include <string.h>
31 #include "platform.h"
33 #ifdef USE_SDCARD_SDIO
35 #include "sdmmc_sdio.h"
36 #include "stm32h7xx.h"
38 #include "drivers/sdio.h"
39 #include "drivers/io.h"
40 #include "drivers/io_impl.h"
41 #include "drivers/nvic.h"
42 #include "drivers/time.h"
43 #include "drivers/rcc.h"
44 #include "drivers/dma.h"
46 #include "build/debug.h"
48 typedef struct SD_Handle_s
50 uint32_t CSD[4]; // SD card specific data table
51 uint32_t CID[4]; // SD card identification number table
52 volatile uint32_t RXCplt; // SD RX Complete is equal 0 when no transfer
53 volatile uint32_t TXCplt; // SD TX Complete is equal 0 when no transfer
54 } SD_Handle_t;
56 SD_HandleTypeDef hsd1;
58 SD_CardInfo_t SD_CardInfo;
59 SD_CardType_t SD_CardType;
61 static SD_Handle_t SD_Handle;
63 typedef struct sdioPin_s {
64 ioTag_t pin;
65 uint8_t af;
66 } sdioPin_t;
68 #define SDIO_PIN_D0 0
69 #define SDIO_PIN_D1 1
70 #define SDIO_PIN_D2 2
71 #define SDIO_PIN_D3 3
72 #define SDIO_PIN_CK 4
73 #define SDIO_PIN_CMD 5
74 #define SDIO_PIN_COUNT 6
76 #define SDIO_MAX_PINDEFS 2
78 typedef struct sdioHardware_s {
79 SDMMC_TypeDef *instance;
80 IRQn_Type irqn;
81 sdioPin_t sdioPinCK[SDIO_MAX_PINDEFS];
82 sdioPin_t sdioPinCMD[SDIO_MAX_PINDEFS];
83 sdioPin_t sdioPinD0[SDIO_MAX_PINDEFS];
84 sdioPin_t sdioPinD1[SDIO_MAX_PINDEFS];
85 sdioPin_t sdioPinD2[SDIO_MAX_PINDEFS];
86 sdioPin_t sdioPinD3[SDIO_MAX_PINDEFS];
87 } sdioHardware_t;
89 // Possible pin assignments
91 #define PINDEF(device, pin, afnum) { DEFIO_TAG_E(pin), GPIO_AF ## afnum ## _SDMMC ## device }
93 static const sdioHardware_t sdioPinHardware[SDIODEV_COUNT] = {
95 .instance = SDMMC1,
96 .irqn = SDMMC1_IRQn,
97 .sdioPinCK = { PINDEF(1, PC12, 12) },
98 .sdioPinCMD = { PINDEF(1, PD2, 12) },
99 .sdioPinD0 = { PINDEF(1, PC8, 12) },
100 .sdioPinD1 = { PINDEF(1, PC9, 12) },
101 .sdioPinD2 = { PINDEF(1, PC10, 12) },
102 .sdioPinD3 = { PINDEF(1, PC11, 12) },
105 .instance = SDMMC2,
106 .irqn = SDMMC2_IRQn,
107 .sdioPinCK = { PINDEF(2, PC1, 9), PINDEF(2, PD6, 11) },
108 .sdioPinCMD = { PINDEF(2, PD7, 11), PINDEF(2, PA0, 9) },
109 .sdioPinD0 = { PINDEF(2, PB14, 9) },
110 .sdioPinD1 = { PINDEF(2, PB15, 9) },
111 .sdioPinD2 = { PINDEF(2, PB3, 9) },
112 .sdioPinD3 = { PINDEF(2, PB4, 9) },
116 #undef PINDEF
118 // Active configuration
119 static const sdioHardware_t *sdioHardware;
120 static sdioPin_t sdioPin[SDIO_PIN_COUNT];
122 void sdioPinConfigure(void)
124 if (SDCARD_SDIO_DEVICE == SDIOINVALID) {
125 return;
128 sdioHardware = &sdioPinHardware[SDCARD_SDIO_DEVICE];
130 sdioPin[SDIO_PIN_CK] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinCK[0];
131 sdioPin[SDIO_PIN_CMD] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinCMD[0];
132 sdioPin[SDIO_PIN_D0] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD0[0];
134 #ifdef SDCARD_SDIO_4BIT
135 sdioPin[SDIO_PIN_D1] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD1[0];
136 sdioPin[SDIO_PIN_D2] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD2[0];
137 sdioPin[SDIO_PIN_D3] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD3[0];
138 #endif
141 #define IOCFG_SDMMC IO_CONFIG(GPIO_MODE_AF_PP, GPIO_SPEED_FREQ_VERY_HIGH, GPIO_NOPULL)
143 void HAL_SD_MspInit(SD_HandleTypeDef* hsd)
145 UNUSED(hsd);
147 if (!sdioHardware) {
148 return;
151 if (sdioHardware->instance == SDMMC1) {
152 __HAL_RCC_SDMMC1_CLK_DISABLE();
153 __HAL_RCC_SDMMC1_FORCE_RESET();
154 __HAL_RCC_SDMMC1_RELEASE_RESET();
155 __HAL_RCC_SDMMC1_CLK_ENABLE();
156 } else if (sdioHardware->instance == SDMMC2) {
157 __HAL_RCC_SDMMC2_CLK_DISABLE();
158 __HAL_RCC_SDMMC2_FORCE_RESET();
159 __HAL_RCC_SDMMC2_RELEASE_RESET();
160 __HAL_RCC_SDMMC2_CLK_ENABLE();
163 const IO_t clk = IOGetByTag(sdioPin[SDIO_PIN_CK].pin);
164 const IO_t cmd = IOGetByTag(sdioPin[SDIO_PIN_CMD].pin);
165 const IO_t d0 = IOGetByTag(sdioPin[SDIO_PIN_D0].pin);
166 const IO_t d1 = IOGetByTag(sdioPin[SDIO_PIN_D1].pin);
167 const IO_t d2 = IOGetByTag(sdioPin[SDIO_PIN_D2].pin);
168 const IO_t d3 = IOGetByTag(sdioPin[SDIO_PIN_D3].pin);
170 IOConfigGPIOAF(clk, IOCFG_SDMMC, sdioPin[SDIO_PIN_CK].af);
171 IOConfigGPIOAF(cmd, IOCFG_SDMMC, sdioPin[SDIO_PIN_CMD].af);
172 IOConfigGPIOAF(d0, IOCFG_SDMMC, sdioPin[SDIO_PIN_D0].af);
174 #ifdef SDCARD_SDIO_4BIT
175 IOConfigGPIOAF(d1, IOCFG_SDMMC, sdioPin[SDIO_PIN_D1].af);
176 IOConfigGPIOAF(d2, IOCFG_SDMMC, sdioPin[SDIO_PIN_D2].af);
177 IOConfigGPIOAF(d3, IOCFG_SDMMC, sdioPin[SDIO_PIN_D3].af);
178 #endif
180 HAL_NVIC_SetPriority(sdioHardware->irqn, 0, 0);
181 HAL_NVIC_EnableIRQ(sdioHardware->irqn);
184 void SDIO_GPIO_Init(void)
186 if (!sdioHardware) {
187 return;
190 const IO_t clk = IOGetByTag(sdioPin[SDIO_PIN_CK].pin);
191 const IO_t cmd = IOGetByTag(sdioPin[SDIO_PIN_CMD].pin);
192 const IO_t d0 = IOGetByTag(sdioPin[SDIO_PIN_D0].pin);
193 const IO_t d1 = IOGetByTag(sdioPin[SDIO_PIN_D1].pin);
194 const IO_t d2 = IOGetByTag(sdioPin[SDIO_PIN_D2].pin);
195 const IO_t d3 = IOGetByTag(sdioPin[SDIO_PIN_D3].pin);
197 IOInit(clk, OWNER_SDCARD, RESOURCE_NONE, 0);
198 IOInit(cmd, OWNER_SDCARD, RESOURCE_NONE, 0);
199 IOInit(d0, OWNER_SDCARD, RESOURCE_NONE, 0);
201 #ifdef SDCARD_SDIO_4BIT
202 IOInit(d1, OWNER_SDCARD, RESOURCE_NONE, 0);
203 IOInit(d2, OWNER_SDCARD, RESOURCE_NONE, 0);
204 IOInit(d3, OWNER_SDCARD, RESOURCE_NONE, 0);
205 #endif
208 // Setting all the SDIO pins to high for a short time results in more robust initialisation.
210 IOHi(d0);
211 IOConfigGPIO(d0, IOCFG_OUT_PP);
213 #ifdef SDCARD_SDIO_4BIT
214 IOHi(d1);
215 IOHi(d2);
216 IOHi(d3);
217 IOConfigGPIO(d1, IOCFG_OUT_PP);
218 IOConfigGPIO(d2, IOCFG_OUT_PP);
219 IOConfigGPIO(d3, IOCFG_OUT_PP);
220 #endif
222 IOHi(clk);
223 IOHi(cmd);
224 IOConfigGPIO(clk, IOCFG_OUT_PP);
225 IOConfigGPIO(cmd, IOCFG_OUT_PP);
228 bool SD_Initialize_LL(DMA_Stream_TypeDef *dma)
230 UNUSED(dma);
231 return true;
234 bool SD_GetState(void)
236 HAL_SD_CardStateTypedef cardState = HAL_SD_GetCardState(&hsd1);
238 return (cardState == HAL_SD_CARD_TRANSFER);
241 bool SD_Init(void)
243 HAL_StatusTypeDef status;
245 memset(&hsd1, 0, sizeof(hsd1));
247 hsd1.Instance = sdioHardware->instance;
249 hsd1.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING;
250 hsd1.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_ENABLE;
251 #ifdef SDCARD_SDIO_4BIT
252 hsd1.Init.BusWide = SDMMC_BUS_WIDE_4B;
253 #else
254 hsd1.Init.BusWide = SDMMC_BUS_WIDE_1B; // FIXME untested
255 #endif
256 hsd1.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_ENABLE;
257 hsd1.Init.ClockDiv = 1; // 200Mhz / (2 * 1 ) = 100Mhz, used for "UltraHigh speed SD card" only, see HAL_SD_ConfigWideBusOperation, SDMMC_HSpeed_CLK_DIV, SDMMC_NSpeed_CLK_DIV
259 status = HAL_SD_Init(&hsd1); // Will call HAL_SD_MspInit
261 if (status != HAL_OK) {
262 return SD_ERROR;
265 switch(hsd1.SdCard.CardType) {
266 case CARD_SDSC:
267 switch (hsd1.SdCard.CardVersion) {
268 case CARD_V1_X:
269 SD_CardType = SD_STD_CAPACITY_V1_1;
270 break;
271 case CARD_V2_X:
272 SD_CardType = SD_STD_CAPACITY_V2_0;
273 break;
274 default:
275 return SD_ERROR;
277 break;
279 case CARD_SDHC_SDXC:
280 SD_CardType = SD_HIGH_CAPACITY;
281 break;
283 default:
284 return SD_ERROR;
287 // STATIC_ASSERT(sizeof(SD_Handle.CSD) == sizeof(hsd1.CSD), hal-csd-size-error);
288 memcpy(&SD_Handle.CSD, &hsd1.CSD, sizeof(SD_Handle.CSD));
290 // STATIC_ASSERT(sizeof(SD_Handle.CID) == sizeof(hsd1.CID), hal-cid-size-error);
291 memcpy(&SD_Handle.CID, &hsd1.CID, sizeof(SD_Handle.CID));
293 return SD_OK;
296 SD_Error_t SD_GetCardInfo(void)
298 SD_Error_t ErrorState = SD_OK;
300 // fill in SD_CardInfo
302 uint32_t Temp = 0;
304 // Byte 0
305 Temp = (SD_Handle.CSD[0] & 0xFF000000) >> 24;
306 SD_CardInfo.SD_csd.CSDStruct = (uint8_t)((Temp & 0xC0) >> 6);
307 SD_CardInfo.SD_csd.SysSpecVersion = (uint8_t)((Temp & 0x3C) >> 2);
308 SD_CardInfo.SD_csd.Reserved1 = Temp & 0x03;
310 // Byte 1
311 Temp = (SD_Handle.CSD[0] & 0x00FF0000) >> 16;
312 SD_CardInfo.SD_csd.TAAC = (uint8_t)Temp;
314 // Byte 2
315 Temp = (SD_Handle.CSD[0] & 0x0000FF00) >> 8;
316 SD_CardInfo.SD_csd.NSAC = (uint8_t)Temp;
318 // Byte 3
319 Temp = SD_Handle.CSD[0] & 0x000000FF;
320 SD_CardInfo.SD_csd.MaxBusClkFrec = (uint8_t)Temp;
322 // Byte 4
323 Temp = (SD_Handle.CSD[1] & 0xFF000000) >> 24;
324 SD_CardInfo.SD_csd.CardComdClasses = (uint16_t)(Temp << 4);
326 // Byte 5
327 Temp = (SD_Handle.CSD[1] & 0x00FF0000) >> 16;
328 SD_CardInfo.SD_csd.CardComdClasses |= (uint16_t)((Temp & 0xF0) >> 4);
329 SD_CardInfo.SD_csd.RdBlockLen = (uint8_t)(Temp & 0x0F);
331 // Byte 6
332 Temp = (SD_Handle.CSD[1] & 0x0000FF00) >> 8;
333 SD_CardInfo.SD_csd.PartBlockRead = (uint8_t)((Temp & 0x80) >> 7);
334 SD_CardInfo.SD_csd.WrBlockMisalign = (uint8_t)((Temp & 0x40) >> 6);
335 SD_CardInfo.SD_csd.RdBlockMisalign = (uint8_t)((Temp & 0x20) >> 5);
336 SD_CardInfo.SD_csd.DSRImpl = (uint8_t)((Temp & 0x10) >> 4);
337 SD_CardInfo.SD_csd.Reserved2 = 0; /*!< Reserved */
339 if((SD_CardType == SD_STD_CAPACITY_V1_1) || (SD_CardType == SD_STD_CAPACITY_V2_0)) {
340 SD_CardInfo.SD_csd.DeviceSize = (Temp & 0x03) << 10;
342 // Byte 7
343 Temp = (uint8_t)(SD_Handle.CSD[1] & 0x000000FF);
344 SD_CardInfo.SD_csd.DeviceSize |= (Temp) << 2;
346 // Byte 8
347 Temp = (uint8_t)((SD_Handle.CSD[2] & 0xFF000000) >> 24);
348 SD_CardInfo.SD_csd.DeviceSize |= (Temp & 0xC0) >> 6;
350 SD_CardInfo.SD_csd.MaxRdCurrentVDDMin = (Temp & 0x38) >> 3;
351 SD_CardInfo.SD_csd.MaxRdCurrentVDDMax = (Temp & 0x07);
353 // Byte 9
354 Temp = (uint8_t)((SD_Handle.CSD[2] & 0x00FF0000) >> 16);
355 SD_CardInfo.SD_csd.MaxWrCurrentVDDMin = (Temp & 0xE0) >> 5;
356 SD_CardInfo.SD_csd.MaxWrCurrentVDDMax = (Temp & 0x1C) >> 2;
357 SD_CardInfo.SD_csd.DeviceSizeMul = (Temp & 0x03) << 1;
359 // Byte 10
360 Temp = (uint8_t)((SD_Handle.CSD[2] & 0x0000FF00) >> 8);
361 SD_CardInfo.SD_csd.DeviceSizeMul |= (Temp & 0x80) >> 7;
363 SD_CardInfo.CardCapacity = (SD_CardInfo.SD_csd.DeviceSize + 1) ;
364 SD_CardInfo.CardCapacity *= (1 << (SD_CardInfo.SD_csd.DeviceSizeMul + 2));
365 SD_CardInfo.CardBlockSize = 1 << (SD_CardInfo.SD_csd.RdBlockLen);
366 SD_CardInfo.CardCapacity = SD_CardInfo.CardCapacity * SD_CardInfo.CardBlockSize / 512; // In 512 byte blocks
367 } else if(SD_CardType == SD_HIGH_CAPACITY) {
368 // Byte 7
369 Temp = (uint8_t)(SD_Handle.CSD[1] & 0x000000FF);
370 SD_CardInfo.SD_csd.DeviceSize = (Temp & 0x3F) << 16;
372 // Byte 8
373 Temp = (uint8_t)((SD_Handle.CSD[2] & 0xFF000000) >> 24);
375 SD_CardInfo.SD_csd.DeviceSize |= (Temp << 8);
377 // Byte 9
378 Temp = (uint8_t)((SD_Handle.CSD[2] & 0x00FF0000) >> 16);
380 SD_CardInfo.SD_csd.DeviceSize |= (Temp);
382 // Byte 10
383 Temp = (uint8_t)((SD_Handle.CSD[2] & 0x0000FF00) >> 8);
385 SD_CardInfo.CardCapacity = ((uint64_t)SD_CardInfo.SD_csd.DeviceSize + 1) * 1024;
386 SD_CardInfo.CardBlockSize = 512;
387 } else {
388 // Not supported card type
389 ErrorState = SD_ERROR;
392 SD_CardInfo.SD_csd.EraseGrSize = (Temp & 0x40) >> 6;
393 SD_CardInfo.SD_csd.EraseGrMul = (Temp & 0x3F) << 1;
395 // Byte 11
396 Temp = (uint8_t)(SD_Handle.CSD[2] & 0x000000FF);
397 SD_CardInfo.SD_csd.EraseGrMul |= (Temp & 0x80) >> 7;
398 SD_CardInfo.SD_csd.WrProtectGrSize = (Temp & 0x7F);
400 // Byte 12
401 Temp = (uint8_t)((SD_Handle.CSD[3] & 0xFF000000) >> 24);
402 SD_CardInfo.SD_csd.WrProtectGrEnable = (Temp & 0x80) >> 7;
403 SD_CardInfo.SD_csd.ManDeflECC = (Temp & 0x60) >> 5;
404 SD_CardInfo.SD_csd.WrSpeedFact = (Temp & 0x1C) >> 2;
405 SD_CardInfo.SD_csd.MaxWrBlockLen = (Temp & 0x03) << 2;
407 // Byte 13
408 Temp = (uint8_t)((SD_Handle.CSD[3] & 0x00FF0000) >> 16);
409 SD_CardInfo.SD_csd.MaxWrBlockLen |= (Temp & 0xC0) >> 6;
410 SD_CardInfo.SD_csd.WriteBlockPaPartial = (Temp & 0x20) >> 5;
411 SD_CardInfo.SD_csd.Reserved3 = 0;
412 SD_CardInfo.SD_csd.ContentProtectAppli = (Temp & 0x01);
414 // Byte 14
415 Temp = (uint8_t)((SD_Handle.CSD[3] & 0x0000FF00) >> 8);
416 SD_CardInfo.SD_csd.FileFormatGrouop = (Temp & 0x80) >> 7;
417 SD_CardInfo.SD_csd.CopyFlag = (Temp & 0x40) >> 6;
418 SD_CardInfo.SD_csd.PermWrProtect = (Temp & 0x20) >> 5;
419 SD_CardInfo.SD_csd.TempWrProtect = (Temp & 0x10) >> 4;
420 SD_CardInfo.SD_csd.FileFormat = (Temp & 0x0C) >> 2;
421 SD_CardInfo.SD_csd.ECC = (Temp & 0x03);
423 // Byte 15
424 Temp = (uint8_t)(SD_Handle.CSD[3] & 0x000000FF);
425 SD_CardInfo.SD_csd.CSD_CRC = (Temp & 0xFE) >> 1;
426 SD_CardInfo.SD_csd.Reserved4 = 1;
428 // Byte 0
429 Temp = (uint8_t)((SD_Handle.CID[0] & 0xFF000000) >> 24);
430 SD_CardInfo.SD_cid.ManufacturerID = Temp;
432 // Byte 1
433 Temp = (uint8_t)((SD_Handle.CID[0] & 0x00FF0000) >> 16);
434 SD_CardInfo.SD_cid.OEM_AppliID = Temp << 8;
436 // Byte 2
437 Temp = (uint8_t)((SD_Handle.CID[0] & 0x000000FF00) >> 8);
438 SD_CardInfo.SD_cid.OEM_AppliID |= Temp;
440 // Byte 3
441 Temp = (uint8_t)(SD_Handle.CID[0] & 0x000000FF);
442 SD_CardInfo.SD_cid.ProdName1 = Temp << 24;
444 // Byte 4
445 Temp = (uint8_t)((SD_Handle.CID[1] & 0xFF000000) >> 24);
446 SD_CardInfo.SD_cid.ProdName1 |= Temp << 16;
448 // Byte 5
449 Temp = (uint8_t)((SD_Handle.CID[1] & 0x00FF0000) >> 16);
450 SD_CardInfo.SD_cid.ProdName1 |= Temp << 8;
452 // Byte 6
453 Temp = (uint8_t)((SD_Handle.CID[1] & 0x0000FF00) >> 8);
454 SD_CardInfo.SD_cid.ProdName1 |= Temp;
456 // Byte 7
457 Temp = (uint8_t)(SD_Handle.CID[1] & 0x000000FF);
458 SD_CardInfo.SD_cid.ProdName2 = Temp;
460 // Byte 8
461 Temp = (uint8_t)((SD_Handle.CID[2] & 0xFF000000) >> 24);
462 SD_CardInfo.SD_cid.ProdRev = Temp;
464 // Byte 9
465 Temp = (uint8_t)((SD_Handle.CID[2] & 0x00FF0000) >> 16);
466 SD_CardInfo.SD_cid.ProdSN = Temp << 24;
468 // Byte 10
469 Temp = (uint8_t)((SD_Handle.CID[2] & 0x0000FF00) >> 8);
470 SD_CardInfo.SD_cid.ProdSN |= Temp << 16;
472 // Byte 11
473 Temp = (uint8_t)(SD_Handle.CID[2] & 0x000000FF);
474 SD_CardInfo.SD_cid.ProdSN |= Temp << 8;
476 // Byte 12
477 Temp = (uint8_t)((SD_Handle.CID[3] & 0xFF000000) >> 24);
478 SD_CardInfo.SD_cid.ProdSN |= Temp;
480 // Byte 13
481 Temp = (uint8_t)((SD_Handle.CID[3] & 0x00FF0000) >> 16);
482 SD_CardInfo.SD_cid.Reserved1 |= (Temp & 0xF0) >> 4;
483 SD_CardInfo.SD_cid.ManufactDate = (Temp & 0x0F) << 8;
485 // Byte 14
486 Temp = (uint8_t)((SD_Handle.CID[3] & 0x0000FF00) >> 8);
487 SD_CardInfo.SD_cid.ManufactDate |= Temp;
489 // Byte 15
490 Temp = (uint8_t)(SD_Handle.CID[3] & 0x000000FF);
491 SD_CardInfo.SD_cid.CID_CRC = (Temp & 0xFE) >> 1;
492 SD_CardInfo.SD_cid.Reserved2 = 1;
494 return ErrorState;
497 SD_Error_t SD_CheckWrite(void) {
498 if (SD_Handle.TXCplt != 0) return SD_BUSY;
499 return SD_OK;
502 SD_Error_t SD_CheckRead(void) {
503 if (SD_Handle.RXCplt != 0) return SD_BUSY;
504 return SD_OK;
507 SD_Error_t SD_WriteBlocks_DMA(uint64_t WriteAddress, uint32_t *buffer, uint32_t BlockSize, uint32_t NumberOfBlocks)
509 SD_Error_t ErrorState = SD_OK;
510 SD_Handle.TXCplt = 1;
512 if (BlockSize != 512) {
513 return SD_ERROR; // unsupported.
516 if ((uint32_t)buffer & 0x1f) {
517 return SD_ADDR_MISALIGNED;
520 // Ensure the data is flushed to main memory
521 SCB_CleanDCache_by_Addr(buffer, NumberOfBlocks * BlockSize);
523 HAL_StatusTypeDef status;
524 if ((status = HAL_SD_WriteBlocks_DMA(&hsd1, (uint8_t *)buffer, WriteAddress, NumberOfBlocks)) != HAL_OK) {
525 return SD_ERROR;
528 return ErrorState;
531 typedef struct {
532 uint32_t *buffer;
533 uint32_t BlockSize;
534 uint32_t NumberOfBlocks;
535 } sdReadParameters_t;
537 sdReadParameters_t sdReadParameters;
539 SD_Error_t SD_ReadBlocks_DMA(uint64_t ReadAddress, uint32_t *buffer, uint32_t BlockSize, uint32_t NumberOfBlocks)
541 SD_Error_t ErrorState = SD_OK;
543 if (BlockSize != 512) {
544 return SD_ERROR; // unsupported.
547 if ((uint32_t)buffer & 0x1f) {
548 return SD_ADDR_MISALIGNED;
551 SD_Handle.RXCplt = 1;
553 sdReadParameters.buffer = buffer;
554 sdReadParameters.BlockSize = BlockSize;
555 sdReadParameters.NumberOfBlocks = NumberOfBlocks;
557 HAL_StatusTypeDef status;
558 if ((status = HAL_SD_ReadBlocks_DMA(&hsd1, (uint8_t *)buffer, ReadAddress, NumberOfBlocks)) != HAL_OK) {
559 return SD_ERROR;
562 return ErrorState;
566 * @brief Tx Transfer completed callback
567 * @param hsd: SD handle
568 * @retval None
570 void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd)
572 UNUSED(hsd);
574 SD_Handle.TXCplt = 0;
578 * @brief Rx Transfer completed callback
579 * @param hsd: SD handle
580 * @retval None
582 void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd)
584 UNUSED(hsd);
586 SD_Handle.RXCplt = 0;
589 the SCB_InvalidateDCache_by_Addr() requires a 32-Byte aligned address,
590 adjust the address and the D-Cache size to invalidate accordingly.
592 uint32_t alignedAddr = (uint32_t)sdReadParameters.buffer & ~0x1F;
593 SCB_InvalidateDCache_by_Addr((uint32_t*)alignedAddr, sdReadParameters.NumberOfBlocks * sdReadParameters.BlockSize + ((uint32_t)sdReadParameters.buffer - alignedAddr));
596 void HAL_SD_AbortCallback(SD_HandleTypeDef *hsd)
598 UNUSED(hsd);
600 SD_Handle.TXCplt = 0;
601 SD_Handle.RXCplt = 0;
604 void SDMMC1_IRQHandler(void)
606 HAL_SD_IRQHandler(&hsd1);
609 void SDMMC2_IRQHandler(void)
611 HAL_SD_IRQHandler(&hsd1);
614 #endif