before merging master
[inav.git] / lib / main / CMSIS / DSP / Source / ComplexMathFunctions / arm_cmplx_mult_cmplx_f32.c
blob3717591e8d244b8873f204e9197877e919874aaf
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_cmplx_mult_cmplx_f32.c
4 * Description: Floating-point complex-by-complex multiplication
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
31 /**
32 * @ingroup groupCmplxMath
35 /**
36 * @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication
38 * Multiplies a complex vector by another complex vector and generates a complex result.
39 * The data in the complex arrays is stored in an interleaved fashion
40 * (real, imag, real, imag, ...).
41 * The parameter <code>numSamples</code> represents the number of complex
42 * samples processed. The complex arrays have a total of <code>2*numSamples</code>
43 * real values.
45 * The underlying algorithm is used:
47 * <pre>
48 * for(n=0; n<numSamples; n++) {
49 * pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
50 * pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
51 * }
52 * </pre>
54 * There are separate functions for floating-point, Q15, and Q31 data types.
57 /**
58 * @addtogroup CmplxByCmplxMult
59 * @{
63 /**
64 * @brief Floating-point complex-by-complex multiplication
65 * @param[in] *pSrcA points to the first input vector
66 * @param[in] *pSrcB points to the second input vector
67 * @param[out] *pDst points to the output vector
68 * @param[in] numSamples number of complex samples in each vector
69 * @return none.
72 void arm_cmplx_mult_cmplx_f32(
73 float32_t * pSrcA,
74 float32_t * pSrcB,
75 float32_t * pDst,
76 uint32_t numSamples)
78 float32_t a1, b1, c1, d1; /* Temporary variables to store real and imaginary values */
79 uint32_t blkCnt; /* loop counters */
81 #if defined (ARM_MATH_DSP)
83 /* Run the below code for Cortex-M4 and Cortex-M3 */
84 float32_t a2, b2, c2, d2; /* Temporary variables to store real and imaginary values */
85 float32_t acc1, acc2, acc3, acc4;
88 /* loop Unrolling */
89 blkCnt = numSamples >> 2U;
91 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
92 ** a second loop below computes the remaining 1 to 3 samples. */
93 while (blkCnt > 0U)
95 /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
96 /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
97 a1 = *pSrcA; /* A[2 * i] */
98 c1 = *pSrcB; /* B[2 * i] */
100 b1 = *(pSrcA + 1); /* A[2 * i + 1] */
101 acc1 = a1 * c1; /* acc1 = A[2 * i] * B[2 * i] */
103 a2 = *(pSrcA + 2); /* A[2 * i + 2] */
104 acc2 = (b1 * c1); /* acc2 = A[2 * i + 1] * B[2 * i] */
106 d1 = *(pSrcB + 1); /* B[2 * i + 1] */
107 c2 = *(pSrcB + 2); /* B[2 * i + 2] */
108 acc1 -= b1 * d1; /* acc1 = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
110 d2 = *(pSrcB + 3); /* B[2 * i + 3] */
111 acc3 = a2 * c2; /* acc3 = A[2 * i + 2] * B[2 * i + 2] */
113 b2 = *(pSrcA + 3); /* A[2 * i + 3] */
114 acc2 += (a1 * d1); /* acc2 = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
116 a1 = *(pSrcA + 4); /* A[2 * i + 4] */
117 acc4 = (a2 * d2); /* acc4 = A[2 * i + 2] * B[2 * i + 3] */
119 c1 = *(pSrcB + 4); /* B[2 * i + 4] */
120 acc3 -= (b2 * d2); /* acc3 = A[2 * i + 2] * B[2 * i + 2] - A[2 * i + 3] * B[2 * i + 3] */
121 *pDst = acc1; /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
123 b1 = *(pSrcA + 5); /* A[2 * i + 5] */
124 acc4 += b2 * c2; /* acc4 = A[2 * i + 2] * B[2 * i + 3] + A[2 * i + 3] * B[2 * i + 2] */
126 *(pDst + 1) = acc2; /* C[2 * i + 1] = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
127 acc1 = (a1 * c1);
129 d1 = *(pSrcB + 5);
130 acc2 = (b1 * c1);
132 *(pDst + 2) = acc3;
133 *(pDst + 3) = acc4;
135 a2 = *(pSrcA + 6);
136 acc1 -= (b1 * d1);
138 c2 = *(pSrcB + 6);
139 acc2 += (a1 * d1);
141 b2 = *(pSrcA + 7);
142 acc3 = (a2 * c2);
144 d2 = *(pSrcB + 7);
145 acc4 = (b2 * c2);
147 *(pDst + 4) = acc1;
148 pSrcA += 8U;
150 acc3 -= (b2 * d2);
151 acc4 += (a2 * d2);
153 *(pDst + 5) = acc2;
154 pSrcB += 8U;
156 *(pDst + 6) = acc3;
157 *(pDst + 7) = acc4;
159 pDst += 8U;
161 /* Decrement the numSamples loop counter */
162 blkCnt--;
165 /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
166 ** No loop unrolling is used. */
167 blkCnt = numSamples % 0x4U;
169 #else
171 /* Run the below code for Cortex-M0 */
172 blkCnt = numSamples;
174 #endif /* #if defined (ARM_MATH_DSP) */
176 while (blkCnt > 0U)
178 /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
179 /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
180 a1 = *pSrcA++;
181 b1 = *pSrcA++;
182 c1 = *pSrcB++;
183 d1 = *pSrcB++;
185 /* store the result in the destination buffer. */
186 *pDst++ = (a1 * c1) - (b1 * d1);
187 *pDst++ = (a1 * d1) + (b1 * c1);
189 /* Decrement the numSamples loop counter */
190 blkCnt--;
195 * @} end of CmplxByCmplxMult group