2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
28 #include "blackbox_encoding.h"
29 #include "blackbox_io.h"
31 #include "build/debug.h"
32 #include "build/version.h"
34 #include "common/axis.h"
35 #include "common/encoding.h"
36 #include "common/maths.h"
37 #include "common/time.h"
38 #include "common/utils.h"
40 #include "config/feature.h"
41 #include "config/parameter_group.h"
42 #include "config/parameter_group_ids.h"
44 #include "drivers/accgyro/accgyro.h"
45 #include "drivers/compass/compass.h"
46 #include "drivers/sensor.h"
47 #include "drivers/time.h"
48 #include "drivers/pwm_output.h"
50 #include "fc/config.h"
51 #include "fc/controlrate_profile.h"
52 #include "fc/fc_core.h"
53 #include "fc/rc_controls.h"
54 #include "fc/rc_modes.h"
55 #include "fc/runtime_config.h"
56 #include "fc/settings.h"
57 #include "fc/rc_smoothing.h"
59 #include "flight/failsafe.h"
60 #include "flight/imu.h"
61 #include "flight/mixer.h"
62 #include "flight/pid.h"
63 #include "flight/servos.h"
64 #include "flight/rpm_filter.h"
66 #include "io/beeper.h"
69 #include "navigation/navigation.h"
72 #include "rx/msp_override.h"
74 #include "sensors/diagnostics.h"
75 #include "sensors/acceleration.h"
76 #include "sensors/barometer.h"
77 #include "sensors/battery.h"
78 #include "sensors/compass.h"
79 #include "sensors/gyro.h"
80 #include "sensors/pitotmeter.h"
81 #include "sensors/rangefinder.h"
82 #include "sensors/sensors.h"
83 #include "sensors/esc_sensor.h"
84 #include "flight/wind_estimator.h"
85 #include "sensors/temperature.h"
88 #if defined(ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT)
89 #define DEFAULT_BLACKBOX_DEVICE BLACKBOX_DEVICE_FLASH
90 #elif defined(ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT)
91 #define DEFAULT_BLACKBOX_DEVICE BLACKBOX_DEVICE_SDCARD
93 #define DEFAULT_BLACKBOX_DEVICE BLACKBOX_DEVICE_SERIAL
96 #ifdef SDCARD_DETECT_INVERTED
97 #define BLACKBOX_INVERTED_CARD_DETECTION 1
99 #define BLACKBOX_INVERTED_CARD_DETECTION 0
102 PG_REGISTER_WITH_RESET_TEMPLATE(blackboxConfig_t
, blackboxConfig
, PG_BLACKBOX_CONFIG
, 2);
104 PG_RESET_TEMPLATE(blackboxConfig_t
, blackboxConfig
,
105 .device
= DEFAULT_BLACKBOX_DEVICE
,
106 .rate_num
= SETTING_BLACKBOX_RATE_NUM_DEFAULT
,
107 .rate_denom
= SETTING_BLACKBOX_RATE_DENOM_DEFAULT
,
108 .invertedCardDetection
= BLACKBOX_INVERTED_CARD_DETECTION
,
109 .includeFlags
= BLACKBOX_FEATURE_NAV_PID
| BLACKBOX_FEATURE_NAV_POS
|
110 BLACKBOX_FEATURE_MAG
| BLACKBOX_FEATURE_ACC
| BLACKBOX_FEATURE_ATTITUDE
|
111 BLACKBOX_FEATURE_RC_DATA
| BLACKBOX_FEATURE_RC_COMMAND
| BLACKBOX_FEATURE_MOTORS
,
114 void blackboxIncludeFlagSet(uint32_t mask
)
116 blackboxConfigMutable()->includeFlags
|= mask
;
119 void blackboxIncludeFlagClear(uint32_t mask
)
121 blackboxConfigMutable()->includeFlags
&= ~(mask
);
124 bool blackboxIncludeFlag(uint32_t mask
) {
125 return (blackboxConfig()->includeFlags
& mask
) == mask
;
128 #define BLACKBOX_SHUTDOWN_TIMEOUT_MILLIS 200
129 static const int32_t blackboxSInterval
= 4096;
131 // Some macros to make writing FLIGHT_LOG_FIELD_* constants shorter:
133 #define PREDICT(x) CONCAT(FLIGHT_LOG_FIELD_PREDICTOR_, x)
134 #define ENCODING(x) CONCAT(FLIGHT_LOG_FIELD_ENCODING_, x)
135 #define CONDITION(x) CONCAT(FLIGHT_LOG_FIELD_CONDITION_, x)
136 #define UNSIGNED FLIGHT_LOG_FIELD_UNSIGNED
137 #define SIGNED FLIGHT_LOG_FIELD_SIGNED
139 static const char blackboxHeader
[] =
140 "H Product:Blackbox flight data recorder by Nicholas Sherlock\n"
141 "H Data version:2\n";
143 static const char* const blackboxFieldHeaderNames
[] = {
152 /* All field definition structs should look like this (but with longer arrs): */
153 typedef struct blackboxFieldDefinition_s
{
155 // If the field name has a number to be included in square brackets [1] afterwards, set it here, or -1 for no brackets:
156 int8_t fieldNameIndex
;
158 // Each member of this array will be the value to print for this field for the given header index
160 } blackboxFieldDefinition_t
;
162 #define BLACKBOX_DELTA_FIELD_HEADER_COUNT ARRAYLEN(blackboxFieldHeaderNames)
163 #define BLACKBOX_SIMPLE_FIELD_HEADER_COUNT (BLACKBOX_DELTA_FIELD_HEADER_COUNT - 2)
164 #define BLACKBOX_CONDITIONAL_FIELD_HEADER_COUNT (BLACKBOX_DELTA_FIELD_HEADER_COUNT - 2)
166 typedef struct blackboxSimpleFieldDefinition_s
{
168 int8_t fieldNameIndex
;
173 } blackboxSimpleFieldDefinition_t
;
175 typedef struct blackboxConditionalFieldDefinition_s
{
177 int8_t fieldNameIndex
;
182 uint8_t condition
; // Decide whether this field should appear in the log
183 } blackboxConditionalFieldDefinition_t
;
185 typedef struct blackboxDeltaFieldDefinition_s
{
187 int8_t fieldNameIndex
;
194 uint8_t condition
; // Decide whether this field should appear in the log
195 } blackboxDeltaFieldDefinition_t
;
198 * Description of the blackbox fields we are writing in our main intra (I) and inter (P) frames. This description is
199 * written into the flight log header so the log can be properly interpreted (but these definitions don't actually cause
200 * the encoding to happen, we have to encode the flight log ourselves in write{Inter|Intra}frame() in a way that matches
201 * the encoding we've promised here).
203 static const blackboxDeltaFieldDefinition_t blackboxMainFields
[] = {
204 /* loopIteration doesn't appear in P frames since it always increments */
205 {"loopIteration",-1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(INC
), .Pencode
= FLIGHT_LOG_FIELD_ENCODING_NULL
, CONDITION(ALWAYS
)},
206 /* Time advances pretty steadily so the P-frame prediction is a straight line */
207 {"time", -1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(STRAIGHT_LINE
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
208 {"axisRate", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
209 {"axisRate", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
210 {"axisRate", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
211 {"axisP", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
212 {"axisP", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
213 {"axisP", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
214 /* I terms get special packed encoding in P frames: */
215 {"axisI", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG2_3S32
), CONDITION(ALWAYS
)},
216 {"axisI", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG2_3S32
), CONDITION(ALWAYS
)},
217 {"axisI", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG2_3S32
), CONDITION(ALWAYS
)},
218 {"axisD", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(NONZERO_PID_D_0
)},
219 {"axisD", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(NONZERO_PID_D_1
)},
220 {"axisD", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(NONZERO_PID_D_2
)},
221 {"axisF", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ALWAYS
},
222 {"axisF", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ALWAYS
},
223 {"axisF", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ALWAYS
},
225 {"fwAltP", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
226 {"fwAltI", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
227 {"fwAltD", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
228 {"fwAltOut", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
229 {"fwPosP", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
230 {"fwPosI", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
231 {"fwPosD", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
232 {"fwPosOut", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(FIXED_WING_NAV
)},
234 {"mcPosAxisP", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
235 {"mcPosAxisP", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
236 {"mcPosAxisP", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
237 {"mcVelAxisP", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
238 {"mcVelAxisP", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
239 {"mcVelAxisP", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
240 {"mcVelAxisI", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
241 {"mcVelAxisI", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
242 {"mcVelAxisI", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
243 {"mcVelAxisD", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
244 {"mcVelAxisD", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
245 {"mcVelAxisD", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
246 {"mcVelAxisFF", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
247 {"mcVelAxisFF", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
248 {"mcVelAxisFF", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
249 {"mcVelAxisOut",0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
250 {"mcVelAxisOut",1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
251 {"mcVelAxisOut",2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
252 {"mcSurfaceP", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
253 {"mcSurfaceI", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
254 {"mcSurfaceD", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
255 {"mcSurfaceOut",-1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(MC_NAV
)},
257 /* rcData are encoded together as a group: */
258 {"rcData", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_DATA
},
259 {"rcData", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_DATA
},
260 {"rcData", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_DATA
},
261 {"rcData", 3, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_DATA
},
262 /* rcCommands are encoded together as a group in P-frames: */
263 {"rcCommand", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_COMMAND
},
264 {"rcCommand", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_COMMAND
},
265 {"rcCommand", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_COMMAND
},
266 /* Throttle is always in the range [minthrottle..maxthrottle]: */
267 {"rcCommand", 3, UNSIGNED
, .Ipredict
= PREDICT(MINTHROTTLE
), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_4S16
), FLIGHT_LOG_FIELD_CONDITION_RC_COMMAND
},
269 {"vbat", -1, UNSIGNED
, .Ipredict
= PREDICT(VBATREF
), .Iencode
= ENCODING(NEG_14BIT
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_VBAT
},
270 {"amperage", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_AMPERAGE
},
273 {"magADC", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_MAG
},
274 {"magADC", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_MAG
},
275 {"magADC", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_MAG
},
278 {"BaroAlt", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_BARO
},
281 {"AirSpeed", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_PITOT
},
283 #ifdef USE_RANGEFINDER
284 {"surfaceRaw", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_SURFACE
},
286 {"rssi", -1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(TAG8_8SVB
), FLIGHT_LOG_FIELD_CONDITION_RSSI
},
288 /* Gyros and accelerometers base their P-predictions on the average of the previous 2 frames to reduce noise impact */
289 {"gyroADC", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
290 {"gyroADC", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
291 {"gyroADC", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
293 {"gyroRaw", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_RAW
},
294 {"gyroRaw", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_RAW
},
295 {"gyroRaw", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_RAW
},
297 {"gyroPeakRoll", 0, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_ROLL
},
298 {"gyroPeakRoll", 1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_ROLL
},
299 {"gyroPeakRoll", 2, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_ROLL
},
301 {"gyroPeakPitch", 0, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_PITCH
},
302 {"gyroPeakPitch", 1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_PITCH
},
303 {"gyroPeakPitch", 2, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_PITCH
},
305 {"gyroPeakYaw", 0, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_YAW
},
306 {"gyroPeakYaw", 1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_YAW
},
307 {"gyroPeakYaw", 2, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_YAW
},
310 {"accSmooth", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ACC
},
311 {"accSmooth", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ACC
},
312 {"accSmooth", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ACC
},
313 {"accVib", -1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ACC
},
314 {"attitude", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ATTITUDE
},
315 {"attitude", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ATTITUDE
},
316 {"attitude", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_ATTITUDE
},
317 {"debug", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
318 {"debug", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
319 {"debug", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
320 {"debug", 3, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
321 {"debug", 4, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
322 {"debug", 5, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
323 {"debug", 6, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
324 {"debug", 7, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_DEBUG
},
325 /* Motors only rarely drops under minthrottle (when stick falls below mincommand), so predict minthrottle for it and use *unsigned* encoding (which is large for negative numbers but more compact for positive ones): */
326 {"motor", 0, UNSIGNED
, .Ipredict
= PREDICT(MINTHROTTLE
), .Iencode
= ENCODING(UNSIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_1
)},
327 /* Subsequent motors base their I-frame values on the first one, P-frame values on the average of last two frames: */
328 {"motor", 1, UNSIGNED
, .Ipredict
= PREDICT(MOTOR_0
), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_2
)},
329 {"motor", 2, UNSIGNED
, .Ipredict
= PREDICT(MOTOR_0
), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_3
)},
330 {"motor", 3, UNSIGNED
, .Ipredict
= PREDICT(MOTOR_0
), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_4
)},
331 {"motor", 4, UNSIGNED
, .Ipredict
= PREDICT(MOTOR_0
), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_5
)},
332 {"motor", 5, UNSIGNED
, .Ipredict
= PREDICT(MOTOR_0
), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_6
)},
333 {"motor", 6, UNSIGNED
, .Ipredict
= PREDICT(MOTOR_0
), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_7
)},
334 {"motor", 7, UNSIGNED
, .Ipredict
= PREDICT(MOTOR_0
), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(AT_LEAST_MOTORS_8
)},
337 {"servo", 0, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
338 {"servo", 1, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
339 {"servo", 2, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
340 {"servo", 3, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
341 {"servo", 4, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
342 {"servo", 5, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
343 {"servo", 6, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
344 {"servo", 7, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
345 {"servo", 8, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
346 {"servo", 9, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
347 {"servo", 10, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
348 {"servo", 11, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
349 {"servo", 12, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
350 {"servo", 13, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
351 {"servo", 14, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
352 {"servo", 15, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
353 {"servo", 16, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
354 {"servo", 17, UNSIGNED
, .Ipredict
= PREDICT(1500), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(SERVOS
)},
356 {"navState", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
357 {"navFlags", -1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
358 {"navEPH", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
359 {"navEPV", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
360 {"navPos", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
361 {"navPos", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
362 {"navPos", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
363 {"navVel", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
364 {"navVel", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
365 {"navVel", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
366 {"navTgtVel", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
367 {"navTgtVel", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
368 {"navTgtVel", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
369 {"navTgtPos", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
370 {"navTgtPos", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
371 {"navTgtPos", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
372 {"navTgtHdg", -1, UNSIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
373 {"navSurf", -1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(PREVIOUS
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_POS
},
374 {"navAcc", 0, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_ACC
},
375 {"navAcc", 1, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_ACC
},
376 {"navAcc", 2, SIGNED
, .Ipredict
= PREDICT(0), .Iencode
= ENCODING(SIGNED_VB
), .Ppredict
= PREDICT(AVERAGE_2
), .Pencode
= ENCODING(SIGNED_VB
), FLIGHT_LOG_FIELD_CONDITION_NAV_ACC
},
380 // GPS position/vel frame
381 static const blackboxConditionalFieldDefinition_t blackboxGpsGFields
[] = {
382 {"time", -1, UNSIGNED
, PREDICT(LAST_MAIN_FRAME_TIME
), ENCODING(UNSIGNED_VB
), CONDITION(NOT_LOGGING_EVERY_FRAME
)},
383 {"GPS_fixType", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
), CONDITION(ALWAYS
)},
384 {"GPS_numSat", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
), CONDITION(ALWAYS
)},
385 {"GPS_coord", 0, SIGNED
, PREDICT(HOME_COORD
), ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
386 {"GPS_coord", 1, SIGNED
, PREDICT(HOME_COORD
), ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
387 {"GPS_altitude", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
388 {"GPS_speed", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
), CONDITION(ALWAYS
)},
389 {"GPS_ground_course", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
), CONDITION(ALWAYS
)},
390 {"GPS_hdop", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
), CONDITION(ALWAYS
)},
391 {"GPS_eph", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
), CONDITION(ALWAYS
)},
392 {"GPS_epv", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
), CONDITION(ALWAYS
)},
393 {"GPS_velned", 0, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
394 {"GPS_velned", 1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)},
395 {"GPS_velned", 2, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
), CONDITION(ALWAYS
)}
399 static const blackboxSimpleFieldDefinition_t blackboxGpsHFields
[] = {
400 {"GPS_home", 0, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
401 {"GPS_home", 1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)}
405 // Rarely-updated fields
406 static const blackboxSimpleFieldDefinition_t blackboxSlowFields
[] = {
407 /* "flightModeFlags" renamed internally to more correct ref of rcModeFlags, since it logs rc boxmode selections,
408 * but name kept for external compatibility reasons.
409 * "activeFlightModeFlags" logs actual active flight modes rather than rc boxmodes.
410 * 'active' should at least distinguish it from the existing "flightModeFlags" */
412 {"activeWpNumber", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
413 {"flightModeFlags", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
414 {"flightModeFlags2", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
415 {"activeFlightModeFlags", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
416 {"stateFlags", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
418 {"failsafePhase", -1, UNSIGNED
, PREDICT(0), ENCODING(TAG2_3S32
)},
419 {"rxSignalReceived", -1, UNSIGNED
, PREDICT(0), ENCODING(TAG2_3S32
)},
420 {"rxFlightChannelsValid", -1, UNSIGNED
, PREDICT(0), ENCODING(TAG2_3S32
)},
421 {"rxUpdateRate", -1, UNSIGNED
, PREDICT(PREVIOUS
), ENCODING(UNSIGNED_VB
)},
423 {"hwHealthStatus", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
424 {"powerSupplyImpedance", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
425 {"sagCompensatedVBat", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
426 {"wind", 0, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
427 {"wind", 1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
428 {"wind", 2, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
429 #if defined(USE_RX_MSP) && defined(USE_MSP_RC_OVERRIDE)
430 {"mspOverrideFlags", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
432 {"IMUTemperature", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
434 {"baroTemperature", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
436 #ifdef USE_TEMPERATURE_SENSOR
437 {"sens0Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
438 {"sens1Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
439 {"sens2Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
440 {"sens3Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
441 {"sens4Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
442 {"sens5Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
443 {"sens6Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
444 {"sens7Temp", -1, SIGNED
, PREDICT(0), ENCODING(SIGNED_VB
)},
446 #ifdef USE_ESC_SENSOR
447 {"escRPM", -1, UNSIGNED
, PREDICT(0), ENCODING(UNSIGNED_VB
)},
448 {"escTemperature", -1, SIGNED
, PREDICT(PREVIOUS
), ENCODING(SIGNED_VB
)},
452 typedef enum BlackboxState
{
453 BLACKBOX_STATE_DISABLED
= 0,
454 BLACKBOX_STATE_STOPPED
,
455 BLACKBOX_STATE_PREPARE_LOG_FILE
,
456 BLACKBOX_STATE_SEND_HEADER
,
457 BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER
,
458 BLACKBOX_STATE_SEND_GPS_H_HEADER
,
459 BLACKBOX_STATE_SEND_GPS_G_HEADER
,
460 BLACKBOX_STATE_SEND_SLOW_HEADER
,
461 BLACKBOX_STATE_SEND_SYSINFO
,
462 BLACKBOX_STATE_PAUSED
,
463 BLACKBOX_STATE_RUNNING
,
464 BLACKBOX_STATE_SHUTTING_DOWN
467 #define BLACKBOX_FIRST_HEADER_SENDING_STATE BLACKBOX_STATE_SEND_HEADER
468 #define BLACKBOX_LAST_HEADER_SENDING_STATE BLACKBOX_STATE_SEND_SYSINFO
470 typedef struct blackboxMainState_s
{
473 int32_t axisPID_P
[XYZ_AXIS_COUNT
];
474 int32_t axisPID_I
[XYZ_AXIS_COUNT
];
475 int32_t axisPID_D
[XYZ_AXIS_COUNT
];
476 int32_t axisPID_F
[XYZ_AXIS_COUNT
];
477 int32_t axisPID_Setpoint
[XYZ_AXIS_COUNT
];
479 int32_t mcPosAxisP
[XYZ_AXIS_COUNT
];
480 int32_t mcVelAxisPID
[4][XYZ_AXIS_COUNT
];
481 int32_t mcVelAxisOutput
[XYZ_AXIS_COUNT
];
483 int32_t mcSurfacePID
[3];
484 int32_t mcSurfacePIDOutput
;
487 int32_t fwAltPIDOutput
;
489 int32_t fwPosPIDOutput
;
492 int16_t rcCommand
[4];
493 int16_t gyroADC
[XYZ_AXIS_COUNT
];
494 int16_t gyroRaw
[XYZ_AXIS_COUNT
];
496 int16_t gyroPeaksRoll
[DYN_NOTCH_PEAK_COUNT
];
497 int16_t gyroPeaksPitch
[DYN_NOTCH_PEAK_COUNT
];
498 int16_t gyroPeaksYaw
[DYN_NOTCH_PEAK_COUNT
];
500 int16_t accADC
[XYZ_AXIS_COUNT
];
502 int16_t attitude
[XYZ_AXIS_COUNT
];
503 int32_t debug
[DEBUG32_VALUE_COUNT
];
504 int16_t motor
[MAX_SUPPORTED_MOTORS
];
505 int16_t servo
[MAX_SUPPORTED_SERVOS
];
517 int16_t magADC
[XYZ_AXIS_COUNT
];
519 #ifdef USE_RANGEFINDER
527 int32_t navPos
[XYZ_AXIS_COUNT
];
528 int16_t navRealVel
[XYZ_AXIS_COUNT
];
529 int16_t navAccNEU
[XYZ_AXIS_COUNT
];
530 int16_t navTargetVel
[XYZ_AXIS_COUNT
];
531 int32_t navTargetPos
[XYZ_AXIS_COUNT
];
533 uint16_t navTargetHeading
;
535 } blackboxMainState_t
;
537 typedef struct blackboxGpsState_s
{
539 int32_t GPS_coord
[2];
541 } blackboxGpsState_t
;
543 // This data is updated really infrequently:
544 typedef struct blackboxSlowState_s
{
545 uint32_t rcModeFlags
;
546 uint32_t rcModeFlags2
;
547 uint32_t activeFlightModeFlags
;
549 uint8_t failsafePhase
;
550 bool rxSignalReceived
;
551 bool rxFlightChannelsValid
;
552 int32_t hwHealthStatus
;
553 uint16_t powerSupplyImpedance
;
554 uint16_t sagCompensatedVBat
;
555 int16_t wind
[XYZ_AXIS_COUNT
];
556 #if defined(USE_RX_MSP) && defined(USE_MSP_RC_OVERRIDE)
557 uint16_t mspOverrideFlags
;
559 int16_t imuTemperature
;
561 int16_t baroTemperature
;
563 #ifdef USE_TEMPERATURE_SENSOR
564 int16_t tempSensorTemperature
[MAX_TEMP_SENSORS
];
566 #ifdef USE_ESC_SENSOR
568 int8_t escTemperature
;
570 uint16_t rxUpdateRate
;
571 uint8_t activeWpNumber
;
572 } __attribute__((__packed__
)) blackboxSlowState_t
; // We pack this struct so that padding doesn't interfere with memcmp()
575 extern boxBitmask_t rcModeActivationMask
;
577 static BlackboxState blackboxState
= BLACKBOX_STATE_DISABLED
;
579 static uint32_t blackboxLastArmingBeep
= 0;
580 static uint32_t blackboxLastRcModeFlags
= 0;
583 uint32_t headerIndex
;
585 /* Since these fields are used during different blackbox states (never simultaneously) we can
586 * overlap them to save on RAM
594 // Cache for FLIGHT_LOG_FIELD_CONDITION_* test results:
595 static uint64_t blackboxConditionCache
;
597 STATIC_ASSERT((sizeof(blackboxConditionCache
) * 8) >= FLIGHT_LOG_FIELD_CONDITION_LAST
, too_many_flight_log_conditions
);
599 static uint32_t blackboxIFrameInterval
;
600 static uint32_t blackboxIteration
;
601 static uint16_t blackboxPFrameIndex
;
602 static uint16_t blackboxIFrameIndex
;
603 static uint16_t blackboxSlowFrameIterationTimer
;
604 static bool blackboxLoggedAnyFrames
;
607 * We store voltages in I-frames relative to this, which was the voltage when the blackbox was activated.
608 * This helps out since the voltage is only expected to fall from that point and we can reduce our diffs
611 static uint16_t vbatReference
;
613 static blackboxGpsState_t gpsHistory
;
614 static blackboxSlowState_t slowHistory
;
616 // Keep a history of length 2, plus a buffer for MW to store the new values into
617 static EXTENDED_FASTRAM blackboxMainState_t blackboxHistoryRing
[3];
619 // These point into blackboxHistoryRing, use them to know where to store history of a given age (0, 1 or 2 generations old)
620 static EXTENDED_FASTRAM blackboxMainState_t
* blackboxHistory
[3];
622 static bool blackboxModeActivationConditionPresent
= false;
625 * Return true if it is safe to edit the Blackbox configuration.
627 bool blackboxMayEditConfig(void)
629 return blackboxState
<= BLACKBOX_STATE_STOPPED
;
632 static bool blackboxIsOnlyLoggingIntraframes(void)
634 return blackboxConfig()->rate_num
== 1 && blackboxConfig()->rate_denom
== blackboxIFrameInterval
;
637 static bool testBlackboxConditionUncached(FlightLogFieldCondition condition
)
640 case FLIGHT_LOG_FIELD_CONDITION_ALWAYS
:
643 case FLIGHT_LOG_FIELD_CONDITION_MOTORS
:
644 return blackboxIncludeFlag(BLACKBOX_FEATURE_MOTORS
);
646 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_1
:
647 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_2
:
648 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_3
:
649 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_4
:
650 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_5
:
651 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_6
:
652 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_7
:
653 case FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_8
:
654 return (getMotorCount() >= condition
- FLIGHT_LOG_FIELD_CONDITION_AT_LEAST_MOTORS_1
+ 1) && blackboxIncludeFlag(BLACKBOX_FEATURE_MOTORS
);
656 case FLIGHT_LOG_FIELD_CONDITION_SERVOS
:
657 return isMixerUsingServos();
659 case FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_0
:
660 case FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_1
:
661 case FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_2
:
662 // D output can be set by either the D or the FF term
663 return pidBank()->pid
[condition
- FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_0
].D
!= 0;
665 case FLIGHT_LOG_FIELD_CONDITION_MAG
:
667 return sensors(SENSOR_MAG
) && blackboxIncludeFlag(BLACKBOX_FEATURE_MAG
);
672 case FLIGHT_LOG_FIELD_CONDITION_BARO
:
674 return sensors(SENSOR_BARO
);
679 case FLIGHT_LOG_FIELD_CONDITION_PITOT
:
681 return sensors(SENSOR_PITOT
);
686 case FLIGHT_LOG_FIELD_CONDITION_VBAT
:
687 return feature(FEATURE_VBAT
);
689 case FLIGHT_LOG_FIELD_CONDITION_AMPERAGE
:
690 return feature(FEATURE_CURRENT_METER
) && batteryMetersConfig()->current
.type
== CURRENT_SENSOR_ADC
;
692 case FLIGHT_LOG_FIELD_CONDITION_SURFACE
:
693 #ifdef USE_RANGEFINDER
694 return sensors(SENSOR_RANGEFINDER
);
699 case FLIGHT_LOG_FIELD_CONDITION_FIXED_WING_NAV
:
701 return STATE(FIXED_WING_LEGACY
) && blackboxIncludeFlag(BLACKBOX_FEATURE_NAV_PID
);
703 case FLIGHT_LOG_FIELD_CONDITION_MC_NAV
:
704 return !STATE(FIXED_WING_LEGACY
) && blackboxIncludeFlag(BLACKBOX_FEATURE_NAV_PID
);
706 case FLIGHT_LOG_FIELD_CONDITION_RSSI
:
707 // Assumes blackboxStart() is called after rxInit(), which should be true since
708 // logging can't be started until after all the arming checks take place
709 return getRSSISource() != RSSI_SOURCE_NONE
;
711 case FLIGHT_LOG_FIELD_CONDITION_NOT_LOGGING_EVERY_FRAME
:
712 return blackboxConfig()->rate_num
< blackboxConfig()->rate_denom
;
714 case FLIGHT_LOG_FIELD_CONDITION_DEBUG
:
715 return debugMode
!= DEBUG_NONE
;
717 case FLIGHT_LOG_FIELD_CONDITION_NAV_ACC
:
718 return blackboxIncludeFlag(BLACKBOX_FEATURE_NAV_ACC
);
720 case FLIGHT_LOG_FIELD_CONDITION_NAV_POS
:
721 return blackboxIncludeFlag(BLACKBOX_FEATURE_NAV_POS
);
723 case FLIGHT_LOG_FIELD_CONDITION_ACC
:
724 return blackboxIncludeFlag(BLACKBOX_FEATURE_ACC
);
726 case FLIGHT_LOG_FIELD_CONDITION_ATTITUDE
:
727 return blackboxIncludeFlag(BLACKBOX_FEATURE_ATTITUDE
);
729 case FLIGHT_LOG_FIELD_CONDITION_RC_COMMAND
:
730 return blackboxIncludeFlag(BLACKBOX_FEATURE_RC_COMMAND
);
732 case FLIGHT_LOG_FIELD_CONDITION_RC_DATA
:
733 return blackboxIncludeFlag(BLACKBOX_FEATURE_RC_DATA
);
735 case FLIGHT_LOG_FIELD_CONDITION_GYRO_RAW
:
736 return blackboxIncludeFlag(BLACKBOX_FEATURE_GYRO_RAW
);
738 case FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_ROLL
:
739 return blackboxIncludeFlag(BLACKBOX_FEATURE_GYRO_PEAKS_ROLL
);
741 case FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_PITCH
:
742 return blackboxIncludeFlag(BLACKBOX_FEATURE_GYRO_PEAKS_PITCH
);
744 case FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_YAW
:
745 return blackboxIncludeFlag(BLACKBOX_FEATURE_GYRO_PEAKS_YAW
);
747 case FLIGHT_LOG_FIELD_CONDITION_NEVER
:
755 static void blackboxBuildConditionCache(void)
757 blackboxConditionCache
= 0;
758 for (uint8_t cond
= FLIGHT_LOG_FIELD_CONDITION_FIRST
; cond
<= FLIGHT_LOG_FIELD_CONDITION_LAST
; cond
++) {
760 const uint64_t position
= ((uint64_t)1) << cond
;
762 if (testBlackboxConditionUncached(cond
)) {
763 blackboxConditionCache
|= position
;
768 static bool testBlackboxCondition(FlightLogFieldCondition condition
)
770 const uint64_t position
= ((uint64_t)1) << condition
;
771 return (blackboxConditionCache
& position
) != 0;
774 static void blackboxSetState(BlackboxState newState
)
776 //Perform initial setup required for the new state
778 case BLACKBOX_STATE_PREPARE_LOG_FILE
:
779 blackboxLoggedAnyFrames
= false;
781 case BLACKBOX_STATE_SEND_HEADER
:
782 blackboxHeaderBudget
= 0;
783 xmitState
.headerIndex
= 0;
784 xmitState
.u
.startTime
= millis();
786 case BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER
:
787 case BLACKBOX_STATE_SEND_GPS_G_HEADER
:
788 case BLACKBOX_STATE_SEND_GPS_H_HEADER
:
789 case BLACKBOX_STATE_SEND_SLOW_HEADER
:
790 xmitState
.headerIndex
= 0;
791 xmitState
.u
.fieldIndex
= -1;
793 case BLACKBOX_STATE_SEND_SYSINFO
:
794 xmitState
.headerIndex
= 0;
796 case BLACKBOX_STATE_RUNNING
:
797 blackboxSlowFrameIterationTimer
= blackboxSInterval
; //Force a slow frame to be written on the first iteration
799 case BLACKBOX_STATE_SHUTTING_DOWN
:
800 xmitState
.u
.startTime
= millis();
805 blackboxState
= newState
;
808 static void writeIntraframe(void)
810 blackboxMainState_t
*blackboxCurrent
= blackboxHistory
[0];
814 blackboxWriteUnsignedVB(blackboxIteration
);
815 blackboxWriteUnsignedVB(blackboxCurrent
->time
);
817 blackboxWriteSignedVBArray(blackboxCurrent
->axisPID_Setpoint
, XYZ_AXIS_COUNT
);
818 blackboxWriteSignedVBArray(blackboxCurrent
->axisPID_P
, XYZ_AXIS_COUNT
);
819 blackboxWriteSignedVBArray(blackboxCurrent
->axisPID_I
, XYZ_AXIS_COUNT
);
821 // Don't bother writing the current D term if the corresponding PID setting is zero
822 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
823 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_0
+ x
)) {
824 blackboxWriteSignedVB(blackboxCurrent
->axisPID_D
[x
]);
827 blackboxWriteSignedVBArray(blackboxCurrent
->axisPID_F
, XYZ_AXIS_COUNT
);
829 if (testBlackboxCondition(CONDITION(FIXED_WING_NAV
))) {
830 blackboxWriteSignedVBArray(blackboxCurrent
->fwAltPID
, 3);
831 blackboxWriteSignedVB(blackboxCurrent
->fwAltPIDOutput
);
832 blackboxWriteSignedVBArray(blackboxCurrent
->fwPosPID
, 3);
833 blackboxWriteSignedVB(blackboxCurrent
->fwPosPIDOutput
);
836 if (testBlackboxCondition(CONDITION(MC_NAV
))) {
838 blackboxWriteSignedVBArray(blackboxCurrent
->mcPosAxisP
, XYZ_AXIS_COUNT
);
840 for (int i
= 0; i
< 4; i
++) {
841 blackboxWriteSignedVBArray(blackboxCurrent
->mcVelAxisPID
[i
], XYZ_AXIS_COUNT
);
844 blackboxWriteSignedVBArray(blackboxCurrent
->mcVelAxisOutput
, XYZ_AXIS_COUNT
);
846 blackboxWriteSignedVBArray(blackboxCurrent
->mcSurfacePID
, 3);
847 blackboxWriteSignedVB(blackboxCurrent
->mcSurfacePIDOutput
);
850 // Write raw stick positions
851 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_RC_DATA
)) {
852 blackboxWriteSigned16VBArray(blackboxCurrent
->rcData
, 4);
855 // Write roll, pitch and yaw first:
856 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_RC_COMMAND
)) {
857 blackboxWriteSigned16VBArray(blackboxCurrent
->rcCommand
, 3);
860 * Write the throttle separately from the rest of the RC data so we can apply a predictor to it.
861 * Throttle lies in range [minthrottle..maxthrottle]:
863 blackboxWriteUnsignedVB(blackboxCurrent
->rcCommand
[THROTTLE
] - getThrottleIdleValue());
866 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_VBAT
)) {
868 * Our voltage is expected to decrease over the course of the flight, so store our difference from
871 * Write 14 bits even if the number is negative (which would otherwise result in 32 bits)
873 blackboxWriteUnsignedVB((vbatReference
- blackboxCurrent
->vbat
) & 0x3FFF);
876 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_AMPERAGE
)) {
877 // 12bit value directly from ADC
878 blackboxWriteSignedVB(blackboxCurrent
->amperage
);
882 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_MAG
)) {
883 blackboxWriteSigned16VBArray(blackboxCurrent
->magADC
, XYZ_AXIS_COUNT
);
888 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_BARO
)) {
889 blackboxWriteSignedVB(blackboxCurrent
->BaroAlt
);
894 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_PITOT
)) {
895 blackboxWriteSignedVB(blackboxCurrent
->airSpeed
);
899 #ifdef USE_RANGEFINDER
900 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_SURFACE
)) {
901 blackboxWriteSignedVB(blackboxCurrent
->surfaceRaw
);
905 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_RSSI
)) {
906 blackboxWriteUnsignedVB(blackboxCurrent
->rssi
);
909 blackboxWriteSigned16VBArray(blackboxCurrent
->gyroADC
, XYZ_AXIS_COUNT
);
911 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_RAW
)) {
912 blackboxWriteSigned16VBArray(blackboxCurrent
->gyroRaw
, XYZ_AXIS_COUNT
);
915 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_ROLL
)) {
916 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksRoll
[0]);
917 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksRoll
[1]);
918 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksRoll
[2]);
921 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_PITCH
)) {
922 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksPitch
[0]);
923 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksPitch
[1]);
924 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksPitch
[2]);
927 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_YAW
)) {
928 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksYaw
[0]);
929 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksYaw
[1]);
930 blackboxWriteUnsignedVB(blackboxCurrent
->gyroPeaksYaw
[2]);
933 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_ACC
)) {
934 blackboxWriteSigned16VBArray(blackboxCurrent
->accADC
, XYZ_AXIS_COUNT
);
935 blackboxWriteUnsignedVB(blackboxCurrent
->accVib
);
938 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_ATTITUDE
)) {
939 blackboxWriteSigned16VBArray(blackboxCurrent
->attitude
, XYZ_AXIS_COUNT
);
942 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_DEBUG
)) {
943 blackboxWriteSignedVBArray(blackboxCurrent
->debug
, DEBUG32_VALUE_COUNT
);
946 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_MOTORS
)) {
947 //Motors can be below minthrottle when disarmed, but that doesn't happen much
948 blackboxWriteUnsignedVB(blackboxCurrent
->motor
[0] - getThrottleIdleValue());
950 //Motors tend to be similar to each other so use the first motor's value as a predictor of the others
951 const int motorCount
= getMotorCount();
952 for (int x
= 1; x
< motorCount
; x
++) {
953 blackboxWriteSignedVB(blackboxCurrent
->motor
[x
] - blackboxCurrent
->motor
[0]);
957 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_SERVOS
)) {
958 for (int x
= 0; x
< MAX_SUPPORTED_SERVOS
; x
++) {
959 //Assume that servos spends most of its time around the center
960 blackboxWriteSignedVB(blackboxCurrent
->servo
[x
] - 1500);
964 blackboxWriteSignedVB(blackboxCurrent
->navState
);
965 blackboxWriteSignedVB(blackboxCurrent
->navFlags
);
970 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NAV_POS
)) {
971 blackboxWriteSignedVB(blackboxCurrent
->navEPH
);
972 blackboxWriteSignedVB(blackboxCurrent
->navEPV
);
974 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
975 blackboxWriteSignedVB(blackboxCurrent
->navPos
[x
]);
978 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
979 blackboxWriteSignedVB(blackboxCurrent
->navRealVel
[x
]);
982 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
983 blackboxWriteSignedVB(blackboxCurrent
->navTargetVel
[x
]);
986 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
987 blackboxWriteSignedVB(blackboxCurrent
->navTargetPos
[x
]);
990 blackboxWriteSignedVB(blackboxCurrent
->navTargetHeading
);
991 blackboxWriteSignedVB(blackboxCurrent
->navSurface
);
994 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NAV_ACC
)) {
995 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
996 blackboxWriteSignedVB(blackboxCurrent
->navAccNEU
[x
]);
1000 //Rotate our history buffers:
1002 //The current state becomes the new "before" state
1003 blackboxHistory
[1] = blackboxHistory
[0];
1004 //And since we have no other history, we also use it for the "before, before" state
1005 blackboxHistory
[2] = blackboxHistory
[0];
1006 //And advance the current state over to a blank space ready to be filled
1007 blackboxHistory
[0] = ((blackboxHistory
[0] - blackboxHistoryRing
+ 1) % 3) + blackboxHistoryRing
;
1009 blackboxLoggedAnyFrames
= true;
1012 static void blackboxWriteArrayUsingAveragePredictor16(int arrOffsetInHistory
, int count
)
1014 int16_t *curr
= (int16_t*) ((char*) (blackboxHistory
[0]) + arrOffsetInHistory
);
1015 int16_t *prev1
= (int16_t*) ((char*) (blackboxHistory
[1]) + arrOffsetInHistory
);
1016 int16_t *prev2
= (int16_t*) ((char*) (blackboxHistory
[2]) + arrOffsetInHistory
);
1018 for (int i
= 0; i
< count
; i
++) {
1019 // Predictor is the average of the previous two history states
1020 int32_t predictor
= (prev1
[i
] + prev2
[i
]) / 2;
1022 blackboxWriteSignedVB(curr
[i
] - predictor
);
1026 static void blackboxWriteArrayUsingAveragePredictor32(int arrOffsetInHistory
, int count
)
1028 int32_t *curr
= (int32_t*) ((char*) (blackboxHistory
[0]) + arrOffsetInHistory
);
1029 int32_t *prev1
= (int32_t*) ((char*) (blackboxHistory
[1]) + arrOffsetInHistory
);
1030 int32_t *prev2
= (int32_t*) ((char*) (blackboxHistory
[2]) + arrOffsetInHistory
);
1032 for (int i
= 0; i
< count
; i
++) {
1033 // Predictor is the average of the previous two history states
1034 int32_t predictor
= ((int64_t)prev1
[i
] + (int64_t)prev2
[i
]) / 2;
1036 blackboxWriteSignedVB(curr
[i
] - predictor
);
1040 static void writeInterframe(void)
1042 blackboxMainState_t
*blackboxCurrent
= blackboxHistory
[0];
1043 blackboxMainState_t
*blackboxLast
= blackboxHistory
[1];
1047 //No need to store iteration count since its delta is always 1
1050 * Since the difference between the difference between successive times will be nearly zero (due to consistent
1051 * looptime spacing), use second-order differences.
1053 blackboxWriteSignedVB((int32_t) (blackboxHistory
[0]->time
- 2 * blackboxHistory
[1]->time
+ blackboxHistory
[2]->time
));
1056 arraySubInt32(deltas
, blackboxCurrent
->axisPID_Setpoint
, blackboxLast
->axisPID_Setpoint
, XYZ_AXIS_COUNT
);
1057 blackboxWriteSignedVBArray(deltas
, XYZ_AXIS_COUNT
);
1059 arraySubInt32(deltas
, blackboxCurrent
->axisPID_P
, blackboxLast
->axisPID_P
, XYZ_AXIS_COUNT
);
1060 blackboxWriteSignedVBArray(deltas
, XYZ_AXIS_COUNT
);
1063 * The PID I field changes very slowly, most of the time +-2, so use an encoding
1064 * that can pack all three fields into one byte in that situation.
1066 arraySubInt32(deltas
, blackboxCurrent
->axisPID_I
, blackboxLast
->axisPID_I
, XYZ_AXIS_COUNT
);
1067 blackboxWriteTag2_3S32(deltas
);
1070 * The PID D term is frequently set to zero for yaw, which makes the result from the calculation
1071 * always zero. So don't bother recording D results when PID D terms are zero.
1073 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
1074 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NONZERO_PID_D_0
+ x
)) {
1075 blackboxWriteSignedVB(blackboxCurrent
->axisPID_D
[x
] - blackboxLast
->axisPID_D
[x
]);
1079 arraySubInt32(deltas
, blackboxCurrent
->axisPID_F
, blackboxLast
->axisPID_F
, XYZ_AXIS_COUNT
);
1080 blackboxWriteSignedVBArray(deltas
, XYZ_AXIS_COUNT
);
1082 if (testBlackboxCondition(CONDITION(FIXED_WING_NAV
))) {
1084 arraySubInt32(deltas
, blackboxCurrent
->fwAltPID
, blackboxLast
->fwAltPID
, 3);
1085 blackboxWriteSignedVBArray(deltas
, 3);
1087 blackboxWriteSignedVB(blackboxCurrent
->fwAltPIDOutput
- blackboxLast
->fwAltPIDOutput
);
1089 arraySubInt32(deltas
, blackboxCurrent
->fwPosPID
, blackboxLast
->fwPosPID
, 3);
1090 blackboxWriteSignedVBArray(deltas
, 3);
1092 blackboxWriteSignedVB(blackboxCurrent
->fwPosPIDOutput
- blackboxLast
->fwPosPIDOutput
);
1096 if (testBlackboxCondition(CONDITION(MC_NAV
))) {
1097 arraySubInt32(deltas
, blackboxCurrent
->mcPosAxisP
, blackboxLast
->mcPosAxisP
, XYZ_AXIS_COUNT
);
1098 blackboxWriteSignedVBArray(deltas
, XYZ_AXIS_COUNT
);
1100 for (int i
= 0; i
< 4; i
++) {
1101 arraySubInt32(deltas
, blackboxCurrent
->mcVelAxisPID
[i
], blackboxLast
->mcVelAxisPID
[i
], XYZ_AXIS_COUNT
);
1102 blackboxWriteSignedVBArray(deltas
, XYZ_AXIS_COUNT
);
1105 arraySubInt32(deltas
, blackboxCurrent
->mcVelAxisOutput
, blackboxLast
->mcVelAxisOutput
, XYZ_AXIS_COUNT
);
1106 blackboxWriteSignedVBArray(deltas
, XYZ_AXIS_COUNT
);
1108 arraySubInt32(deltas
, blackboxCurrent
->mcSurfacePID
, blackboxLast
->mcSurfacePID
, 3);
1109 blackboxWriteSignedVBArray(deltas
, 3);
1111 blackboxWriteSignedVB(blackboxCurrent
->mcSurfacePIDOutput
- blackboxLast
->mcSurfacePIDOutput
);
1115 * RC tends to stay the same or fairly small for many frames at a time, so use an encoding that
1116 * can pack multiple values per byte:
1120 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_RC_DATA
)) {
1121 for (int x
= 0; x
< 4; x
++) {
1122 deltas
[x
] = blackboxCurrent
->rcData
[x
] - blackboxLast
->rcData
[x
];
1125 blackboxWriteTag8_4S16(deltas
);
1129 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_RC_COMMAND
)) {
1130 for (int x
= 0; x
< 4; x
++) {
1131 deltas
[x
] = blackboxCurrent
->rcCommand
[x
] - blackboxLast
->rcCommand
[x
];
1134 blackboxWriteTag8_4S16(deltas
);
1137 //Check for sensors that are updated periodically (so deltas are normally zero)
1138 int optionalFieldCount
= 0;
1140 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_VBAT
)) {
1141 deltas
[optionalFieldCount
++] = (int32_t) blackboxCurrent
->vbat
- blackboxLast
->vbat
;
1144 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_AMPERAGE
)) {
1145 deltas
[optionalFieldCount
++] = (int32_t) blackboxCurrent
->amperage
- blackboxLast
->amperage
;
1149 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_MAG
)) {
1150 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
1151 deltas
[optionalFieldCount
++] = blackboxCurrent
->magADC
[x
] - blackboxLast
->magADC
[x
];
1157 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_BARO
)) {
1158 deltas
[optionalFieldCount
++] = blackboxCurrent
->BaroAlt
- blackboxLast
->BaroAlt
;
1163 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_PITOT
)) {
1164 deltas
[optionalFieldCount
++] = blackboxCurrent
->airSpeed
- blackboxLast
->airSpeed
;
1168 #ifdef USE_RANGEFINDER
1169 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_SURFACE
)) {
1170 deltas
[optionalFieldCount
++] = blackboxCurrent
->surfaceRaw
- blackboxLast
->surfaceRaw
;
1174 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_RSSI
)) {
1175 deltas
[optionalFieldCount
++] = (int32_t) blackboxCurrent
->rssi
- blackboxLast
->rssi
;
1178 blackboxWriteTag8_8SVB(deltas
, optionalFieldCount
);
1180 //Since gyros, accs and motors are noisy, base their predictions on the average of the history:
1181 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, gyroADC
), XYZ_AXIS_COUNT
);
1183 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_RAW
)) {
1184 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, gyroRaw
), XYZ_AXIS_COUNT
);
1187 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_ROLL
)) {
1188 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, gyroPeaksRoll
), DYN_NOTCH_PEAK_COUNT
);
1191 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_PITCH
)) {
1192 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, gyroPeaksPitch
), DYN_NOTCH_PEAK_COUNT
);
1195 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_GYRO_PEAKS_YAW
)) {
1196 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, gyroPeaksYaw
), DYN_NOTCH_PEAK_COUNT
);
1199 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_ACC
)) {
1200 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, accADC
), XYZ_AXIS_COUNT
);
1201 blackboxWriteSignedVB(blackboxCurrent
->accVib
- blackboxLast
->accVib
);
1204 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_ATTITUDE
)) {
1205 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, attitude
), XYZ_AXIS_COUNT
);
1208 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_DEBUG
)) {
1209 blackboxWriteArrayUsingAveragePredictor32(offsetof(blackboxMainState_t
, debug
), DEBUG32_VALUE_COUNT
);
1212 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_MOTORS
)) {
1213 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, motor
), getMotorCount());
1216 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_SERVOS
)) {
1217 blackboxWriteArrayUsingAveragePredictor16(offsetof(blackboxMainState_t
, servo
), MAX_SUPPORTED_SERVOS
);
1220 blackboxWriteSignedVB(blackboxCurrent
->navState
- blackboxLast
->navState
);
1222 blackboxWriteSignedVB(blackboxCurrent
->navFlags
- blackboxLast
->navFlags
);
1227 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NAV_POS
)) {
1228 blackboxWriteSignedVB(blackboxCurrent
->navEPH
- blackboxLast
->navEPH
);
1229 blackboxWriteSignedVB(blackboxCurrent
->navEPV
- blackboxLast
->navEPV
);
1231 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
1232 blackboxWriteSignedVB(blackboxCurrent
->navPos
[x
] - blackboxLast
->navPos
[x
]);
1235 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
1236 blackboxWriteSignedVB(blackboxHistory
[0]->navRealVel
[x
] - (blackboxHistory
[1]->navRealVel
[x
] + blackboxHistory
[2]->navRealVel
[x
]) / 2);
1240 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
1241 blackboxWriteSignedVB(blackboxHistory
[0]->navTargetVel
[x
] - (blackboxHistory
[1]->navTargetVel
[x
] + blackboxHistory
[2]->navTargetVel
[x
]) / 2);
1244 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
1245 blackboxWriteSignedVB(blackboxHistory
[0]->navTargetPos
[x
] - blackboxLast
->navTargetPos
[x
]);
1248 blackboxWriteSignedVB(blackboxCurrent
->navTargetHeading
- blackboxLast
->navTargetHeading
);
1249 blackboxWriteSignedVB(blackboxCurrent
->navSurface
- blackboxLast
->navSurface
);
1252 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NAV_ACC
)) {
1253 for (int x
= 0; x
< XYZ_AXIS_COUNT
; x
++) {
1254 blackboxWriteSignedVB(blackboxHistory
[0]->navAccNEU
[x
] - (blackboxHistory
[1]->navAccNEU
[x
] + blackboxHistory
[2]->navAccNEU
[x
]) / 2);
1258 //Rotate our history buffers
1259 blackboxHistory
[2] = blackboxHistory
[1];
1260 blackboxHistory
[1] = blackboxHistory
[0];
1261 blackboxHistory
[0] = ((blackboxHistory
[0] - blackboxHistoryRing
+ 1) % 3) + blackboxHistoryRing
;
1263 blackboxLoggedAnyFrames
= true;
1266 /* Write the contents of the global "slowHistory" to the log as an "S" frame. Because this data is logged so
1267 * infrequently, delta updates are not reasonable, so we log independent frames. */
1268 static void writeSlowFrame(void)
1274 blackboxWriteUnsignedVB(slowHistory
.activeWpNumber
);
1275 blackboxWriteUnsignedVB(slowHistory
.rcModeFlags
);
1276 blackboxWriteUnsignedVB(slowHistory
.rcModeFlags2
);
1277 blackboxWriteUnsignedVB(slowHistory
.activeFlightModeFlags
);
1278 blackboxWriteUnsignedVB(slowHistory
.stateFlags
);
1281 * Most of the time these three values will be able to pack into one byte for us:
1283 values
[0] = slowHistory
.failsafePhase
;
1284 values
[1] = slowHistory
.rxSignalReceived
? 1 : 0;
1285 values
[2] = slowHistory
.rxFlightChannelsValid
? 1 : 0;
1286 blackboxWriteTag2_3S32(values
);
1288 blackboxWriteUnsignedVB(slowHistory
.rxUpdateRate
);
1290 blackboxWriteUnsignedVB(slowHistory
.hwHealthStatus
);
1292 blackboxWriteUnsignedVB(slowHistory
.powerSupplyImpedance
);
1293 blackboxWriteUnsignedVB(slowHistory
.sagCompensatedVBat
);
1295 blackboxWriteSigned16VBArray(slowHistory
.wind
, XYZ_AXIS_COUNT
);
1297 #if defined(USE_RX_MSP) && defined(USE_MSP_RC_OVERRIDE)
1298 blackboxWriteUnsignedVB(slowHistory
.mspOverrideFlags
);
1301 blackboxWriteSignedVB(slowHistory
.imuTemperature
);
1304 blackboxWriteSignedVB(slowHistory
.baroTemperature
);
1307 #ifdef USE_TEMPERATURE_SENSOR
1308 blackboxWriteSigned16VBArray(slowHistory
.tempSensorTemperature
, MAX_TEMP_SENSORS
);
1311 #ifdef USE_ESC_SENSOR
1312 blackboxWriteUnsignedVB(slowHistory
.escRPM
);
1313 blackboxWriteSignedVB(slowHistory
.escTemperature
);
1316 blackboxSlowFrameIterationTimer
= 0;
1320 * Load rarely-changing values from the FC into the given structure
1322 static void loadSlowState(blackboxSlowState_t
*slow
)
1324 slow
->activeWpNumber
= getActiveWpNumber();
1326 slow
->rcModeFlags
= rcModeActivationMask
.bits
[0]; // first 32 bits of boxId_e
1327 slow
->rcModeFlags2
= rcModeActivationMask
.bits
[1]; // remaining bits of boxId_e
1329 // Also log Nav auto enabled flight modes rather than just those selected by boxmode
1330 if (navigationGetHeadingControlState() == NAV_HEADING_CONTROL_AUTO
) {
1331 slow
->rcModeFlags
|= (1 << BOXHEADINGHOLD
);
1333 slow
->activeFlightModeFlags
= flightModeFlags
;
1334 slow
->stateFlags
= stateFlags
;
1335 slow
->failsafePhase
= failsafePhase();
1336 slow
->rxSignalReceived
= rxIsReceivingSignal();
1337 slow
->rxFlightChannelsValid
= rxAreFlightChannelsValid();
1338 slow
->rxUpdateRate
= getRcUpdateFrequency();
1339 slow
->hwHealthStatus
= (getHwGyroStatus() << 2 * 0) | // Pack hardware health status into a bit field.
1340 (getHwAccelerometerStatus() << 2 * 1) | // Use raw hardwareSensorStatus_e values and pack them using 2 bits per value
1341 (getHwCompassStatus() << 2 * 2) | // Report GYRO in 2 lowest bits, then ACC, COMPASS, BARO, GPS, RANGEFINDER and PITOT
1342 (getHwBarometerStatus() << 2 * 3) |
1343 (getHwGPSStatus() << 2 * 4) |
1344 (getHwRangefinderStatus() << 2 * 5) |
1345 (getHwPitotmeterStatus() << 2 * 6);
1346 slow
->powerSupplyImpedance
= getPowerSupplyImpedance();
1347 slow
->sagCompensatedVBat
= getBatterySagCompensatedVoltage();
1349 for (int i
= 0; i
< XYZ_AXIS_COUNT
; i
++)
1351 #ifdef USE_WIND_ESTIMATOR
1352 slow
->wind
[i
] = getEstimatedWindSpeed(i
);
1358 #if defined(USE_RX_MSP) && defined(USE_MSP_RC_OVERRIDE)
1359 slow
->mspOverrideFlags
= (IS_RC_MODE_ACTIVE(BOXMSPRCOVERRIDE
) ? 2 : 0) + (mspOverrideIsInFailsafe() ? 1 : 0);
1363 int16_t newTemp
= 0;
1364 valid_temp
= getIMUTemperature(&newTemp
);
1366 slow
->imuTemperature
= newTemp
;
1368 slow
->imuTemperature
= TEMPERATURE_INVALID_VALUE
;
1371 valid_temp
= getBaroTemperature(&newTemp
);
1373 slow
->baroTemperature
= newTemp
;
1375 slow
->baroTemperature
= TEMPERATURE_INVALID_VALUE
;
1378 #ifdef USE_TEMPERATURE_SENSOR
1379 for (uint8_t index
= 0; index
< MAX_TEMP_SENSORS
; ++index
) {
1380 valid_temp
= getSensorTemperature(index
, slow
->tempSensorTemperature
+ index
);
1381 if (!valid_temp
) slow
->tempSensorTemperature
[index
] = TEMPERATURE_INVALID_VALUE
;
1385 #ifdef USE_ESC_SENSOR
1386 escSensorData_t
* escSensor
= escSensorGetData();
1387 slow
->escRPM
= escSensor
->rpm
;
1388 slow
->escTemperature
= escSensor
->temperature
;
1393 * If the data in the slow frame has changed, log a slow frame.
1395 * If allowPeriodicWrite is true, the frame is also logged if it has been more than blackboxSInterval logging iterations
1396 * since the field was last logged.
1398 static bool writeSlowFrameIfNeeded(bool allowPeriodicWrite
)
1400 // Write the slow frame peridocially so it can be recovered if we ever lose sync
1401 bool shouldWrite
= allowPeriodicWrite
&& blackboxSlowFrameIterationTimer
>= blackboxSInterval
;
1404 loadSlowState(&slowHistory
);
1406 blackboxSlowState_t newSlowState
;
1408 loadSlowState(&newSlowState
);
1410 // Only write a slow frame if it was different from the previous state
1411 if (memcmp(&newSlowState
, &slowHistory
, sizeof(slowHistory
)) != 0) {
1412 // Use the new state as our new history
1413 memcpy(&slowHistory
, &newSlowState
, sizeof(slowHistory
));
1424 static void blackboxValidateConfig(void)
1426 if (blackboxConfig()->rate_num
== 0 || blackboxConfig()->rate_denom
== 0
1427 || blackboxConfig()->rate_num
>= blackboxConfig()->rate_denom
) {
1428 blackboxConfigMutable()->rate_num
= 1;
1429 blackboxConfigMutable()->rate_denom
= 1;
1431 /* Reduce the fraction the user entered as much as possible (makes the recorded/skipped frame pattern repeat
1432 * itself more frequently)
1434 const int div
= gcd(blackboxConfig()->rate_num
, blackboxConfig()->rate_denom
);
1436 blackboxConfigMutable()->rate_num
/= div
;
1437 blackboxConfigMutable()->rate_denom
/= div
;
1440 // If we've chosen an unsupported device, change the device to serial
1441 switch (blackboxConfig()->device
) {
1443 case BLACKBOX_DEVICE_FLASH
:
1446 case BLACKBOX_DEVICE_SDCARD
:
1448 #if defined(SITL_BUILD)
1449 case BLACKBOX_DEVICE_FILE
:
1451 case BLACKBOX_DEVICE_SERIAL
:
1452 // Device supported, leave the setting alone
1456 blackboxConfigMutable()->device
= BLACKBOX_DEVICE_SERIAL
;
1460 static void blackboxResetIterationTimers(void)
1462 blackboxIteration
= 0;
1463 blackboxPFrameIndex
= 0;
1464 blackboxIFrameIndex
= 0;
1468 * Start Blackbox logging if it is not already running. Intended to be called upon arming.
1470 void blackboxStart(void)
1472 if (blackboxState
!= BLACKBOX_STATE_STOPPED
) {
1476 blackboxValidateConfig();
1478 if (!blackboxDeviceOpen()) {
1479 blackboxSetState(BLACKBOX_STATE_DISABLED
);
1483 memset(&gpsHistory
, 0, sizeof(gpsHistory
));
1485 blackboxHistory
[0] = &blackboxHistoryRing
[0];
1486 blackboxHistory
[1] = &blackboxHistoryRing
[1];
1487 blackboxHistory
[2] = &blackboxHistoryRing
[2];
1489 vbatReference
= getBatteryRawVoltage();
1491 //No need to clear the content of blackboxHistoryRing since our first frame will be an intra which overwrites it
1494 * We use conditional tests to decide whether or not certain fields should be logged. Since our headers
1495 * must always agree with the logged data, the results of these tests must not change during logging. So
1498 blackboxBuildConditionCache();
1500 blackboxModeActivationConditionPresent
= isModeActivationConditionPresent(BOXBLACKBOX
);
1502 blackboxResetIterationTimers();
1505 * Record the beeper's current idea of the last arming beep time, so that we can detect it changing when
1506 * it finally plays the beep for this arming event.
1508 blackboxLastArmingBeep
= getArmingBeepTimeMicros();
1509 memcpy(&blackboxLastRcModeFlags
, &rcModeActivationMask
, sizeof(blackboxLastRcModeFlags
)); // record startup status
1511 blackboxSetState(BLACKBOX_STATE_PREPARE_LOG_FILE
);
1515 * Begin Blackbox shutdown.
1517 void blackboxFinish(void)
1519 switch (blackboxState
) {
1520 case BLACKBOX_STATE_DISABLED
:
1521 case BLACKBOX_STATE_STOPPED
:
1522 case BLACKBOX_STATE_SHUTTING_DOWN
:
1523 // We're already stopped/shutting down
1526 case BLACKBOX_STATE_RUNNING
:
1527 case BLACKBOX_STATE_PAUSED
:
1528 blackboxLogEvent(FLIGHT_LOG_EVENT_LOG_END
, NULL
);
1532 blackboxSetState(BLACKBOX_STATE_SHUTTING_DOWN
);
1537 static void writeGPSHomeFrame(void)
1541 blackboxWriteSignedVB(GPS_home
.lat
);
1542 blackboxWriteSignedVB(GPS_home
.lon
);
1543 //TODO it'd be great if we could grab the GPS current time and write that too
1545 gpsHistory
.GPS_home
[0] = GPS_home
.lat
;
1546 gpsHistory
.GPS_home
[1] = GPS_home
.lon
;
1549 static void writeGPSFrame(timeUs_t currentTimeUs
)
1554 * If we're logging every frame, then a GPS frame always appears just after a frame with the
1555 * currentTime timestamp in the log, so the reader can just use that timestamp for the GPS frame.
1557 * If we're not logging every frame, we need to store the time of this GPS frame.
1559 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_NOT_LOGGING_EVERY_FRAME
)) {
1560 // Predict the time of the last frame in the main log
1561 blackboxWriteUnsignedVB(currentTimeUs
- blackboxHistory
[1]->time
);
1564 blackboxWriteUnsignedVB(gpsSol
.fixType
);
1565 blackboxWriteUnsignedVB(gpsSol
.numSat
);
1566 blackboxWriteSignedVB(gpsSol
.llh
.lat
- gpsHistory
.GPS_home
[0]);
1567 blackboxWriteSignedVB(gpsSol
.llh
.lon
- gpsHistory
.GPS_home
[1]);
1568 blackboxWriteSignedVB(gpsSol
.llh
.alt
/ 100); // meters
1569 blackboxWriteUnsignedVB(gpsSol
.groundSpeed
);
1570 blackboxWriteUnsignedVB(gpsSol
.groundCourse
);
1571 blackboxWriteUnsignedVB(gpsSol
.hdop
);
1572 blackboxWriteUnsignedVB(gpsSol
.eph
);
1573 blackboxWriteUnsignedVB(gpsSol
.epv
);
1574 blackboxWriteSigned16VBArray(gpsSol
.velNED
, XYZ_AXIS_COUNT
);
1576 gpsHistory
.GPS_numSat
= gpsSol
.numSat
;
1577 gpsHistory
.GPS_coord
[0] = gpsSol
.llh
.lat
;
1578 gpsHistory
.GPS_coord
[1] = gpsSol
.llh
.lon
;
1583 * Fill the current state of the blackbox using values read from the flight controller
1585 static void loadMainState(timeUs_t currentTimeUs
)
1587 blackboxMainState_t
*blackboxCurrent
= blackboxHistory
[0];
1589 blackboxCurrent
->time
= currentTimeUs
;
1591 const navigationPIDControllers_t
*nav_pids
= getNavigationPIDControllers();
1593 for (int i
= 0; i
< XYZ_AXIS_COUNT
; i
++) {
1594 blackboxCurrent
->axisPID_Setpoint
[i
] = axisPID_Setpoint
[i
];
1595 blackboxCurrent
->axisPID_P
[i
] = axisPID_P
[i
];
1596 blackboxCurrent
->axisPID_I
[i
] = axisPID_I
[i
];
1597 blackboxCurrent
->axisPID_D
[i
] = axisPID_D
[i
];
1598 blackboxCurrent
->axisPID_F
[i
] = axisPID_F
[i
];
1599 blackboxCurrent
->gyroADC
[i
] = lrintf(gyro
.gyroADCf
[i
]);
1600 blackboxCurrent
->accADC
[i
] = lrintf(acc
.accADCf
[i
] * acc
.dev
.acc_1G
);
1601 blackboxCurrent
->gyroRaw
[i
] = lrintf(gyro
.gyroRaw
[i
]);
1603 #ifdef USE_DYNAMIC_FILTERS
1604 for (uint8_t i
= 0; i
< DYN_NOTCH_PEAK_COUNT
; i
++) {
1605 blackboxCurrent
->gyroPeaksRoll
[i
] = dynamicGyroNotchState
.frequency
[FD_ROLL
][i
];
1606 blackboxCurrent
->gyroPeaksPitch
[i
] = dynamicGyroNotchState
.frequency
[FD_PITCH
][i
];
1607 blackboxCurrent
->gyroPeaksYaw
[i
] = dynamicGyroNotchState
.frequency
[FD_YAW
][i
];
1612 blackboxCurrent
->magADC
[i
] = mag
.magADC
[i
];
1614 if (!STATE(FIXED_WING_LEGACY
)) {
1615 // log requested velocity in cm/s
1616 blackboxCurrent
->mcPosAxisP
[i
] = lrintf(nav_pids
->pos
[i
].output_constrained
);
1618 // log requested acceleration in cm/s^2 and throttle adjustment in µs
1619 blackboxCurrent
->mcVelAxisPID
[0][i
] = lrintf(nav_pids
->vel
[i
].proportional
);
1620 blackboxCurrent
->mcVelAxisPID
[1][i
] = lrintf(nav_pids
->vel
[i
].integral
);
1621 blackboxCurrent
->mcVelAxisPID
[2][i
] = lrintf(nav_pids
->vel
[i
].derivative
);
1622 blackboxCurrent
->mcVelAxisPID
[3][i
] = lrintf(nav_pids
->vel
[i
].feedForward
);
1623 blackboxCurrent
->mcVelAxisOutput
[i
] = lrintf(nav_pids
->vel
[i
].output_constrained
);
1626 blackboxCurrent
->accVib
= lrintf(accGetVibrationLevel() * acc
.dev
.acc_1G
);
1628 if (STATE(FIXED_WING_LEGACY
)) {
1630 // log requested pitch in decidegrees
1631 blackboxCurrent
->fwAltPID
[0] = lrintf(nav_pids
->fw_alt
.proportional
);
1632 blackboxCurrent
->fwAltPID
[1] = lrintf(nav_pids
->fw_alt
.integral
);
1633 blackboxCurrent
->fwAltPID
[2] = lrintf(nav_pids
->fw_alt
.derivative
);
1634 blackboxCurrent
->fwAltPIDOutput
= lrintf(nav_pids
->fw_alt
.output_constrained
);
1636 // log requested roll in decidegrees
1637 blackboxCurrent
->fwPosPID
[0] = lrintf(nav_pids
->fw_nav
.proportional
/ 10);
1638 blackboxCurrent
->fwPosPID
[1] = lrintf(nav_pids
->fw_nav
.integral
/ 10);
1639 blackboxCurrent
->fwPosPID
[2] = lrintf(nav_pids
->fw_nav
.derivative
/ 10);
1640 blackboxCurrent
->fwPosPIDOutput
= lrintf(nav_pids
->fw_nav
.output_constrained
/ 10);
1643 blackboxCurrent
->mcSurfacePID
[0] = lrintf(nav_pids
->surface
.proportional
/ 10);
1644 blackboxCurrent
->mcSurfacePID
[1] = lrintf(nav_pids
->surface
.integral
/ 10);
1645 blackboxCurrent
->mcSurfacePID
[2] = lrintf(nav_pids
->surface
.derivative
/ 10);
1646 blackboxCurrent
->mcSurfacePIDOutput
= lrintf(nav_pids
->surface
.output_constrained
/ 10);
1649 for (int i
= 0; i
< 4; i
++) {
1650 blackboxCurrent
->rcData
[i
] = rxGetChannelValue(i
);
1651 blackboxCurrent
->rcCommand
[i
] = rcCommand
[i
];
1654 blackboxCurrent
->attitude
[0] = attitude
.values
.roll
;
1655 blackboxCurrent
->attitude
[1] = attitude
.values
.pitch
;
1656 blackboxCurrent
->attitude
[2] = attitude
.values
.yaw
;
1658 for (int i
= 0; i
< DEBUG32_VALUE_COUNT
; i
++) {
1659 blackboxCurrent
->debug
[i
] = debug
[i
];
1662 const int motorCount
= getMotorCount();
1663 for (int i
= 0; i
< motorCount
; i
++) {
1664 blackboxCurrent
->motor
[i
] = motor
[i
];
1667 blackboxCurrent
->vbat
= getBatteryRawVoltage();
1668 blackboxCurrent
->amperage
= getAmperage();
1671 blackboxCurrent
->BaroAlt
= baro
.BaroAlt
;
1675 blackboxCurrent
->airSpeed
= getAirspeedEstimate();
1678 #ifdef USE_RANGEFINDER
1679 // Store the raw rangefinder surface readout without applying tilt correction
1680 blackboxCurrent
->surfaceRaw
= rangefinderGetLatestRawAltitude();
1683 blackboxCurrent
->rssi
= getRSSI();
1685 for (int i
= 0; i
< MAX_SUPPORTED_SERVOS
; i
++) {
1686 blackboxCurrent
->servo
[i
] = servo
[i
];
1689 blackboxCurrent
->navState
= navCurrentState
;
1690 blackboxCurrent
->navFlags
= navFlags
;
1691 blackboxCurrent
->navEPH
= navEPH
;
1692 blackboxCurrent
->navEPV
= navEPV
;
1693 for (int i
= 0; i
< XYZ_AXIS_COUNT
; i
++) {
1694 blackboxCurrent
->navPos
[i
] = navLatestActualPosition
[i
];
1695 blackboxCurrent
->navRealVel
[i
] = navActualVelocity
[i
];
1696 blackboxCurrent
->navAccNEU
[i
] = navAccNEU
[i
];
1697 blackboxCurrent
->navTargetVel
[i
] = navDesiredVelocity
[i
];
1698 blackboxCurrent
->navTargetPos
[i
] = navTargetPosition
[i
];
1700 blackboxCurrent
->navTargetHeading
= navDesiredHeading
;
1701 blackboxCurrent
->navSurface
= navActualSurface
;
1705 * Transmit the header information for the given field definitions. Transmitted header lines look like:
1707 * H Field I name:a,b,c
1708 * H Field I predictor:0,1,2
1710 * For all header types, provide a "mainFrameChar" which is the name for the field and will be used to refer to it in the
1711 * header (e.g. P, I etc). For blackboxDeltaField_t fields, also provide deltaFrameChar, otherwise set this to zero.
1713 * Provide an array 'conditions' of FlightLogFieldCondition enums if you want these conditions to decide whether a field
1714 * should be included or not. Otherwise provide NULL for this parameter and NULL for secondCondition.
1716 * Set xmitState.headerIndex to 0 and xmitState.u.fieldIndex to -1 before calling for the first time.
1718 * secondFieldDefinition and secondCondition element pointers need to be provided in order to compute the stride of the
1719 * fieldDefinition and secondCondition arrays.
1721 * Returns true if there is still header left to transmit (so call again to continue transmission).
1723 static bool sendFieldDefinition(char mainFrameChar
, char deltaFrameChar
, const void *fieldDefinitions
,
1724 const void *secondFieldDefinition
, int fieldCount
, const uint8_t *conditions
, const uint8_t *secondCondition
)
1726 const blackboxFieldDefinition_t
*def
;
1727 unsigned int headerCount
;
1728 static bool needComma
= false;
1729 size_t definitionStride
= (char*) secondFieldDefinition
- (char*) fieldDefinitions
;
1730 size_t conditionsStride
= (char*) secondCondition
- (char*) conditions
;
1732 if (deltaFrameChar
) {
1733 headerCount
= BLACKBOX_DELTA_FIELD_HEADER_COUNT
;
1735 headerCount
= BLACKBOX_SIMPLE_FIELD_HEADER_COUNT
;
1739 * We're chunking up the header data so we don't exceed our datarate. So we'll be called multiple times to transmit
1743 // On our first call we need to print the name of the header and a colon
1744 if (xmitState
.u
.fieldIndex
== -1) {
1745 if (xmitState
.headerIndex
>= headerCount
) {
1746 return false; //Someone probably called us again after we had already completed transmission
1749 uint32_t charsToBeWritten
= strlen("H Field x :") + strlen(blackboxFieldHeaderNames
[xmitState
.headerIndex
]);
1751 if (blackboxDeviceReserveBufferSpace(charsToBeWritten
) != BLACKBOX_RESERVE_SUCCESS
) {
1752 return true; // Try again later
1755 blackboxHeaderBudget
-= blackboxPrintf("H Field %c %s:", xmitState
.headerIndex
>= BLACKBOX_SIMPLE_FIELD_HEADER_COUNT
? deltaFrameChar
: mainFrameChar
, blackboxFieldHeaderNames
[xmitState
.headerIndex
]);
1757 xmitState
.u
.fieldIndex
++;
1761 // The longest we expect an integer to be as a string:
1762 const uint32_t LONGEST_INTEGER_STRLEN
= 2;
1764 for (; xmitState
.u
.fieldIndex
< fieldCount
; xmitState
.u
.fieldIndex
++) {
1765 def
= (const blackboxFieldDefinition_t
*) ((const char*)fieldDefinitions
+ definitionStride
* xmitState
.u
.fieldIndex
);
1767 if (!conditions
|| testBlackboxCondition(conditions
[conditionsStride
* xmitState
.u
.fieldIndex
])) {
1768 // First (over)estimate the length of the string we want to print
1770 int32_t bytesToWrite
= 1; // Leading comma
1772 // The first header is a field name
1773 if (xmitState
.headerIndex
== 0) {
1774 bytesToWrite
+= strlen(def
->name
) + strlen("[]") + LONGEST_INTEGER_STRLEN
;
1776 //The other headers are integers
1777 bytesToWrite
+= LONGEST_INTEGER_STRLEN
;
1780 // Now perform the write if the buffer is large enough
1781 if (blackboxDeviceReserveBufferSpace(bytesToWrite
) != BLACKBOX_RESERVE_SUCCESS
) {
1782 // Ran out of space!
1786 blackboxHeaderBudget
-= bytesToWrite
;
1794 // The first header is a field name
1795 if (xmitState
.headerIndex
== 0) {
1796 blackboxPrint(def
->name
);
1798 // Do we need to print an index in brackets after the name?
1799 if (def
->fieldNameIndex
!= -1) {
1800 blackboxPrintf("[%d]", def
->fieldNameIndex
);
1803 //The other headers are integers
1804 blackboxPrintf("%d", def
->arr
[xmitState
.headerIndex
- 1]);
1809 // Did we complete this line?
1810 if (xmitState
.u
.fieldIndex
== fieldCount
&& blackboxDeviceReserveBufferSpace(1) == BLACKBOX_RESERVE_SUCCESS
) {
1811 blackboxHeaderBudget
--;
1812 blackboxWrite('\n');
1813 xmitState
.headerIndex
++;
1814 xmitState
.u
.fieldIndex
= -1;
1817 return xmitState
.headerIndex
< headerCount
;
1820 // Buf must be at least FORMATTED_DATE_TIME_BUFSIZE
1821 static char *blackboxGetStartDateTime(char *buf
)
1824 // rtcGetDateTime will fill dt with 0000-01-01T00:00:00
1825 // when time is not known.
1826 rtcGetDateTime(&dt
);
1827 dateTimeFormatLocal(buf
, &dt
);
1831 #ifndef BLACKBOX_PRINT_HEADER_LINE
1832 #define BLACKBOX_PRINT_HEADER_LINE(name, format, ...) case __COUNTER__: \
1833 blackboxPrintfHeaderLine(name, format, __VA_ARGS__); \
1835 #define BLACKBOX_PRINT_HEADER_LINE_CUSTOM(...) case __COUNTER__: \
1841 * Transmit a portion of the system information headers. Call the first time with xmitState.headerIndex == 0. Returns
1842 * true iff transmission is complete, otherwise call again later to continue transmission.
1844 static bool blackboxWriteSysinfo(void)
1846 // Make sure we have enough room in the buffer for our longest line (as of this writing, the "Firmware date" line)
1847 if (blackboxDeviceReserveBufferSpace(64) != BLACKBOX_RESERVE_SUCCESS
) {
1851 char buf
[FORMATTED_DATE_TIME_BUFSIZE
];
1853 switch (xmitState
.headerIndex
) {
1854 BLACKBOX_PRINT_HEADER_LINE("Firmware type", "%s", "Cleanflight");
1855 BLACKBOX_PRINT_HEADER_LINE("Firmware revision", "INAV %s (%s) %s", FC_VERSION_STRING
, shortGitRevision
, targetName
);
1856 BLACKBOX_PRINT_HEADER_LINE("Firmware date", "%s %s", buildDate
, buildTime
);
1857 BLACKBOX_PRINT_HEADER_LINE("Log start datetime", "%s", blackboxGetStartDateTime(buf
));
1858 BLACKBOX_PRINT_HEADER_LINE("Craft name", "%s", systemConfig()->craftName
);
1859 BLACKBOX_PRINT_HEADER_LINE("P interval", "%u/%u", blackboxConfig()->rate_num
, blackboxConfig()->rate_denom
);
1860 BLACKBOX_PRINT_HEADER_LINE("minthrottle", "%d", getThrottleIdleValue());
1861 BLACKBOX_PRINT_HEADER_LINE("maxthrottle", "%d", getMaxThrottle());
1862 BLACKBOX_PRINT_HEADER_LINE("gyro_scale", "0x%x", castFloatBytesToInt(1.0f
));
1863 BLACKBOX_PRINT_HEADER_LINE("motorOutput", "%d,%d", getThrottleIdleValue(),getMaxThrottle());
1864 BLACKBOX_PRINT_HEADER_LINE("acc_1G", "%u", acc
.dev
.acc_1G
);
1867 BLACKBOX_PRINT_HEADER_LINE_CUSTOM(
1868 if (testBlackboxCondition(FLIGHT_LOG_FIELD_CONDITION_VBAT
)) {
1869 blackboxPrintfHeaderLine("vbat_scale", "%u", batteryMetersConfig()->voltage
.scale
/ 10);
1871 xmitState
.headerIndex
+= 2; // Skip the next two vbat fields too
1874 BLACKBOX_PRINT_HEADER_LINE("vbatcellvoltage", "%u,%u,%u", currentBatteryProfile
->voltage
.cellMin
/ 10,
1875 currentBatteryProfile
->voltage
.cellWarning
/ 10,
1876 currentBatteryProfile
->voltage
.cellMax
/ 10);
1877 BLACKBOX_PRINT_HEADER_LINE("vbatref", "%u", vbatReference
);
1880 BLACKBOX_PRINT_HEADER_LINE_CUSTOM(
1881 //Note: Log even if this is a virtual current meter, since the virtual meter uses these parameters too:
1882 if (feature(FEATURE_CURRENT_METER
)) {
1883 blackboxPrintfHeaderLine("currentMeter", "%d,%d", batteryMetersConfig()->current
.offset
,
1884 batteryMetersConfig()->current
.scale
);
1888 BLACKBOX_PRINT_HEADER_LINE("looptime", "%d", getLooptime());
1889 BLACKBOX_PRINT_HEADER_LINE("rc_rate", "%d", 100); //For compatibility reasons write rc_rate 100
1890 BLACKBOX_PRINT_HEADER_LINE("rc_expo", "%d", currentControlRateProfile
->stabilized
.rcExpo8
);
1891 BLACKBOX_PRINT_HEADER_LINE("rc_yaw_expo", "%d", currentControlRateProfile
->stabilized
.rcYawExpo8
);
1892 BLACKBOX_PRINT_HEADER_LINE("thr_mid", "%d", currentControlRateProfile
->throttle
.rcMid8
);
1893 BLACKBOX_PRINT_HEADER_LINE("thr_expo", "%d", currentControlRateProfile
->throttle
.rcExpo8
);
1894 BLACKBOX_PRINT_HEADER_LINE("tpa_rate", "%d", currentControlRateProfile
->throttle
.dynPID
);
1895 BLACKBOX_PRINT_HEADER_LINE("tpa_breakpoint", "%d", currentControlRateProfile
->throttle
.pa_breakpoint
);
1896 BLACKBOX_PRINT_HEADER_LINE("rates", "%d,%d,%d", currentControlRateProfile
->stabilized
.rates
[ROLL
],
1897 currentControlRateProfile
->stabilized
.rates
[PITCH
],
1898 currentControlRateProfile
->stabilized
.rates
[YAW
]);
1899 BLACKBOX_PRINT_HEADER_LINE("rollPID", "%d,%d,%d,%d", pidBank()->pid
[PID_ROLL
].P
,
1900 pidBank()->pid
[PID_ROLL
].I
,
1901 pidBank()->pid
[PID_ROLL
].D
,
1902 pidBank()->pid
[PID_ROLL
].FF
);
1903 BLACKBOX_PRINT_HEADER_LINE("pitchPID", "%d,%d,%d,%d", pidBank()->pid
[PID_PITCH
].P
,
1904 pidBank()->pid
[PID_PITCH
].I
,
1905 pidBank()->pid
[PID_PITCH
].D
,
1906 pidBank()->pid
[PID_PITCH
].FF
);
1907 BLACKBOX_PRINT_HEADER_LINE("yawPID", "%d,%d,%d,%d", pidBank()->pid
[PID_YAW
].P
,
1908 pidBank()->pid
[PID_YAW
].I
,
1909 pidBank()->pid
[PID_YAW
].D
,
1910 pidBank()->pid
[PID_YAW
].FF
);
1911 BLACKBOX_PRINT_HEADER_LINE("altPID", "%d,%d,%d", pidBank()->pid
[PID_POS_Z
].P
,
1912 pidBank()->pid
[PID_POS_Z
].I
,
1913 pidBank()->pid
[PID_POS_Z
].D
);
1914 BLACKBOX_PRINT_HEADER_LINE("posPID", "%d,%d,%d", pidBank()->pid
[PID_POS_XY
].P
,
1915 pidBank()->pid
[PID_POS_XY
].I
,
1916 pidBank()->pid
[PID_POS_XY
].D
);
1917 BLACKBOX_PRINT_HEADER_LINE("posrPID", "%d,%d,%d", pidBank()->pid
[PID_VEL_XY
].P
,
1918 pidBank()->pid
[PID_VEL_XY
].I
,
1919 pidBank()->pid
[PID_VEL_XY
].D
);
1920 BLACKBOX_PRINT_HEADER_LINE("levelPID", "%d,%d,%d", pidBank()->pid
[PID_LEVEL
].P
,
1921 pidBank()->pid
[PID_LEVEL
].I
,
1922 pidBank()->pid
[PID_LEVEL
].D
);
1923 BLACKBOX_PRINT_HEADER_LINE("magPID", "%d", pidBank()->pid
[PID_HEADING
].P
);
1924 BLACKBOX_PRINT_HEADER_LINE("velPID", "%d,%d,%d", pidBank()->pid
[PID_VEL_Z
].P
,
1925 pidBank()->pid
[PID_VEL_Z
].I
,
1926 pidBank()->pid
[PID_VEL_Z
].D
);
1927 BLACKBOX_PRINT_HEADER_LINE("yaw_lpf_hz", "%d", pidProfile()->yaw_lpf_hz
);
1928 BLACKBOX_PRINT_HEADER_LINE("dterm_lpf_hz", "%d", pidProfile()->dterm_lpf_hz
);
1929 BLACKBOX_PRINT_HEADER_LINE("dterm_lpf_type", "%d", pidProfile()->dterm_lpf_type
);
1930 BLACKBOX_PRINT_HEADER_LINE("deadband", "%d", rcControlsConfig()->deadband
);
1931 BLACKBOX_PRINT_HEADER_LINE("yaw_deadband", "%d", rcControlsConfig()->yaw_deadband
);
1932 BLACKBOX_PRINT_HEADER_LINE("gyro_lpf", "%d", GYRO_LPF_256HZ
);
1933 BLACKBOX_PRINT_HEADER_LINE("gyro_lpf_hz", "%d", gyroConfig()->gyro_main_lpf_hz
);
1934 #ifdef USE_DYNAMIC_FILTERS
1935 BLACKBOX_PRINT_HEADER_LINE("dynamicGyroNotchQ", "%d", gyroConfig()->dynamicGyroNotchQ
);
1936 BLACKBOX_PRINT_HEADER_LINE("dynamicGyroNotchMinHz", "%d", gyroConfig()->dynamicGyroNotchMinHz
);
1938 BLACKBOX_PRINT_HEADER_LINE("acc_lpf_hz", "%d", accelerometerConfig()->acc_lpf_hz
);
1939 BLACKBOX_PRINT_HEADER_LINE("acc_hardware", "%d", accelerometerConfig()->acc_hardware
);
1941 BLACKBOX_PRINT_HEADER_LINE("baro_hardware", "%d", barometerConfig()->baro_hardware
);
1944 BLACKBOX_PRINT_HEADER_LINE("mag_hardware", "%d", compassConfig()->mag_hardware
);
1946 BLACKBOX_PRINT_HEADER_LINE("mag_hardware", "%d", MAG_NONE
);
1948 BLACKBOX_PRINT_HEADER_LINE("serialrx_provider", "%d", rxConfig()->serialrx_provider
);
1949 BLACKBOX_PRINT_HEADER_LINE("motor_pwm_protocol", "%d", motorConfig()->motorPwmProtocol
);
1950 BLACKBOX_PRINT_HEADER_LINE("motor_pwm_rate", "%d", getEscUpdateFrequency());
1951 BLACKBOX_PRINT_HEADER_LINE("debug_mode", "%d", systemConfig()->debug_mode
);
1952 BLACKBOX_PRINT_HEADER_LINE("features", "%d", featureConfig()->enabledFeatures
);
1953 BLACKBOX_PRINT_HEADER_LINE("waypoints", "%d,%d", getWaypointCount(),isWaypointListValid());
1954 BLACKBOX_PRINT_HEADER_LINE("acc_notch_hz", "%d", accelerometerConfig()->acc_notch_hz
);
1955 BLACKBOX_PRINT_HEADER_LINE("acc_notch_cutoff", "%d", accelerometerConfig()->acc_notch_cutoff
);
1956 BLACKBOX_PRINT_HEADER_LINE("axisAccelerationLimitYaw", "%d", pidProfile()->axisAccelerationLimitYaw
);
1957 BLACKBOX_PRINT_HEADER_LINE("axisAccelerationLimitRollPitch", "%d", pidProfile()->axisAccelerationLimitRollPitch
);
1958 #ifdef USE_RPM_FILTER
1959 BLACKBOX_PRINT_HEADER_LINE("rpm_gyro_filter_enabled", "%d", rpmFilterConfig()->gyro_filter_enabled
);
1960 BLACKBOX_PRINT_HEADER_LINE("rpm_gyro_harmonics", "%d", rpmFilterConfig()->gyro_harmonics
);
1961 BLACKBOX_PRINT_HEADER_LINE("rpm_gyro_min_hz", "%d", rpmFilterConfig()->gyro_min_hz
);
1962 BLACKBOX_PRINT_HEADER_LINE("rpm_gyro_q", "%d", rpmFilterConfig()->gyro_q
);
1968 xmitState
.headerIndex
++;
1973 * Write the given event to the log immediately
1975 void blackboxLogEvent(FlightLogEvent event
, flightLogEventData_t
*data
)
1977 // Only allow events to be logged after headers have been written
1978 if (!(blackboxState
== BLACKBOX_STATE_RUNNING
|| blackboxState
== BLACKBOX_STATE_PAUSED
)) {
1982 //Shared header for event frames
1984 blackboxWrite(event
);
1986 //Now serialize the data for this specific frame type
1988 case FLIGHT_LOG_EVENT_SYNC_BEEP
:
1989 blackboxWriteUnsignedVB(data
->syncBeep
.time
);
1991 case FLIGHT_LOG_EVENT_FLIGHTMODE
: // New flightmode flags write
1992 blackboxWriteUnsignedVB(data
->flightMode
.flags
);
1993 blackboxWriteUnsignedVB(data
->flightMode
.lastFlags
);
1995 case FLIGHT_LOG_EVENT_INFLIGHT_ADJUSTMENT
:
1996 if (data
->inflightAdjustment
.floatFlag
) {
1997 blackboxWrite(data
->inflightAdjustment
.adjustmentFunction
+ FLIGHT_LOG_EVENT_INFLIGHT_ADJUSTMENT_FUNCTION_FLOAT_VALUE_FLAG
);
1998 blackboxWriteFloat(data
->inflightAdjustment
.newFloatValue
);
2000 blackboxWrite(data
->inflightAdjustment
.adjustmentFunction
);
2001 blackboxWriteSignedVB(data
->inflightAdjustment
.newValue
);
2004 case FLIGHT_LOG_EVENT_LOGGING_RESUME
:
2005 blackboxWriteUnsignedVB(data
->loggingResume
.logIteration
);
2006 blackboxWriteUnsignedVB(data
->loggingResume
.currentTimeUs
);
2008 case FLIGHT_LOG_EVENT_IMU_FAILURE
:
2009 blackboxWriteUnsignedVB(data
->imuError
.errorCode
);
2011 case FLIGHT_LOG_EVENT_LOG_END
:
2012 blackboxPrintf("End of log (disarm reason:%d)", getDisarmReason());
2018 /* If an arming beep has played since it was last logged, write the time of the arming beep to the log as a synchronization point */
2019 static void blackboxCheckAndLogArmingBeep(void)
2021 // Use != so that we can still detect a change if the counter wraps
2022 if (getArmingBeepTimeMicros() != blackboxLastArmingBeep
) {
2023 blackboxLastArmingBeep
= getArmingBeepTimeMicros();
2024 flightLogEvent_syncBeep_t eventData
;
2025 eventData
.time
= blackboxLastArmingBeep
;
2026 blackboxLogEvent(FLIGHT_LOG_EVENT_SYNC_BEEP
, (flightLogEventData_t
*) &eventData
);
2030 /* monitor the flight mode event status and trigger an event record if the state changes */
2031 static void blackboxCheckAndLogFlightMode(void)
2033 // Use != so that we can still detect a change if the counter wraps
2034 if (memcmp(&rcModeActivationMask
, &blackboxLastRcModeFlags
, sizeof(blackboxLastRcModeFlags
))) {
2035 flightLogEvent_flightMode_t eventData
; // Add new data for current flight mode flags
2036 eventData
.lastFlags
= blackboxLastRcModeFlags
;
2037 memcpy(&blackboxLastRcModeFlags
, &rcModeActivationMask
, sizeof(blackboxLastRcModeFlags
));
2038 memcpy(&eventData
.flags
, &rcModeActivationMask
, sizeof(eventData
.flags
));
2039 blackboxLogEvent(FLIGHT_LOG_EVENT_FLIGHTMODE
, (flightLogEventData_t
*)&eventData
);
2044 * Use the user's num/denom settings to decide if the P-frame of the given index should be logged, allowing the user to control
2045 * the portion of logged loop iterations.
2047 static bool blackboxShouldLogPFrame(uint32_t pFrameIndex
)
2049 /* Adding a magic shift of "blackboxConfig()->rate_num - 1" in here creates a better spread of
2050 * recorded / skipped frames when the I frame's position is considered:
2052 return (pFrameIndex
+ blackboxConfig()->rate_num
- 1) % blackboxConfig()->rate_denom
< blackboxConfig()->rate_num
;
2055 static bool blackboxShouldLogIFrame(void)
2057 return blackboxPFrameIndex
== 0;
2060 // Called once every FC loop in order to keep track of how many FC loop iterations have passed
2061 static void blackboxAdvanceIterationTimers(void)
2063 blackboxSlowFrameIterationTimer
++;
2064 blackboxIteration
++;
2065 blackboxPFrameIndex
++;
2067 if (blackboxPFrameIndex
== blackboxIFrameInterval
) {
2068 blackboxPFrameIndex
= 0;
2069 blackboxIFrameIndex
++;
2073 // Called once every FC loop in order to log the current state
2074 static void blackboxLogIteration(timeUs_t currentTimeUs
)
2076 // Write a keyframe every BLACKBOX_I_INTERVAL frames so we can resynchronise upon missing frames
2077 if (blackboxShouldLogIFrame()) {
2079 * Don't log a slow frame if the slow data didn't change ("I" frames are already large enough without adding
2080 * an additional item to write at the same time). Unless we're *only* logging "I" frames, then we have no choice.
2082 writeSlowFrameIfNeeded(blackboxIsOnlyLoggingIntraframes());
2084 loadMainState(currentTimeUs
);
2087 blackboxCheckAndLogArmingBeep();
2088 blackboxCheckAndLogFlightMode();
2090 if (blackboxShouldLogPFrame(blackboxPFrameIndex
)) {
2092 * We assume that slow frames are only interesting in that they aid the interpretation of the main data stream.
2093 * So only log slow frames during loop iterations where we log a main frame.
2095 writeSlowFrameIfNeeded(true);
2097 loadMainState(currentTimeUs
);
2101 if (feature(FEATURE_GPS
)) {
2103 * If the GPS home point has been updated, or every 128 intraframes (~10 seconds), write the
2104 * GPS home position.
2106 * We write it periodically so that if one Home Frame goes missing, the GPS coordinates can
2107 * still be interpreted correctly.
2109 if (GPS_home
.lat
!= gpsHistory
.GPS_home
[0] || GPS_home
.lon
!= gpsHistory
.GPS_home
[1]
2110 || (blackboxPFrameIndex
== (blackboxIFrameInterval
/ 2) && blackboxIFrameIndex
% 128 == 0)) {
2112 writeGPSHomeFrame();
2113 writeGPSFrame(currentTimeUs
);
2114 } else if (gpsSol
.numSat
!= gpsHistory
.GPS_numSat
|| gpsSol
.llh
.lat
!= gpsHistory
.GPS_coord
[0]
2115 || gpsSol
.llh
.lon
!= gpsHistory
.GPS_coord
[1]) {
2116 //We could check for velocity changes as well but I doubt it changes independent of position
2117 writeGPSFrame(currentTimeUs
);
2123 //Flush every iteration so that our runtime variance is minimized
2124 blackboxDeviceFlush();
2128 * Call each flight loop iteration to perform blackbox logging.
2130 void blackboxUpdate(timeUs_t currentTimeUs
)
2132 if (blackboxState
>= BLACKBOX_FIRST_HEADER_SENDING_STATE
&& blackboxState
<= BLACKBOX_LAST_HEADER_SENDING_STATE
) {
2133 blackboxReplenishHeaderBudget();
2136 switch (blackboxState
) {
2137 case BLACKBOX_STATE_PREPARE_LOG_FILE
:
2138 if (blackboxDeviceBeginLog()) {
2139 blackboxSetState(BLACKBOX_STATE_SEND_HEADER
);
2142 case BLACKBOX_STATE_SEND_HEADER
:
2143 //On entry of this state, xmitState.headerIndex is 0 and startTime is intialised
2146 * Once the UART has had time to init, transmit the header in chunks so we don't overflow its transmit
2147 * buffer, overflow the OpenLog's buffer, or keep the main loop busy for too long.
2149 if (millis() > xmitState
.u
.startTime
+ 100) {
2150 if (blackboxDeviceReserveBufferSpace(BLACKBOX_TARGET_HEADER_BUDGET_PER_ITERATION
) == BLACKBOX_RESERVE_SUCCESS
) {
2151 for (int i
= 0; i
< BLACKBOX_TARGET_HEADER_BUDGET_PER_ITERATION
&& blackboxHeader
[xmitState
.headerIndex
] != '\0'; i
++, xmitState
.headerIndex
++) {
2152 blackboxWrite(blackboxHeader
[xmitState
.headerIndex
]);
2153 blackboxHeaderBudget
--;
2156 if (blackboxHeader
[xmitState
.headerIndex
] == '\0') {
2157 blackboxPrintfHeaderLine("I interval", "%d", blackboxIFrameInterval
);
2158 blackboxSetState(BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER
);
2163 case BLACKBOX_STATE_SEND_MAIN_FIELD_HEADER
:
2164 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
2165 if (!sendFieldDefinition('I', 'P', blackboxMainFields
, blackboxMainFields
+ 1, ARRAYLEN(blackboxMainFields
),
2166 &blackboxMainFields
[0].condition
, &blackboxMainFields
[1].condition
)) {
2168 if (feature(FEATURE_GPS
)) {
2169 blackboxSetState(BLACKBOX_STATE_SEND_GPS_H_HEADER
);
2172 blackboxSetState(BLACKBOX_STATE_SEND_SLOW_HEADER
);
2176 case BLACKBOX_STATE_SEND_GPS_H_HEADER
:
2177 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
2178 if (!sendFieldDefinition('H', 0, blackboxGpsHFields
, blackboxGpsHFields
+ 1, ARRAYLEN(blackboxGpsHFields
),
2180 blackboxSetState(BLACKBOX_STATE_SEND_GPS_G_HEADER
);
2183 case BLACKBOX_STATE_SEND_GPS_G_HEADER
:
2184 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
2185 if (!sendFieldDefinition('G', 0, blackboxGpsGFields
, blackboxGpsGFields
+ 1, ARRAYLEN(blackboxGpsGFields
),
2186 &blackboxGpsGFields
[0].condition
, &blackboxGpsGFields
[1].condition
)) {
2187 blackboxSetState(BLACKBOX_STATE_SEND_SLOW_HEADER
);
2191 case BLACKBOX_STATE_SEND_SLOW_HEADER
:
2192 //On entry of this state, xmitState.headerIndex is 0 and xmitState.u.fieldIndex is -1
2193 if (!sendFieldDefinition('S', 0, blackboxSlowFields
, blackboxSlowFields
+ 1, ARRAYLEN(blackboxSlowFields
),
2195 blackboxSetState(BLACKBOX_STATE_SEND_SYSINFO
);
2198 case BLACKBOX_STATE_SEND_SYSINFO
:
2199 //On entry of this state, xmitState.headerIndex is 0
2201 //Keep writing chunks of the system info headers until it returns true to signal completion
2202 if (blackboxWriteSysinfo()) {
2204 * Wait for header buffers to drain completely before data logging begins to ensure reliable header delivery
2205 * (overflowing circular buffers causes all data to be discarded, so the first few logged iterations
2206 * could wipe out the end of the header if we weren't careful)
2208 if (blackboxDeviceFlushForce()) {
2209 blackboxSetState(BLACKBOX_STATE_RUNNING
);
2213 case BLACKBOX_STATE_PAUSED
:
2214 // Only allow resume to occur during an I-frame iteration, so that we have an "I" base to work from
2215 if (IS_RC_MODE_ACTIVE(BOXBLACKBOX
) && blackboxShouldLogIFrame()) {
2216 // Write a log entry so the decoder is aware that our large time/iteration skip is intended
2217 flightLogEvent_loggingResume_t resume
;
2219 resume
.logIteration
= blackboxIteration
;
2220 resume
.currentTimeUs
= currentTimeUs
;
2222 blackboxLogEvent(FLIGHT_LOG_EVENT_LOGGING_RESUME
, (flightLogEventData_t
*) &resume
);
2223 blackboxSetState(BLACKBOX_STATE_RUNNING
);
2225 blackboxLogIteration(currentTimeUs
);
2227 // Keep the logging timers ticking so our log iteration continues to advance
2228 blackboxAdvanceIterationTimers();
2230 case BLACKBOX_STATE_RUNNING
:
2231 // On entry to this state, blackboxIteration, blackboxPFrameIndex and blackboxIFrameIndex are reset to 0
2232 if (blackboxModeActivationConditionPresent
&& !IS_RC_MODE_ACTIVE(BOXBLACKBOX
)) {
2233 blackboxSetState(BLACKBOX_STATE_PAUSED
);
2235 blackboxLogIteration(currentTimeUs
);
2237 blackboxAdvanceIterationTimers();
2239 case BLACKBOX_STATE_SHUTTING_DOWN
:
2240 //On entry of this state, startTime is set
2242 * Wait for the log we've transmitted to make its way to the logger before we release the serial port,
2243 * since releasing the port clears the Tx buffer.
2245 * Don't wait longer than it could possibly take if something funky happens.
2247 if (blackboxDeviceEndLog(blackboxLoggedAnyFrames
) && (millis() > xmitState
.u
.startTime
+ BLACKBOX_SHUTDOWN_TIMEOUT_MILLIS
|| blackboxDeviceFlushForce())) {
2248 blackboxDeviceClose();
2249 blackboxSetState(BLACKBOX_STATE_STOPPED
);
2256 // Did we run out of room on the device? Stop!
2257 if (isBlackboxDeviceFull()) {
2258 blackboxSetState(BLACKBOX_STATE_STOPPED
);
2262 static bool canUseBlackboxWithCurrentConfiguration(void)
2264 return feature(FEATURE_BLACKBOX
);
2268 * Call during system startup to initialize the blackbox.
2270 void blackboxInit(void)
2272 if (canUseBlackboxWithCurrentConfiguration()) {
2273 blackboxSetState(BLACKBOX_STATE_STOPPED
);
2275 blackboxSetState(BLACKBOX_STATE_DISABLED
);
2278 /* FIXME is this really necessary ? Why? */
2279 int max_denom
= 4096*1000 / gyroConfig()->looptime
;
2280 if (blackboxConfig()->rate_denom
> max_denom
) {
2281 blackboxConfigMutable()->rate_denom
= max_denom
;
2283 /* Decide on how ofter are we going to log I-frames*/
2284 if (blackboxConfig()->rate_denom
<= 32) {
2285 blackboxIFrameInterval
= 32;
2288 // Use next higher power of two via GCC builtin
2289 blackboxIFrameInterval
= 1 << (32 - __builtin_clz (blackboxConfig()->rate_denom
- 1));