remove test code
[inav.git] / src / main / navigation / sqrt_controller.c
blob569df14d70f0697cef3c1963f5f6d3f48359c71c
1 /*
2 * This file is part of INAV.
4 * INAV is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * INAV is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with INAV. If not, see <http://www.gnu.org/licenses/>.
18 #include <stdbool.h>
19 #include <stdint.h>
20 #include <math.h>
22 #include "platform.h"
24 #include "common/maths.h"
26 #include "navigation/sqrt_controller.h"
29 Square Root Controller calculates the correction based on a proportional controller (kP).
30 Used only in AutoPilot System for Vertical (Z) control.
33 // Inverse of the sqrt controller. Calculates the input (aka error) to the sqrt_controller required to achieve a given output
34 static float sqrtControllerInverse(float kp, float derivative_max, float output)
36 if ((derivative_max > 0.0f) && (kp == 0.0f)) {
37 return (output * output) / (2.0f * derivative_max);
40 if (((derivative_max < 0.0f) ||(derivative_max == 0.0f)) && (kp != 0.0f)) {
41 return output / kp;
44 if (((derivative_max < 0.0f) || (derivative_max == 0.0f)) && (kp == 0.0f)) {
45 return 0.0f;
48 // Calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function
49 const float linear_velocity = derivative_max / kp;
51 if (fabsf(output) < linear_velocity) {
52 // If our current velocity is below the cross-over point we use a linear function
53 return output / kp;
56 const float linear_dist = derivative_max / sq(kp);
57 const float stopping_dist = (linear_dist * 0.5f) + sq(output) / (2.0f * derivative_max);
58 return (output > 0.0f) ? stopping_dist : -stopping_dist;
61 // Proportional controller with piecewise sqrt sections to constrain derivative
62 float sqrtControllerApply(sqrt_controller_t *sqrt_controller_pointer, float target, float measurement, float deltaTime)
64 float correction_rate;
66 // Calculate distance error
67 sqrt_controller_pointer->error = target - measurement;
69 if ((sqrt_controller_pointer->error_min < 0.0f) && (sqrt_controller_pointer->error < sqrt_controller_pointer->error_min)) {
70 sqrt_controller_pointer->error = sqrt_controller_pointer->error_min;
71 } else if ((sqrt_controller_pointer->error_max > 0.0f) && (sqrt_controller_pointer->error > sqrt_controller_pointer->error_max)) {
72 sqrt_controller_pointer->error = sqrt_controller_pointer->error_max;
75 if ((sqrt_controller_pointer->derivative_max < 0.0f) || sqrt_controller_pointer->derivative_max == 0.0f) {
76 // Derivative Max is zero or negative.
77 correction_rate = sqrt_controller_pointer->error * sqrt_controller_pointer->kp;
78 } else if (sqrt_controller_pointer->kp == 0.0f) {
79 // Proportional term is zero but we have a Derivative Max.
80 if (sqrt_controller_pointer->error > 0.0f) {
81 correction_rate = fast_fsqrtf(2.0f * sqrt_controller_pointer->derivative_max * (sqrt_controller_pointer->error));
82 } else if (sqrt_controller_pointer->error < 0.0f) {
83 correction_rate = -fast_fsqrtf(2.0f * sqrt_controller_pointer->derivative_max * (-sqrt_controller_pointer->error));
84 } else {
85 correction_rate = 0.0f;
87 } else {
88 // Both the Proportional and Derivative Max have been defined.
89 const float linear_dist = sqrt_controller_pointer->derivative_max / sq(sqrt_controller_pointer->kp);
90 if (sqrt_controller_pointer->error > linear_dist) {
91 correction_rate = fast_fsqrtf(2.0f * sqrt_controller_pointer->derivative_max * (sqrt_controller_pointer->error - (linear_dist / 2.0f)));
92 } else if (sqrt_controller_pointer->error < -linear_dist) {
93 correction_rate = -fast_fsqrtf(2.0f * sqrt_controller_pointer->derivative_max * (-sqrt_controller_pointer->error - (linear_dist / 2.0f)));
94 } else {
95 correction_rate = sqrt_controller_pointer->error * sqrt_controller_pointer->kp;
99 if (deltaTime != 0.0f) {
100 // This ensures we do not get small oscillations by over shooting the error correction in the last time step.
101 return constrainf(correction_rate, -fabsf(sqrt_controller_pointer->error) / deltaTime, fabsf(sqrt_controller_pointer->error) / deltaTime);
104 return correction_rate;
107 // Sets the maximum error to limit output and derivative of output
108 void sqrtControllerInit(sqrt_controller_t *sqrt_controller_pointer,const float kp,const float output_min,const float output_max,const float derivative_out_max)
111 // Reset the variables
112 sqrt_controller_pointer->kp = kp;
113 sqrt_controller_pointer->derivative_max = 0.0f;
114 sqrt_controller_pointer->error_min = 0.0f;
115 sqrt_controller_pointer->error_max = 0.0f;
117 if (derivative_out_max > 0.0f) {
118 sqrt_controller_pointer->derivative_max = derivative_out_max;
121 if ((output_min < 0.0f) && (sqrt_controller_pointer->kp > 0.0f)) {
122 sqrt_controller_pointer->error_min = sqrtControllerInverse(sqrt_controller_pointer->kp, sqrt_controller_pointer->derivative_max, output_min);
125 if ((output_max > 0.0f) && (sqrt_controller_pointer->kp > 0.0f)) {
126 sqrt_controller_pointer->error_max = sqrtControllerInverse(sqrt_controller_pointer->kp, sqrt_controller_pointer->derivative_max, output_max);