Update MixerProfile.md
[inav.git] / lib / main / STM32F4 / Drivers / STM32F4xx_HAL_Driver / Src / stm32f4xx_ll_tim.c
blob16469eeaf6f9dcdc6260006376779dea08cb5c4b
1 /**
2 ******************************************************************************
3 * @file stm32f4xx_ll_tim.c
4 * @author MCD Application Team
5 * @version V1.7.1
6 * @date 14-April-2017
7 * @brief TIM LL module driver.
8 ******************************************************************************
9 * @attention
11 * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
13 * Redistribution and use in source and binary forms, with or without modification,
14 * are permitted provided that the following conditions are met:
15 * 1. Redistributions of source code must retain the above copyright notice,
16 * this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright notice,
18 * this list of conditions and the following disclaimer in the documentation
19 * and/or other materials provided with the distribution.
20 * 3. Neither the name of STMicroelectronics nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 ******************************************************************************
37 #if defined(USE_FULL_LL_DRIVER)
39 /* Includes ------------------------------------------------------------------*/
40 #include "stm32f4xx_ll_tim.h"
41 #include "stm32f4xx_ll_bus.h"
43 #ifdef USE_FULL_ASSERT
44 #include "stm32_assert.h"
45 #else
46 #define assert_param(expr) ((void)0U)
47 #endif
49 /** @addtogroup STM32F4xx_LL_Driver
50 * @{
53 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14)
55 /** @addtogroup TIM_LL
56 * @{
59 /* Private types -------------------------------------------------------------*/
60 /* Private variables ---------------------------------------------------------*/
61 /* Private constants ---------------------------------------------------------*/
62 /* Private macros ------------------------------------------------------------*/
63 /** @addtogroup TIM_LL_Private_Macros
64 * @{
66 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
67 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
68 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
69 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
70 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
72 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
73 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
74 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
76 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
77 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
78 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
79 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
80 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
81 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
82 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
83 || ((__VALUE__) == LL_TIM_OCMODE_PWM2))
85 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
86 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
88 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
89 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
91 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
92 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
94 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
95 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
96 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
98 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
99 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
100 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
101 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
103 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
104 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
105 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
106 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
107 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
108 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
109 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
110 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
111 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
112 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
113 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
114 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
115 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
116 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
117 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
118 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
120 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
121 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
122 || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
124 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
125 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
126 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
128 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
129 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
131 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
132 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
134 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
135 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
137 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
138 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
139 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
140 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
142 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
143 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
145 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
146 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
148 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
149 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
151 * @}
155 /* Private function prototypes -----------------------------------------------*/
156 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
157 * @{
159 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
160 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
161 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
162 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
163 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
164 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
165 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
166 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
168 * @}
171 /* Exported functions --------------------------------------------------------*/
172 /** @addtogroup TIM_LL_Exported_Functions
173 * @{
176 /** @addtogroup TIM_LL_EF_Init
177 * @{
181 * @brief Set TIMx registers to their reset values.
182 * @param TIMx Timer instance
183 * @retval An ErrorStatus enumeration value:
184 * - SUCCESS: TIMx registers are de-initialized
185 * - ERROR: invalid TIMx instance
187 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
189 ErrorStatus result = SUCCESS;
191 /* Check the parameters */
192 assert_param(IS_TIM_INSTANCE(TIMx));
194 if (TIMx == TIM1)
196 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
197 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
199 #if defined(TIM2)
200 else if (TIMx == TIM2)
202 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
203 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
205 #endif
206 #if defined(TIM3)
207 else if (TIMx == TIM3)
209 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
210 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
212 #endif
213 #if defined(TIM4)
214 else if (TIMx == TIM4)
216 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
217 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
219 #endif
220 #if defined(TIM5)
221 else if (TIMx == TIM5)
223 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
224 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
226 #endif
227 #if defined(TIM6)
228 else if (TIMx == TIM6)
230 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
231 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
233 #endif
234 #if defined (TIM7)
235 else if (TIMx == TIM7)
237 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
238 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
240 #endif
241 #if defined(TIM8)
242 else if (TIMx == TIM8)
244 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
245 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
247 #endif
248 #if defined(TIM9)
249 else if (TIMx == TIM9)
251 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
252 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
254 #endif
255 #if defined(TIM10)
256 else if (TIMx == TIM10)
258 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
259 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
261 #endif
262 #if defined(TIM11)
263 else if (TIMx == TIM11)
265 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
266 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
268 #endif
269 #if defined(TIM12)
270 else if (TIMx == TIM12)
272 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
273 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
275 #endif
276 #if defined(TIM13)
277 else if (TIMx == TIM13)
279 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
280 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
282 #endif
283 #if defined(TIM14)
284 else if (TIMx == TIM14)
286 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
287 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
289 #endif
290 else
292 result = ERROR;
295 return result;
299 * @brief Set the fields of the time base unit configuration data structure
300 * to their default values.
301 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
302 * @retval None
304 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
306 /* Set the default configuration */
307 TIM_InitStruct->Prescaler = (uint16_t)0x0000U;
308 TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP;
309 TIM_InitStruct->Autoreload = 0xFFFFFFFFU;
310 TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
311 TIM_InitStruct->RepetitionCounter = (uint8_t)0x00U;
315 * @brief Configure the TIMx time base unit.
316 * @param TIMx Timer Instance
317 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
318 * @retval An ErrorStatus enumeration value:
319 * - SUCCESS: TIMx registers are de-initialized
320 * - ERROR: not applicable
322 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
324 uint32_t tmpcr1 = 0U;
326 /* Check the parameters */
327 assert_param(IS_TIM_INSTANCE(TIMx));
328 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
329 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
331 tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
333 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
335 /* Select the Counter Mode */
336 MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
339 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
341 /* Set the clock division */
342 MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
345 /* Write to TIMx CR1 */
346 LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
348 /* Set the Autoreload value */
349 LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
351 /* Set the Prescaler value */
352 LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
354 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
356 /* Set the Repetition Counter value */
357 LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
360 /* Generate an update event to reload the Prescaler
361 and the repetition counter value (if applicable) immediately */
362 LL_TIM_GenerateEvent_UPDATE(TIMx);
364 return SUCCESS;
368 * @brief Set the fields of the TIMx output channel configuration data
369 * structure to their default values.
370 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
371 * @retval None
373 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
375 /* Set the default configuration */
376 TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN;
377 TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE;
378 TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE;
379 TIM_OC_InitStruct->CompareValue = 0x00000000U;
380 TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH;
381 TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
382 TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW;
383 TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
387 * @brief Configure the TIMx output channel.
388 * @param TIMx Timer Instance
389 * @param Channel This parameter can be one of the following values:
390 * @arg @ref LL_TIM_CHANNEL_CH1
391 * @arg @ref LL_TIM_CHANNEL_CH2
392 * @arg @ref LL_TIM_CHANNEL_CH3
393 * @arg @ref LL_TIM_CHANNEL_CH4
394 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
395 * @retval An ErrorStatus enumeration value:
396 * - SUCCESS: TIMx output channel is initialized
397 * - ERROR: TIMx output channel is not initialized
399 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
401 ErrorStatus result = ERROR;
403 switch (Channel)
405 case LL_TIM_CHANNEL_CH1:
406 result = OC1Config(TIMx, TIM_OC_InitStruct);
407 break;
408 case LL_TIM_CHANNEL_CH2:
409 result = OC2Config(TIMx, TIM_OC_InitStruct);
410 break;
411 case LL_TIM_CHANNEL_CH3:
412 result = OC3Config(TIMx, TIM_OC_InitStruct);
413 break;
414 case LL_TIM_CHANNEL_CH4:
415 result = OC4Config(TIMx, TIM_OC_InitStruct);
416 break;
417 default:
418 break;
421 return result;
425 * @brief Set the fields of the TIMx input channel configuration data
426 * structure to their default values.
427 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
428 * @retval None
430 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
432 /* Set the default configuration */
433 TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING;
434 TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
435 TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1;
436 TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1;
440 * @brief Configure the TIMx input channel.
441 * @param TIMx Timer Instance
442 * @param Channel This parameter can be one of the following values:
443 * @arg @ref LL_TIM_CHANNEL_CH1
444 * @arg @ref LL_TIM_CHANNEL_CH2
445 * @arg @ref LL_TIM_CHANNEL_CH3
446 * @arg @ref LL_TIM_CHANNEL_CH4
447 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
448 * @retval An ErrorStatus enumeration value:
449 * - SUCCESS: TIMx output channel is initialized
450 * - ERROR: TIMx output channel is not initialized
452 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
454 ErrorStatus result = ERROR;
456 switch (Channel)
458 case LL_TIM_CHANNEL_CH1:
459 result = IC1Config(TIMx, TIM_IC_InitStruct);
460 break;
461 case LL_TIM_CHANNEL_CH2:
462 result = IC2Config(TIMx, TIM_IC_InitStruct);
463 break;
464 case LL_TIM_CHANNEL_CH3:
465 result = IC3Config(TIMx, TIM_IC_InitStruct);
466 break;
467 case LL_TIM_CHANNEL_CH4:
468 result = IC4Config(TIMx, TIM_IC_InitStruct);
469 break;
470 default:
471 break;
474 return result;
478 * @brief Fills each TIM_EncoderInitStruct field with its default value
479 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
480 * @retval None
482 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
484 /* Set the default configuration */
485 TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1;
486 TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
487 TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
488 TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
489 TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
490 TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING;
491 TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
492 TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1;
493 TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1;
497 * @brief Configure the encoder interface of the timer instance.
498 * @param TIMx Timer Instance
499 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
500 * @retval An ErrorStatus enumeration value:
501 * - SUCCESS: TIMx registers are de-initialized
502 * - ERROR: not applicable
504 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
506 uint32_t tmpccmr1 = 0U;
507 uint32_t tmpccer = 0U;
509 /* Check the parameters */
510 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
511 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
512 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
513 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
514 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
515 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
516 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
517 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
518 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
519 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
521 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
522 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
524 /* Get the TIMx CCMR1 register value */
525 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
527 /* Get the TIMx CCER register value */
528 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
530 /* Configure TI1 */
531 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
532 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
533 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
534 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
536 /* Configure TI2 */
537 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC);
538 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
539 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
540 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
542 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
543 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
544 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
545 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
546 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
548 /* Set encoder mode */
549 LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
551 /* Write to TIMx CCMR1 */
552 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
554 /* Write to TIMx CCER */
555 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
557 return SUCCESS;
561 * @brief Set the fields of the TIMx Hall sensor interface configuration data
562 * structure to their default values.
563 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
564 * @retval None
566 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
568 /* Set the default configuration */
569 TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
570 TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
571 TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
572 TIM_HallSensorInitStruct->CommutationDelay = 0U;
576 * @brief Configure the Hall sensor interface of the timer instance.
577 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
578 * to the TI1 input channel
579 * @note TIMx slave mode controller is configured in reset mode.
580 Selected internal trigger is TI1F_ED.
581 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
582 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
583 * between 2 changes on the inputs. It gives information about motor speed.
584 * @note Channel 2 is configured in output PWM 2 mode.
585 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
586 * @note OC2REF is selected as trigger output on TRGO.
587 * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
588 * when TIMx operates in Hall sensor interface mode.
589 * @param TIMx Timer Instance
590 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
591 * @retval An ErrorStatus enumeration value:
592 * - SUCCESS: TIMx registers are de-initialized
593 * - ERROR: not applicable
595 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
597 uint32_t tmpcr2 = 0U;
598 uint32_t tmpccmr1 = 0U;
599 uint32_t tmpccer = 0U;
600 uint32_t tmpsmcr = 0U;
602 /* Check the parameters */
603 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
604 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
605 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
606 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
608 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
609 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
611 /* Get the TIMx CR2 register value */
612 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
614 /* Get the TIMx CCMR1 register value */
615 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
617 /* Get the TIMx CCER register value */
618 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
620 /* Get the TIMx SMCR register value */
621 tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
623 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
624 tmpcr2 |= TIM_CR2_TI1S;
626 /* OC2REF signal is used as trigger output (TRGO) */
627 tmpcr2 |= LL_TIM_TRGO_OC2REF;
629 /* Configure the slave mode controller */
630 tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
631 tmpsmcr |= LL_TIM_TS_TI1F_ED;
632 tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
634 /* Configure input channel 1 */
635 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
636 tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
637 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
638 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
640 /* Configure input channel 2 */
641 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE);
642 tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
644 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
645 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
646 tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
647 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
649 /* Write to TIMx CR2 */
650 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
652 /* Write to TIMx SMCR */
653 LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
655 /* Write to TIMx CCMR1 */
656 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
658 /* Write to TIMx CCER */
659 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
661 /* Write to TIMx CCR2 */
662 LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
664 return SUCCESS;
668 * @brief Set the fields of the Break and Dead Time configuration data structure
669 * to their default values.
670 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
671 * @retval None
673 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
675 /* Set the default configuration */
676 TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE;
677 TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE;
678 TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF;
679 TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00U;
680 TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE;
681 TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW;
682 TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
686 * @brief Configure the Break and Dead Time feature of the timer instance.
687 * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
688 * depending on the LOCK configuration, it can be necessary to configure all of
689 * them during the first write access to the TIMx_BDTR register.
690 * @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
691 * a timer instance provides a break input.
692 * @param TIMx Timer Instance
693 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure(Break and Dead Time configuration data structure)
694 * @retval An ErrorStatus enumeration value:
695 * - SUCCESS: Break and Dead Time is initialized
696 * - ERROR: not applicable
698 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
700 uint32_t tmpbdtr = 0;
702 /* Check the parameters */
703 assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
704 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
705 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
706 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
707 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
708 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
709 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
711 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
712 the OSSI State, the dead time value and the Automatic Output Enable Bit */
714 /* Set the BDTR bits */
715 MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
716 MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
717 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
718 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
719 MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
720 MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
721 MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
722 MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
724 /* Set TIMx_BDTR */
725 LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
727 return SUCCESS;
730 * @}
734 * @}
737 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
738 * @brief Private functions
739 * @{
742 * @brief Configure the TIMx output channel 1.
743 * @param TIMx Timer Instance
744 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
745 * @retval An ErrorStatus enumeration value:
746 * - SUCCESS: TIMx registers are de-initialized
747 * - ERROR: not applicable
749 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
751 uint32_t tmpccmr1 = 0U;
752 uint32_t tmpccer = 0U;
753 uint32_t tmpcr2 = 0U;
755 /* Check the parameters */
756 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
757 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
758 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
759 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
760 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
761 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
763 /* Disable the Channel 1: Reset the CC1E Bit */
764 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
766 /* Get the TIMx CCER register value */
767 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
769 /* Get the TIMx CR2 register value */
770 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
772 /* Get the TIMx CCMR1 register value */
773 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
775 /* Reset Capture/Compare selection Bits */
776 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
778 /* Set the Output Compare Mode */
779 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
781 /* Set the Output Compare Polarity */
782 MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
784 /* Set the Output State */
785 MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
787 if (IS_TIM_BREAK_INSTANCE(TIMx))
789 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
790 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
792 /* Set the complementary output Polarity */
793 MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
795 /* Set the complementary output State */
796 MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
798 /* Set the Output Idle state */
799 MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
801 /* Set the complementary output Idle state */
802 MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
805 /* Write to TIMx CR2 */
806 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
808 /* Write to TIMx CCMR1 */
809 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
811 /* Set the Capture Compare Register value */
812 LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
814 /* Write to TIMx CCER */
815 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
817 return SUCCESS;
821 * @brief Configure the TIMx output channel 2.
822 * @param TIMx Timer Instance
823 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
824 * @retval An ErrorStatus enumeration value:
825 * - SUCCESS: TIMx registers are de-initialized
826 * - ERROR: not applicable
828 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
830 uint32_t tmpccmr1 = 0U;
831 uint32_t tmpccer = 0U;
832 uint32_t tmpcr2 = 0U;
834 /* Check the parameters */
835 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
836 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
837 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
838 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
839 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
840 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
842 /* Disable the Channel 2: Reset the CC2E Bit */
843 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
845 /* Get the TIMx CCER register value */
846 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
848 /* Get the TIMx CR2 register value */
849 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
851 /* Get the TIMx CCMR1 register value */
852 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
854 /* Reset Capture/Compare selection Bits */
855 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
857 /* Select the Output Compare Mode */
858 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
860 /* Set the Output Compare Polarity */
861 MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
863 /* Set the Output State */
864 MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
866 if (IS_TIM_BREAK_INSTANCE(TIMx))
868 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
869 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
871 /* Set the complementary output Polarity */
872 MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
874 /* Set the complementary output State */
875 MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
877 /* Set the Output Idle state */
878 MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
880 /* Set the complementary output Idle state */
881 MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
884 /* Write to TIMx CR2 */
885 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
887 /* Write to TIMx CCMR1 */
888 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
890 /* Set the Capture Compare Register value */
891 LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
893 /* Write to TIMx CCER */
894 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
896 return SUCCESS;
900 * @brief Configure the TIMx output channel 3.
901 * @param TIMx Timer Instance
902 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
903 * @retval An ErrorStatus enumeration value:
904 * - SUCCESS: TIMx registers are de-initialized
905 * - ERROR: not applicable
907 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
909 uint32_t tmpccmr2 = 0U;
910 uint32_t tmpccer = 0U;
911 uint32_t tmpcr2 = 0U;
913 /* Check the parameters */
914 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
915 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
916 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
917 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
918 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
919 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
921 /* Disable the Channel 3: Reset the CC3E Bit */
922 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
924 /* Get the TIMx CCER register value */
925 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
927 /* Get the TIMx CR2 register value */
928 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
930 /* Get the TIMx CCMR2 register value */
931 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
933 /* Reset Capture/Compare selection Bits */
934 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
936 /* Select the Output Compare Mode */
937 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
939 /* Set the Output Compare Polarity */
940 MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
942 /* Set the Output State */
943 MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
945 if (IS_TIM_BREAK_INSTANCE(TIMx))
947 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
948 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
950 /* Set the complementary output Polarity */
951 MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
953 /* Set the complementary output State */
954 MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
956 /* Set the Output Idle state */
957 MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
959 /* Set the complementary output Idle state */
960 MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
963 /* Write to TIMx CR2 */
964 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
966 /* Write to TIMx CCMR2 */
967 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
969 /* Set the Capture Compare Register value */
970 LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
972 /* Write to TIMx CCER */
973 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
975 return SUCCESS;
979 * @brief Configure the TIMx output channel 4.
980 * @param TIMx Timer Instance
981 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
982 * @retval An ErrorStatus enumeration value:
983 * - SUCCESS: TIMx registers are de-initialized
984 * - ERROR: not applicable
986 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
988 uint32_t tmpccmr2 = 0U;
989 uint32_t tmpccer = 0U;
990 uint32_t tmpcr2 = 0U;
992 /* Check the parameters */
993 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
994 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
995 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
996 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
997 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
998 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1000 /* Disable the Channel 4: Reset the CC4E Bit */
1001 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1003 /* Get the TIMx CCER register value */
1004 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1006 /* Get the TIMx CR2 register value */
1007 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1009 /* Get the TIMx CCMR2 register value */
1010 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1012 /* Reset Capture/Compare selection Bits */
1013 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1015 /* Select the Output Compare Mode */
1016 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1018 /* Set the Output Compare Polarity */
1019 MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1021 /* Set the Output State */
1022 MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1024 if (IS_TIM_BREAK_INSTANCE(TIMx))
1026 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1027 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1029 /* Set the Output Idle state */
1030 MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1033 /* Write to TIMx CR2 */
1034 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1036 /* Write to TIMx CCMR2 */
1037 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1039 /* Set the Capture Compare Register value */
1040 LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1042 /* Write to TIMx CCER */
1043 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1045 return SUCCESS;
1050 * @brief Configure the TIMx input channel 1.
1051 * @param TIMx Timer Instance
1052 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1053 * @retval An ErrorStatus enumeration value:
1054 * - SUCCESS: TIMx registers are de-initialized
1055 * - ERROR: not applicable
1057 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1059 /* Check the parameters */
1060 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1061 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1062 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1063 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1064 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1066 /* Disable the Channel 1: Reset the CC1E Bit */
1067 TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1069 /* Select the Input and set the filter and the prescaler value */
1070 MODIFY_REG(TIMx->CCMR1,
1071 (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1072 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1074 /* Select the Polarity and set the CC1E Bit */
1075 MODIFY_REG(TIMx->CCER,
1076 (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1077 (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1079 return SUCCESS;
1083 * @brief Configure the TIMx input channel 2.
1084 * @param TIMx Timer Instance
1085 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1086 * @retval An ErrorStatus enumeration value:
1087 * - SUCCESS: TIMx registers are de-initialized
1088 * - ERROR: not applicable
1090 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1092 /* Check the parameters */
1093 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1094 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1095 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1096 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1097 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1099 /* Disable the Channel 2: Reset the CC2E Bit */
1100 TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1102 /* Select the Input and set the filter and the prescaler value */
1103 MODIFY_REG(TIMx->CCMR1,
1104 (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1105 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1107 /* Select the Polarity and set the CC2E Bit */
1108 MODIFY_REG(TIMx->CCER,
1109 (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1110 ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1112 return SUCCESS;
1116 * @brief Configure the TIMx input channel 3.
1117 * @param TIMx Timer Instance
1118 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1119 * @retval An ErrorStatus enumeration value:
1120 * - SUCCESS: TIMx registers are de-initialized
1121 * - ERROR: not applicable
1123 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1125 /* Check the parameters */
1126 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1127 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1128 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1129 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1130 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1132 /* Disable the Channel 3: Reset the CC3E Bit */
1133 TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1135 /* Select the Input and set the filter and the prescaler value */
1136 MODIFY_REG(TIMx->CCMR2,
1137 (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1138 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1140 /* Select the Polarity and set the CC3E Bit */
1141 MODIFY_REG(TIMx->CCER,
1142 (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1143 ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1145 return SUCCESS;
1149 * @brief Configure the TIMx input channel 4.
1150 * @param TIMx Timer Instance
1151 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1152 * @retval An ErrorStatus enumeration value:
1153 * - SUCCESS: TIMx registers are de-initialized
1154 * - ERROR: not applicable
1156 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1158 /* Check the parameters */
1159 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1160 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1161 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1162 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1163 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1165 /* Disable the Channel 4: Reset the CC4E Bit */
1166 TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1168 /* Select the Input and set the filter and the prescaler value */
1169 MODIFY_REG(TIMx->CCMR2,
1170 (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1171 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1173 /* Select the Polarity and set the CC2E Bit */
1174 MODIFY_REG(TIMx->CCER,
1175 (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1176 ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1178 return SUCCESS;
1183 * @}
1187 * @}
1190 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 */
1193 * @}
1196 #endif /* USE_FULL_LL_DRIVER */
1198 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/